theory Basic imports Main begin
lemma conj_rule: "\ P; Q \ \ P \ (Q \ P)"
apply (rule conjI)
apply assumption
apply (rule conjI)
apply assumption
apply assumption
done
lemma disj_swap: "P | Q \ Q | P"
apply (erule disjE)
apply (rule disjI2)
apply assumption
apply (rule disjI1)
apply assumption
done
lemma conj_swap: "P \ Q \ Q \ P"
apply (rule conjI)
apply (drule conjunct2)
apply assumption
apply (drule conjunct1)
apply assumption
done
lemma imp_uncurry: "P \ Q \ R \ P \ Q \ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption
apply (drule mp)
apply assumption
apply assumption
done
text \<open>
by eliminates uses of assumption and done
\<close>
lemma imp_uncurry': "P \ Q \ R \ P \ Q \ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption
by (drule mp)
text \<open>
substitution
@{thm[display] ssubst}
\rulename{ssubst}
\<close>
lemma "\ x = f x; P(f x) \ \ P x"
by (erule ssubst)
text \<open>
also provable by simp (re-orients)
\<close>
text \<open>
the subst method
@{thm[display] mult.commute}
\rulename{mult.commute}
this would fail:
apply (simp add: mult.commute)
\<close>
lemma "\P x y z; Suc x < y\ \ f z = x*y"
txt\<open>
@{subgoals[display,indent=0,margin=65]}
\<close>
apply (subst mult.commute)
txt\<open>
@{subgoals[display,indent=0,margin=65]}
\<close>
oops
(*exercise involving THEN*)
lemma "\P x y z; Suc x < y\ \ f z = x*y"
apply (rule mult.commute [THEN ssubst])
oops
lemma "\x = f x; triple (f x) (f x) x\ \ triple x x x"
apply (erule ssubst)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
back \<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
back \<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
back \<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
back \<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply assumption
done
lemma "\ x = f x; triple (f x) (f x) x \ \ triple x x x"
apply (erule ssubst, assumption)
done
text\<open>
or better still
\<close>
lemma "\ x = f x; triple (f x) (f x) x \ \ triple x x x"
by (erule ssubst)
lemma "\ x = f x; triple (f x) (f x) x \ \ triple x x x"
apply (erule_tac P="\u. triple u u x" in ssubst)
apply (assumption)
done
lemma "\ x = f x; triple (f x) (f x) x \ \ triple x x x"
by (erule_tac P="\u. triple u u x" in ssubst)
text \<open>
negation
@{thm[display] notI}
\rulename{notI}
@{thm[display] notE}
\rulename{notE}
@{thm[display] classical}
\rulename{classical}
@{thm[display] contrapos_pp}
\rulename{contrapos_pp}
@{thm[display] contrapos_pn}
\rulename{contrapos_pn}
@{thm[display] contrapos_np}
\rulename{contrapos_np}
@{thm[display] contrapos_nn}
\rulename{contrapos_nn}
\<close>
lemma "\\(P\Q); \(R\Q)\ \ R"
apply (erule_tac Q="R\Q" in contrapos_np)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (intro impI)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
by (erule notE)
text \<open>
@{thm[display] disjCI}
\rulename{disjCI}
\<close>
lemma "(P \ Q) \ R \ P \ Q \ R"
apply (intro disjCI conjI)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (elim conjE disjE)
apply assumption
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
by (erule contrapos_np, rule conjI)
text\<open>
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{6}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
{\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ R
\<close>
text\<open>rule_tac, etc.\<close>
lemma "P&Q"
apply (rule_tac P=P and Q=Q in conjI)
oops
text\<open>unification failure trace\<close>
declare [[unify_trace_failure = true]]
lemma "P(a, f(b, g(e,a), b), a) \ P(a, f(b, g(c,a), b), a)"
txt\<open>
@{subgoals[display,indent=0,margin=65]}
apply assumption
Clash: e =/= c
Clash: == =/= Trueprop
\<close>
oops
lemma "\x y. P(x,y) --> P(y,x)"
apply auto
txt\<open>
@{subgoals[display,indent=0,margin=65]}
apply assumption
Clash: bound variable x (depth 1) =/= bound variable y (depth 0)
Clash: == =/= Trueprop
Clash: == =/= Trueprop
\<close>
oops
declare [[unify_trace_failure = false]]
text\<open>Quantifiers\<close>
text \<open>
@{thm[display] allI}
\rulename{allI}
@{thm[display] allE}
\rulename{allE}
@{thm[display] spec}
\rulename{spec}
\<close>
lemma "\x. P x \ P x"
apply (rule allI)
by (rule impI)
lemma "(\x. P \ Q x) \ P \ (\x. Q x)"
apply (rule impI, rule allI)
apply (drule spec)
by (drule mp)
text\<open>rename_tac\<close>
lemma "x < y \ \x y. P x (f y)"
apply (intro allI)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (rename_tac v w)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
oops
lemma "\\x. P x \ P (h x); P a\ \ P(h (h a))"
apply (frule spec)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (drule mp, assumption)
apply (drule spec)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
by (drule mp)
lemma "\\x. P x \ P (f x); P a\ \ P(f (f a))"
by blast
text\<open>
the existential quantifier\<close>
text \<open>
@{thm[display]"exI"}
\rulename{exI}
@{thm[display]"exE"}
\rulename{exE}
\<close>
text\<open>
instantiating quantifiers explicitly by rule_tac and erule_tac\<close>
lemma "\\x. P x \ P (h x); P a\ \ P(h (h a))"
apply (frule spec)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (drule mp, assumption)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (drule_tac x = "h a" in spec)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
by (drule mp)
text \<open>
@{thm[display]"dvd_def"}
\rulename{dvd_def}
\<close>
lemma mult_dvd_mono: "\i dvd m; j dvd n\ \ i*j dvd (m*n :: nat)"
apply (simp add: dvd_def)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (erule exE)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (erule exE)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (rename_tac l)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (rule_tac x="k*l" in exI)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply simp
done
text\<open>
Hilbert-epsilon theorems\<close>
text\<open>
@{thm[display] the_equality[no_vars]}
\rulename{the_equality}
@{thm[display] some_equality[no_vars]}
\rulename{some_equality}
@{thm[display] someI[no_vars]}
\rulename{someI}
@{thm[display] someI2[no_vars]}
\rulename{someI2}
@{thm[display] someI_ex[no_vars]}
\rulename{someI_ex}
needed for examples
@{thm[display] inv_def[no_vars]}
\rulename{inv_def}
@{thm[display] Least_def[no_vars]}
\rulename{Least_def}
@{thm[display] order_antisym[no_vars]}
\rulename{order_antisym}
\<close>
lemma "inv Suc (Suc n) = n"
by (simp add: inv_def)
text\<open>but we know nothing about inv Suc 0\<close>
theorem Least_equality:
"\ P (k::nat); \x. P x \ k \ x \ \ (LEAST x. P(x)) = k"
apply (simp add: Least_def)
txt\<open>
@{subgoals[display,indent=0,margin=65]}
\<close>
apply (rule the_equality)
txt\<open>
@{subgoals[display,indent=0,margin=65]}
first subgoal is existence; second is uniqueness
\<close>
by (auto intro: order_antisym)
theorem axiom_of_choice:
"(\x. \y. P x y) \ \f. \x. P x (f x)"
apply (rule exI, rule allI)
txt\<open>
@{subgoals[display,indent=0,margin=65]}
state after intro rules
\<close>
apply (drule spec, erule exE)
txt\<open>
@{subgoals[display,indent=0,margin=65]}
applying @text{someI} automatically instantiates
\<^term>\<open>f\<close> to \<^term>\<open>\<lambda>x. SOME y. P x y\<close>
\<close>
by (rule someI)
(*both can be done by blast, which however hasn't been introduced yet*)
lemma "[| P (k::nat); \x. P x \ k \ x |] ==> (LEAST x. P(x)) = k"
apply (simp add: Least_def)
by (blast intro: order_antisym)
theorem axiom_of_choice': "(\x. \y. P x y) \ \f. \x. P x (f x)"
apply (rule exI [of _ "\x. SOME y. P x y"])
by (blast intro: someI)
text\<open>end of Epsilon section\<close>
lemma "(\x. P x) \ (\x. Q x) \ \x. P x \ Q x"
apply (elim exE disjE)
apply (intro exI disjI1)
apply assumption
apply (intro exI disjI2)
apply assumption
done
lemma "(P\Q) \ (Q\P)"
apply (intro disjCI impI)
apply (elim notE)
apply (intro impI)
apply assumption
done
lemma "(P\Q)\(P\R) \ P \ (Q\R)"
apply (intro disjCI conjI)
apply (elim conjE disjE)
apply blast
apply blast
apply blast
apply blast
(*apply elim*)
done
lemma "(\x. P \ Q x) \ P \ (\x. Q x)"
apply (erule exE)
apply (erule conjE)
apply (rule conjI)
apply assumption
apply (rule exI)
apply assumption
done
lemma "(\x. P x) \ (\x. Q x) \ \x. P x \ Q x"
apply (erule conjE)
apply (erule exE)
apply (erule exE)
apply (rule exI)
apply (rule conjI)
apply assumption
oops
lemma "\y. R y y \ \x. \y. R x y"
apply (rule exI)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (rule allI)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
apply (drule spec)
\<comment> \<open>@{subgoals[display,indent=0,margin=65]}\<close>
oops
lemma "\x. \y. x=y"
apply (rule allI)
apply (rule exI)
apply (rule refl)
done
lemma "\x. \y. x=y"
apply (rule exI)
apply (rule allI)
oops
end
¤ Dauer der Verarbeitung: 0.21 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|