|
|
Quellcode-Bibliothek
© Kompilation durch diese Firma
[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]
Datei:
vect2_cont_comp2.pvs
Sprache: Isabelle
|
|
(* Author: Tobias Nipkow *)
subsection "Parity Analysis"
theory Abs_Int1_parity
imports Abs_Int1
begin
datatype parity = Even | Odd | Either
text\<open>Instantiation of class \<^class>\<open>order\<close> with type \<^typ>\<open>parity\<close>:\<close>
instantiation parity :: order
begin
text\<open>First the definition of the interface function \<open>\<le>\<close>. Note that
the header of the definition must refer to the ascii name \<^const>\<open>less_eq\<close> of the
constants as \<open>less_eq_parity\<close> and the definition is named \<open>less_eq_parity_def\<close>. Inside the definition the symbolic names can be used.\<close>
definition less_eq_parity where
"x \ y = (y = Either \ x=y)"
text\<open>We also need \<open><\<close>, which is defined canonically:\<close>
definition less_parity where
"x < y = (x \ y \ \ y \ (x::parity))"
text\<open>\noindent(The type annotation is necessary to fix the type of the polymorphic predicates.)
Now the instance proof, i.e.\ the proof that the definition fulfills
the axioms (assumptions) of the class. The initial proof-step generates the
necessary proof obligations.\<close>
instance
proof
fix x::parity show "x \ x" by(auto simp: less_eq_parity_def)
next
fix x y z :: parity assume "x \ y" "y \ z" thus "x \ z"
by(auto simp: less_eq_parity_def)
next
fix x y :: parity assume "x \ y" "y \ x" thus "x = y"
by(auto simp: less_eq_parity_def)
next
fix x y :: parity show "(x < y) = (x \ y \ \ y \ x)" by(rule less_parity_def)
qed
end
text\<open>Instantiation of class \<^class>\<open>semilattice_sup_top\<close> with type \<^typ>\<open>parity\<close>:\<close>
instantiation parity :: semilattice_sup_top
begin
definition sup_parity where
"x \ y = (if x = y then x else Either)"
definition top_parity where
"\ = Either"
text\<open>Now the instance proof. This time we take a shortcut with the help of
proof method \<open>goal_cases\<close>: it creates cases 1 ... n for the subgoals
1 ... n; in case i, i is also the name of the assumptions of subgoal i and
\<open>case?\<close> refers to the conclusion of subgoal i.
The class axioms are presented in the same order as in the class definition.\<close>
instance
proof (standard, goal_cases)
case 1 (*sup1*) show ?case by(auto simp: less_eq_parity_def sup_parity_def)
next
case 2 (*sup2*) show ?case by(auto simp: less_eq_parity_def sup_parity_def)
next
case 3 (*sup least*) thus ?case by(auto simp: less_eq_parity_def sup_parity_def)
next
case 4 (*top*) show ?case by(auto simp: less_eq_parity_def top_parity_def)
qed
end
text\<open>Now we define the functions used for instantiating the abstract
interpretation locales. Note that the Isabelle terminology is
\emph{interpretation}, not \emph{instantiation} of locales, but we use
instantiation to avoid confusion with abstract interpretation.\<close>
fun \<gamma>_parity :: "parity \<Rightarrow> val set" where
"\_parity Even = {i. i mod 2 = 0}" |
"\_parity Odd = {i. i mod 2 = 1}" |
"\_parity Either = UNIV"
fun num_parity :: "val \ parity" where
"num_parity i = (if i mod 2 = 0 then Even else Odd)"
fun plus_parity :: "parity \ parity \ parity" where
"plus_parity Even Even = Even" |
"plus_parity Odd Odd = Even" |
"plus_parity Even Odd = Odd" |
"plus_parity Odd Even = Odd" |
"plus_parity Either y = Either" |
"plus_parity x Either = Either"
text\<open>First we instantiate the abstract value interface and prove that the
functions on type \<^typ>\<open>parity\<close> have all the necessary properties:\<close>
global_interpretation Val_semilattice
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
proof (standard, goal_cases) txt\<open>subgoals are the locale axioms\<close>
case 1 thus ?case by(auto simp: less_eq_parity_def)
next
case 2 show ?case by(auto simp: top_parity_def)
next
case 3 show ?case by auto
next
case (4 _ a1 _ a2) thus ?case
by (induction a1 a2 rule: plus_parity.induct)
(auto simp add: mod_add_eq [symmetric])
qed
text\<open>In case 4 we needed to refer to particular variables.
Writing (i x y z) fixes the names of the variables in case i to be x, y and z
in the left-to-right order in which the variables occur in the subgoal.
Underscores are anonymous placeholders for variable names we don't care to fix.\
text\<open>Instantiating the abstract interpretation locale requires no more
proofs (they happened in the instatiation above) but delivers the
instantiated abstract interpreter which we call \<open>AI_parity\<close>:\<close>
global_interpretation Abs_Int
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
defines aval_parity = aval' and step_parity = step' and AI_parity = AI
..
subsubsection "Tests"
definition "test1_parity =
''x'' ::= N 1;;
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 2)"
value "show_acom (the(AI_parity test1_parity))"
definition "test2_parity =
''x'' ::= N 1;;
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)"
definition "steps c i = ((step_parity \) ^^ i) (bot c)"
value "show_acom (steps test2_parity 0)"
value "show_acom (steps test2_parity 1)"
value "show_acom (steps test2_parity 2)"
value "show_acom (steps test2_parity 3)"
value "show_acom (steps test2_parity 4)"
value "show_acom (steps test2_parity 5)"
value "show_acom (steps test2_parity 6)"
value "show_acom (the(AI_parity test2_parity))"
subsubsection "Termination"
global_interpretation Abs_Int_mono
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
proof (standard, goal_cases)
case (1 _ a1 _ a2) thus ?case
by(induction a1 a2 rule: plus_parity.induct)
(auto simp add:less_eq_parity_def)
qed
definition m_parity :: "parity \ nat" where
"m_parity x = (if x = Either then 0 else 1)"
global_interpretation Abs_Int_measure
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
and m = m_parity and h = "1"
proof (standard, goal_cases)
case 1 thus ?case by(auto simp add: m_parity_def less_eq_parity_def)
next
case 2 thus ?case by(auto simp add: m_parity_def less_eq_parity_def less_parity_def)
qed
thm AI_Some_measure
end
¤ Dauer der Verarbeitung: 0.19 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|
|
|
|
|