(* Author: Andreas Lochbihler, Digital Asset *)
section \<open>Laziness tests\<close>
theory Code_Lazy_Test imports
"HOL-Library.Code_Lazy"
"HOL-Library.Stream"
"HOL-Library.Code_Test"
"HOL-Library.BNF_Corec"
begin
subsection \<open>Linear codatatype\<close>
code_lazy_type stream
value [code] "cycle ''ab''"
value [code] "let x = cycle ''ab''; y = snth x 10 in x"
datatype 'a llist = LNil ("\<^bold>[\<^bold>]") | LCons (lhd: 'a) (ltl: "'a llist") (infixr "\<^bold>#" 65)
subsection \<open>Finite lazy lists\<close>
code_lazy_type llist
no_notation lazy_llist ("_")
syntax "_llist" :: "args => 'a list" ("\<^bold>[(_)\<^bold>]")
translations
"\<^bold>[x, xs\<^bold>]" == "x\<^bold>#\<^bold>[xs\<^bold>]"
"\<^bold>[x\<^bold>]" == "x\<^bold>#\<^bold>[\<^bold>]"
"\<^bold>[x\<^bold>]" == "CONST lazy_llist x"
definition llist :: "nat llist" where
"llist = \<^bold>[1, 2, 3, hd [], 4\<^bold>]"
fun lnth :: "nat \ 'a llist \ 'a" where
"lnth 0 (x \<^bold># xs) = x"
| "lnth (Suc n) (x \<^bold># xs) = lnth n xs"
value [code] "llist"
value [code] "let x = lnth 2 llist in (x, llist)"
value [code] "llist"
fun lfilter :: "('a \ bool) \ 'a llist \ 'a llist" where
"lfilter P \<^bold>[\<^bold>] = \<^bold>[\<^bold>]"
| "lfilter P (x \<^bold># xs) = (if P x then x \<^bold># lfilter P xs else lfilter P xs)"
value [code] "lhd (lfilter odd llist)"
definition lfilter_test :: "nat llist \ _" where "lfilter_test xs = lhd (lfilter even xs)"
\<comment> \<open>Filtering \<^term>\<open>llist\<close> for \<^term>\<open>even\<close> fails because only the datatype is lazy, not the
filter function itself.\<close>
ML_val \<open> (@{code lfilter_test} @{code llist}; raise Fail "Failure expected") handle Match => () \<close>
subsection \<open>Records as free type\<close>
record ('a, 'b) rec =
rec1 :: 'a
rec2 :: 'b
free_constructors rec_ext for rec.rec_ext
subgoal by(rule rec.cases_scheme)
subgoal by(rule rec.ext_inject)
done
code_lazy_type rec_ext
definition rec_test1 where "rec_test1 = rec1 (\rec1 = Suc 5, rec2 = True\\rec1 := 0\)"
definition rec_test2 :: "(bool, bool) rec" where "rec_test2 = \rec1 = hd [], rec2 = True\"
test_code "rec_test1 = 0" in PolyML Scala
value [code] "rec_test2"
subsection \<open>Branching codatatypes\<close>
codatatype tree = L | Node tree tree (infix "\" 900)
code_lazy_type tree
fun mk_tree :: "nat \ tree" where
mk_tree_0: "mk_tree 0 = L"
| "mk_tree (Suc n) = (let t = mk_tree n in t \ t)"
function subtree :: "bool list \ tree \ tree" where
"subtree [] t = t"
| "subtree (True # p) (l \ r) = subtree p l"
| "subtree (False # p) (l \ r) = subtree p r"
| "subtree _ L = L"
by pat_completeness auto
termination by lexicographic_order
value [code] "mk_tree 10"
value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
lemma mk_tree_Suc: "mk_tree (Suc n) = mk_tree n \ mk_tree n"
by(simp add: Let_def)
lemmas [code] = mk_tree_0 mk_tree_Suc
value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
value [code] "let t = mk_tree 4; _ = subtree [True, True, False, False] t in t"
subsection \<open>Corecursion\<close>
corec (friend) plus :: "'a :: plus stream \ 'a stream \ 'a stream" where
"plus xs ys = (shd xs + shd ys) ## plus (stl xs) (stl ys)"
corec (friend) times :: "'a :: {plus, times} stream \ 'a stream \ 'a stream" where
"times xs ys = (shd xs * shd ys) ## plus (times (stl xs) ys) (times xs (stl ys))"
subsection \<open>Pattern-matching tests\<close>
definition f1 :: "bool \ bool \ bool \ nat llist \ unit" where
"f1 _ _ _ _ = ()"
declare [[code drop: f1]]
lemma f1_code1 [code]:
"f1 b c d ns = Code.abort (STR ''4'') (\_. ())"
"f1 b c True \<^bold>[n, m\<^bold>] = Code.abort (STR ''3'') (\_. ())"
"f1 b True d \<^bold>[n\<^bold>] = Code.abort (STR ''2'') (\_. ())"
"f1 True c d \<^bold>[\<^bold>] = ()"
by(simp_all add: f1_def)
value [code] "f1 True False False \<^bold>[\<^bold>]"
deactivate_lazy_type llist
value [code] "f1 True False False \<^bold>[\<^bold>]"
declare f1_code1(1) [code del]
value [code] "f1 True False False \<^bold>[\<^bold>]"
activate_lazy_type llist
value [code] "f1 True False False \<^bold>[\<^bold>]"
declare [[code drop: f1]]
lemma f1_code2 [code]:
"f1 b c d ns = Code.abort (STR ''4'') (\_. ())"
"f1 b c True \<^bold>[n, m\<^bold>] = Code.abort (STR ''3'') (\_. ())"
"f1 b True d \<^bold>[n\<^bold>] = ()"
"f1 True c d \<^bold>[\<^bold>] = Code.abort (STR ''1'') (\_. ())"
by(simp_all add: f1_def)
value [code] "f1 True True True \<^bold>[0\<^bold>]"
declare f1_code2(1)[code del]
value [code] "f1 True True True \<^bold>[0\<^bold>]"
declare [[code drop: f1]]
lemma f1_code3 [code]:
"f1 b c d ns = Code.abort (STR ''4'') (\_. ())"
"f1 b c True \<^bold>[n, m\<^bold>] = ()"
"f1 b True d \<^bold>[n\<^bold>] = Code.abort (STR ''2'') (\_. ())"
"f1 True c d \<^bold>[\<^bold>] = Code.abort (STR ''1'') (\_. ())"
by(simp_all add: f1_def)
value [code] "f1 True True True \<^bold>[0, 1\<^bold>]"
declare f1_code3(1)[code del]
value [code] "f1 True True True \<^bold>[0, 1\<^bold>]"
declare [[code drop: f1]]
lemma f1_code4 [code]:
"f1 b c d ns = ()"
"f1 b c True \<^bold>[n, m\<^bold>] = Code.abort (STR ''3'') (\_. ())"
"f1 b True d \<^bold>[n\<^bold>] = Code.abort (STR ''2'') (\_. ())"
"f1 True c d \<^bold>[\<^bold>] = Code.abort (STR ''1'') (\_. ())"
by(simp_all add: f1_def)
value [code] "f1 True True True \<^bold>[0, 1, 2\<^bold>]"
value [code] "f1 True True False \<^bold>[0, 1\<^bold>]"
value [code] "f1 True False True \<^bold>[0\<^bold>]"
value [code] "f1 False True True \<^bold>[\<^bold>]"
definition f2 :: "nat llist llist list \ unit" where "f2 _ = ()"
declare [[code drop: f2]]
lemma f2_code1 [code]:
"f2 xs = Code.abort (STR ''a'') (\_. ())"
"f2 [\<^bold>[\<^bold>[\<^bold>]\<^bold>]] = ()"
"f2 [\<^bold>[\<^bold>[Suc n\<^bold>]\<^bold>]] = ()"
"f2 [\<^bold>[\<^bold>[0, Suc n\<^bold>]\<^bold>]] = ()"
by(simp_all add: f2_def)
value [code] "f2 [\<^bold>[\<^bold>[\<^bold>]\<^bold>]]"
value [code] "f2 [\<^bold>[\<^bold>[4\<^bold>]\<^bold>]]"
value [code] "f2 [\<^bold>[\<^bold>[0, 1\<^bold>]\<^bold>]]"
ML_val \<open> (@{code f2} []; error "Fail expected") handle Fail _ => () \<close>
definition f3 :: "nat set llist \ unit" where "f3 _ = ()"
declare [[code drop: f3]]
lemma f3_code1 [code]:
"f3 \<^bold>[\<^bold>] = ()"
"f3 \<^bold>[A\<^bold>] = ()"
by(simp_all add: f3_def)
value [code] "f3 \<^bold>[\<^bold>]"
value [code] "f3 \<^bold>[{}\<^bold>]"
value [code] "f3 \<^bold>[UNIV\<^bold>]"
end
¤ Dauer der Verarbeitung: 0.20 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|