(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Util
open CErrors
open Names
open Constr
(** This module defines the representation of values internally used by
the native compiler *)
type t = t -> t
type accumulator (* = t (* a block [0:code;atom;arguments] *) *)
type tag = int
type arity = int
type reloc_table = (tag * arity) array
type annot_sw = {
asw_ind : inductive;
asw_ci : case_info;
asw_reloc : reloc_table;
asw_finite : bool;
asw_prefix : string
}
(* We compare only what is relevant for generation of ml code *)
let eq_annot_sw asw1 asw2 =
eq_ind asw1.asw_ind asw2.asw_ind &&
String.equal asw1.asw_prefix asw2.asw_prefix
open Hashset.Combine
let hash_annot_sw asw =
combine (ind_hash asw.asw_ind) (String.hash asw.asw_prefix)
type sort_annot = string * int
type rec_pos = int array
let eq_rec_pos = Array.equal Int.equal
type atom =
| Arel of int
| Aconstant of pconstant
| Aind of pinductive
| Asort of Sorts.t
| Avar of Id.t
| Acase of annot_sw * accumulator * t * (t -> t)
| Afix of t array * t array * rec_pos * int
(* types, bodies, rec_pos, pos *)
| Acofix of t array * t array * int * t
| Acofixe of t array * t array * int * t
| Aprod of Name.t * t * (t -> t)
| Ameta of metavariable * t
| Aevar of Evar.t * t array
| Aproj of (inductive * int) * accumulator
let accumulate_tag = 0
(** Unique pointer used to drive the accumulator function *)
let ret_accu = Obj.repr (ref ())
type accu_val = { mutable acc_atm : atom; acc_arg : Obj.t list }
let mk_accu (a : atom) : t =
let rec accumulate data x =
if x == ret_accu then Obj.repr data
else
let data = { data with acc_arg = x :: data.acc_arg } in
let ans = Obj.repr (accumulate data) in
let () = Obj.set_tag ans accumulate_tag in
ans
in
let acc = { acc_atm = a; acc_arg = [] } in
let ans = Obj.repr (accumulate acc) in
(** FIXME: use another representation for accumulators, this causes naked
pointers. *)
let () = Obj.set_tag ans accumulate_tag in
(Obj.obj ans : t)
let get_accu (k : accumulator) =
(Obj.magic k : Obj.t -> accu_val) ret_accu
let mk_rel_accu i =
mk_accu (Arel i)
let rel_tbl_size = 100
let rel_tbl = Array.init rel_tbl_size mk_rel_accu
let mk_rel_accu i =
if i < rel_tbl_size then rel_tbl.(i)
else mk_rel_accu i
let mk_rels_accu lvl len =
Array.init len (fun i -> mk_rel_accu (lvl + i))
let napply (f:t) (args: t array) =
Array.fold_left (fun f a -> f a) f args
let mk_constant_accu kn u =
mk_accu (Aconstant (kn,Univ.Instance.of_array u))
let mk_ind_accu ind u =
mk_accu (Aind (ind,Univ.Instance.of_array u))
let mk_sort_accu s u =
let open Sorts in
match s with
| SProp | Prop | Set -> mk_accu (Asort s)
| Type s ->
let u = Univ.Instance.of_array u in
let s = Sorts.sort_of_univ (Univ.subst_instance_universe u s) in
mk_accu (Asort s)
let mk_var_accu id =
mk_accu (Avar id)
let mk_sw_accu annot c p ac =
mk_accu (Acase(annot,c,p,ac))
let mk_prod_accu s dom codom =
mk_accu (Aprod (s,dom,codom))
let mk_meta_accu mv ty =
mk_accu (Ameta (mv,ty))
let mk_evar_accu ev args =
mk_accu (Aevar (ev, args))
let mk_proj_accu kn c =
mk_accu (Aproj (kn,c))
let atom_of_accu (k:accumulator) =
(get_accu k).acc_atm
let set_atom_of_accu (k:accumulator) (a:atom) =
(get_accu k).acc_atm <- a
let accu_nargs (k:accumulator) =
List.length (get_accu k).acc_arg
let args_of_accu (k:accumulator) =
let acc = (get_accu k).acc_arg in
(Obj.magic (Array.of_list acc) : t array)
let mk_fix_accu rec_pos pos types bodies =
mk_accu (Afix(types,bodies,rec_pos, pos))
let mk_cofix_accu pos types norm =
mk_accu (Acofix(types,norm,pos,(Obj.magic 0 : t)))
let upd_cofix (cofix :t) (cofix_fun : t) =
let atom = atom_of_accu (Obj.magic cofix) in
match atom with
| Acofix (typ,norm,pos,_) ->
set_atom_of_accu (Obj.magic cofix) (Acofix(typ,norm,pos,cofix_fun))
| _ -> assert false
let force_cofix (cofix : t) =
let accu = (Obj.magic cofix : accumulator) in
let atom = atom_of_accu accu in
match atom with
| Acofix(typ,norm,pos,f) ->
let args = args_of_accu accu in
let f = Array.fold_right (fun arg f -> f arg) args f in
let v = f (Obj.magic ()) in
set_atom_of_accu accu (Acofixe(typ,norm,pos,v));
v
| Acofixe(_,_,_,v) -> v
| _ -> cofix
let mk_const tag = Obj.magic tag
let mk_block tag args =
let nargs = Array.length args in
let r = Obj.new_block tag nargs in
for i = 0 to nargs - 1 do
Obj.set_field r i (Obj.magic args.(i))
done;
(Obj.magic r : t)
(* Two instances of dummy_value should not be pointer equal, otherwise
comparing them as terms would succeed *)
let dummy_value : unit -> t =
fun () _ -> anomaly ~label:"native" (Pp.str "Evaluation failed.")
let cast_accu v = (Obj.magic v:accumulator)
[@@ocaml.inline always]
let mk_int (x : int) = (Obj.magic x : t)
[@@ocaml.inline always]
(* Coq's booleans are reversed... *)
let mk_bool (b : bool) = (Obj.magic (not b) : t)
[@@ocaml.inline always]
let mk_uint (x : Uint63.t) = (Obj.magic x : t)
[@@ocaml.inline always]
type block
let block_size (b:block) =
Obj.size (Obj.magic b)
let block_field (b:block) i = (Obj.magic (Obj.field (Obj.magic b) i) : t)
let block_tag (b:block) =
Obj.tag (Obj.magic b)
type kind_of_value =
| Vaccu of accumulator
| Vfun of (t -> t)
| Vconst of int
| Vint64 of int64
| Vblock of block
let kind_of_value (v:t) =
let o = Obj.repr v in
if Obj.is_int o then Vconst (Obj.magic v)
else
let tag = Obj.tag o in
if Int.equal tag accumulate_tag then
Vaccu (Obj.magic v)
else if Int.equal tag Obj.custom_tag then Vint64 (Obj.magic v)
else if (tag < Obj.lazy_tag) then Vblock (Obj.magic v)
else
(* assert (tag = Obj.closure_tag || tag = Obj.infix_tag);
or ??? what is 1002*)
Vfun v
(** Support for machine integers *)
let is_int (x:t) =
let o = Obj.repr x in
Obj.is_int o || Int.equal (Obj.tag o) Obj.custom_tag
let val_to_int (x:t) = (Obj.magic x : int)
[@@ocaml.inline always]
let to_uint (x:t) = (Obj.magic x : Uint63.t)
[@@ocaml.inline always]
let no_check_head0 x =
mk_uint (Uint63.head0 (to_uint x))
[@@ocaml.inline always]
let head0 accu x =
if is_int x then no_check_head0 x
else accu x
let no_check_tail0 x =
mk_uint (Uint63.tail0 (to_uint x))
[@@ocaml.inline always]
let tail0 accu x =
if is_int x then no_check_tail0 x
else accu x
let no_check_add x y =
mk_uint (Uint63.add (to_uint x) (to_uint y))
[@@ocaml.inline always]
let add accu x y =
if is_int x && is_int y then no_check_add x y
else accu x y
let no_check_sub x y =
mk_uint (Uint63.sub (to_uint x) (to_uint y))
[@@ocaml.inline always]
let sub accu x y =
if is_int x && is_int y then no_check_sub x y
else accu x y
let no_check_mul x y =
mk_uint (Uint63.mul (to_uint x) (to_uint y))
[@@ocaml.inline always]
let mul accu x y =
if is_int x && is_int y then no_check_mul x y
else accu x y
let no_check_div x y =
mk_uint (Uint63.div (to_uint x) (to_uint y))
[@@ocaml.inline always]
let div accu x y =
if is_int x && is_int y then no_check_div x y
else accu x y
let no_check_rem x y =
mk_uint (Uint63.rem (to_uint x) (to_uint y))
[@@ocaml.inline always]
let rem accu x y =
if is_int x && is_int y then no_check_rem x y
else accu x y
let no_check_l_sr x y =
mk_uint (Uint63.l_sr (to_uint x) (to_uint y))
[@@ocaml.inline always]
let l_sr accu x y =
if is_int x && is_int y then no_check_l_sr x y
else accu x y
let no_check_l_sl x y =
mk_uint (Uint63.l_sl (to_uint x) (to_uint y))
[@@ocaml.inline always]
let l_sl accu x y =
if is_int x && is_int y then no_check_l_sl x y
else accu x y
let no_check_l_and x y =
mk_uint (Uint63.l_and (to_uint x) (to_uint y))
[@@ocaml.inline always]
let l_and accu x y =
if is_int x && is_int y then no_check_l_and x y
else accu x y
let no_check_l_xor x y =
mk_uint (Uint63.l_xor (to_uint x) (to_uint y))
[@@ocaml.inline always]
let l_xor accu x y =
if is_int x && is_int y then no_check_l_xor x y
else accu x y
let no_check_l_or x y =
mk_uint (Uint63.l_or (to_uint x) (to_uint y))
[@@ocaml.inline always]
let l_or accu x y =
if is_int x && is_int y then no_check_l_or x y
else accu x y
[@@@ocaml.warning "-37"]
type coq_carry =
| Caccu of t
| C0 of t
| C1 of t
type coq_pair =
| Paccu of t
| PPair of t * t
let mkCarry b i =
if b then (Obj.magic (C1(mk_uint i)):t)
else (Obj.magic (C0(mk_uint i)):t)
let no_check_addc x y =
let s = Uint63.add (to_uint x) (to_uint y) in
mkCarry (Uint63.lt s (to_uint x)) s
[@@ocaml.inline always]
let addc accu x y =
if is_int x && is_int y then no_check_addc x y
else accu x y
let no_check_subc x y =
let s = Uint63.sub (to_uint x) (to_uint y) in
mkCarry (Uint63.lt (to_uint x) (to_uint y)) s
[@@ocaml.inline always]
let subc accu x y =
if is_int x && is_int y then no_check_subc x y
else accu x y
let no_check_addCarryC x y =
let s =
Uint63.add (Uint63.add (to_uint x) (to_uint y))
(Uint63.of_int 1) in
mkCarry (Uint63.le s (to_uint x)) s
[@@ocaml.inline always]
let addCarryC accu x y =
if is_int x && is_int y then no_check_addCarryC x y
else accu x y
let no_check_subCarryC x y =
let s =
Uint63.sub (Uint63.sub (to_uint x) (to_uint y))
(Uint63.of_int 1) in
mkCarry (Uint63.le (to_uint x) (to_uint y)) s
[@@ocaml.inline always]
let subCarryC accu x y =
if is_int x && is_int y then no_check_subCarryC x y
else accu x y
let of_pair (x, y) =
(Obj.magic (PPair(mk_uint x, mk_uint y)):t)
[@@ocaml.inline always]
let no_check_mulc x y =
of_pair (Uint63.mulc (to_uint x) (to_uint y))
[@@ocaml.inline always]
let mulc accu x y =
if is_int x && is_int y then no_check_mulc x y
else accu x y
let no_check_diveucl x y =
let i1, i2 = to_uint x, to_uint y in
of_pair(Uint63.div i1 i2, Uint63.rem i1 i2)
[@@ocaml.inline always]
let diveucl accu x y =
if is_int x && is_int y then no_check_diveucl x y
else accu x y
let no_check_div21 x y z =
let i1, i2, i3 = to_uint x, to_uint y, to_uint z in
of_pair (Uint63.div21 i1 i2 i3)
[@@ocaml.inline always]
let div21 accu x y z =
if is_int x && is_int y && is_int z then no_check_div21 x y z
else accu x y z
let no_check_addMulDiv x y z =
let p, i, j = to_uint x, to_uint y, to_uint z in
mk_uint (Uint63.addmuldiv p i j)
[@@ocaml.inline always]
let addMulDiv accu x y z =
if is_int x && is_int y && is_int z then no_check_addMulDiv x y z
else accu x y z
[@@@ocaml.warning "-34"]
type coq_bool =
| Baccu of t
| Btrue
| Bfalse
type coq_cmp =
| CmpAccu of t
| CmpEq
| CmpLt
| CmpGt
let no_check_eq x y =
mk_bool (Uint63.equal (to_uint x) (to_uint y))
[@@ocaml.inline always]
let eq accu x y =
if is_int x && is_int y then no_check_eq x y
else accu x y
let no_check_lt x y =
mk_bool (Uint63.lt (to_uint x) (to_uint y))
[@@ocaml.inline always]
let lt accu x y =
if is_int x && is_int y then no_check_lt x y
else accu x y
let no_check_le x y =
mk_bool (Uint63.le (to_uint x) (to_uint y))
[@@ocaml.inline always]
let le accu x y =
if is_int x && is_int y then no_check_le x y
else accu x y
let no_check_compare x y =
match Uint63.compare (to_uint x) (to_uint y) with
| x when x < 0 -> (Obj.magic CmpLt:t)
| 0 -> (Obj.magic CmpEq:t)
| _ -> (Obj.magic CmpGt:t)
let compare accu x y =
if is_int x && is_int y then no_check_compare x y
else accu x y
let print x =
Printf.fprintf stderr "%s" (Uint63.to_string (to_uint x));
flush stderr;
x
let hobcnv = Array.init 256 (fun i -> Printf.sprintf "%02x" i)
let bohcnv = Array.init 256 (fun i -> i -
(if 0x30 <= i then 0x30 else 0) -
(if 0x41 <= i then 0x7 else 0) -
(if 0x61 <= i then 0x20 else 0))
let hex_of_bin ch = hobcnv.(int_of_char ch)
let bin_of_hex s = char_of_int (bohcnv.(int_of_char s.[0]) * 16 + bohcnv.(int_of_char s.[1]))
let str_encode expr =
let mshl_expr = Marshal.to_string expr [] in
let payload = Buffer.create (String.length mshl_expr * 2) in
String.iter (fun c -> Buffer.add_string payload (hex_of_bin c)) mshl_expr;
Buffer.contents payload
let str_decode s =
let mshl_expr_len = String.length s / 2 in
let mshl_expr = Buffer.create mshl_expr_len in
let buf = Bytes.create 2 in
for i = 0 to mshl_expr_len - 1 do
Bytes.blit_string s (2*i) buf 0 2;
Buffer.add_char mshl_expr (bin_of_hex (Bytes.to_string buf))
done;
Marshal.from_bytes (Buffer.to_bytes mshl_expr) 0
¤ Dauer der Verarbeitung: 0.20 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|