(* Title: HOL/MicroJava/DFA/Err.thy
Author: Tobias Nipkow
Copyright 2000 TUM
*)
section \<open>The Error Type\<close>
theory Err
imports Semilat
begin
datatype 'a err = Err | OK 'a
type_synonym 'a ebinop = "'a \<Rightarrow> 'a \<Rightarrow> 'a err"
type_synonym 'a esl = "'a set * 'a ord * 'a ebinop"
primrec ok_val :: "'a err \ 'a" where
"ok_val (OK x) = x"
definition lift :: "('a \ 'b err) \ ('a err \ 'b err)" where
"lift f e == case e of Err \ Err | OK x \ f x"
definition lift2 :: "('a \ 'b \ 'c err) \ 'a err \ 'b err \ 'c err" where
"lift2 f e1 e2 ==
case e1 of Err \<Rightarrow> Err
| OK x \<Rightarrow> (case e2 of Err \<Rightarrow> Err | OK y \<Rightarrow> f x y)"
definition le :: "'a ord \ 'a err ord" where
"le r e1 e2 ==
case e2 of Err \<Rightarrow> True |
OK y \<Rightarrow> (case e1 of Err \<Rightarrow> False | OK x \<Rightarrow> x <=_r y)"
definition sup :: "('a \ 'b \ 'c) \ ('a err \ 'b err \ 'c err)" where
"sup f == lift2(%x y. OK(x +_f y))"
definition err :: "'a set \ 'a err set" where
"err A == insert Err {x . \y\A. x = OK y}"
definition esl :: "'a sl \ 'a esl" where
"esl == %(A,r,f). (A,r, %x y. OK(f x y))"
definition sl :: "'a esl \ 'a err sl" where
"sl == %(A,r,f). (err A, le r, lift2 f)"
abbreviation
err_semilat :: "'a esl \ bool"
where "err_semilat L == semilat(Err.sl L)"
primrec strict :: "('a \ 'b err) \ ('a err \ 'b err)" where
"strict f Err = Err"
| "strict f (OK x) = f x"
lemma strict_Some [simp]:
"(strict f x = OK y) = (\ z. x = OK z \ f z = OK y)"
by (cases x, auto)
lemma not_Err_eq:
"(x \ Err) = (\a. x = OK a)"
by (cases x) auto
lemma not_OK_eq:
"(\y. x \ OK y) = (x = Err)"
by (cases x) auto
lemma unfold_lesub_err:
"e1 <=_(le r) e2 == le r e1 e2"
by (simp add: lesub_def)
lemma le_err_refl:
"\x. x <=_r x \ e <=_(Err.le r) e"
apply (unfold lesub_def Err.le_def)
apply (simp split: err.split)
done
lemma le_err_trans [rule_format]:
"order r \ e1 <=_(le r) e2 \ e2 <=_(le r) e3 \ e1 <=_(le r) e3"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_trans)
done
lemma le_err_antisym [rule_format]:
"order r \ e1 <=_(le r) e2 \ e2 <=_(le r) e1 \ e1=e2"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_antisym)
done
lemma OK_le_err_OK:
"(OK x <=_(le r) OK y) = (x <=_r y)"
by (simp add: unfold_lesub_err le_def)
lemma order_le_err [iff]:
"order(le r) = order r"
apply (rule iffI)
apply (subst Semilat.order_def)
apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2]
intro: order_trans OK_le_err_OK [THEN iffD1])
apply (subst Semilat.order_def)
apply (blast intro: le_err_refl le_err_trans le_err_antisym
dest: order_refl)
done
lemma le_Err [iff]: "e <=_(le r) Err"
by (simp add: unfold_lesub_err le_def)
lemma Err_le_conv [iff]:
"Err <=_(le r) e = (e = Err)"
by (simp add: unfold_lesub_err le_def split: err.split)
lemma le_OK_conv [iff]:
"e <=_(le r) OK x = (\y. e = OK y & y <=_r x)"
by (simp add: unfold_lesub_err le_def split: err.split)
lemma OK_le_conv:
"OK x <=_(le r) e = (e = Err | (\y. e = OK y & x <=_r y))"
by (simp add: unfold_lesub_err le_def split: err.split)
lemma top_Err [iff]: "top (le r) Err"
by (simp add: top_def)
lemma OK_less_conv [rule_format, iff]:
"OK x <_(le r) e = (e=Err | (\y. e = OK y & x <_r y))"
by (simp add: lesssub_def lesub_def le_def split: err.split)
lemma not_Err_less [rule_format, iff]:
"~(Err <_(le r) x)"
by (simp add: lesssub_def lesub_def le_def split: err.split)
lemma semilat_errI [intro]:
assumes semilat: "semilat (A, r, f)"
shows "semilat(err A, Err.le r, lift2(%x y. OK(f x y)))"
using semilat
apply (simp only: semilat_Def closed_def plussub_def lesub_def
lift2_def Err.le_def err_def)
apply (simp split: err.split)
done
lemma err_semilat_eslI_aux:
assumes semilat: "semilat (A, r, f)"
shows "err_semilat(esl(A,r,f))"
apply (unfold sl_def esl_def)
apply (simp add: semilat_errI[OF semilat])
done
lemma err_semilat_eslI [intro, simp]:
"\L. semilat L \ err_semilat(esl L)"
by(simp add: err_semilat_eslI_aux split_tupled_all)
lemma acc_err [simp, intro!]: "acc r \ acc(le r)"
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: err.split)
apply clarify
apply (case_tac "Err \ Q")
apply blast
apply (erule_tac x = "{a . OK a \ Q}" in allE)
apply (case_tac "x")
apply fast
apply blast
done
lemma Err_in_err [iff]: "Err \ err A"
by (simp add: err_def)
lemma Ok_in_err [iff]: "(OK x \ err A) = (x\A)"
by (auto simp add: err_def)
subsection \<open>lift\<close>
lemma lift_in_errI:
"\ e \ err S; \x\S. e = OK x \ f x \ err S \ \ lift f e \ err S"
apply (unfold lift_def)
apply (simp split: err.split)
apply blast
done
lemma Err_lift2 [simp]:
"Err +_(lift2 f) x = Err"
by (simp add: lift2_def plussub_def)
lemma lift2_Err [simp]:
"x +_(lift2 f) Err = Err"
by (simp add: lift2_def plussub_def split: err.split)
lemma OK_lift2_OK [simp]:
"OK x +_(lift2 f) OK y = x +_f y"
by (simp add: lift2_def plussub_def split: err.split)
subsection \<open>sup\<close>
lemma Err_sup_Err [simp]:
"Err +_(Err.sup f) x = Err"
by (simp add: plussub_def Err.sup_def Err.lift2_def)
lemma Err_sup_Err2 [simp]:
"x +_(Err.sup f) Err = Err"
by (simp add: plussub_def Err.sup_def Err.lift2_def split: err.split)
lemma Err_sup_OK [simp]:
"OK x +_(Err.sup f) OK y = OK(x +_f y)"
by (simp add: plussub_def Err.sup_def Err.lift2_def)
lemma Err_sup_eq_OK_conv [iff]:
"(Err.sup f ex ey = OK z) = (\x y. ex = OK x & ey = OK y & f x y = z)"
apply (unfold Err.sup_def lift2_def plussub_def)
apply (rule iffI)
apply (simp split: err.split_asm)
apply clarify
apply simp
done
lemma Err_sup_eq_Err [iff]:
"(Err.sup f ex ey = Err) = (ex=Err | ey=Err)"
apply (unfold Err.sup_def lift2_def plussub_def)
apply (simp split: err.split)
done
subsection \<open>semilat (err A) (le r) f\<close>
lemma semilat_le_err_Err_plus [simp]:
"\ x \ err A; semilat(err A, le r, f) \ \ Err +_f x = Err"
by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1]
Semilat.le_iff_plus_unchanged2 [OF Semilat.intro, THEN iffD1])
lemma semilat_le_err_plus_Err [simp]:
"\ x \ err A; semilat(err A, le r, f) \ \ x +_f Err = Err"
by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1]
Semilat.le_iff_plus_unchanged2 [OF Semilat.intro, THEN iffD1])
lemma semilat_le_err_OK1:
"\ x \ A; y \ A; semilat(err A, le r, f); OK x +_f OK y = OK z \
\<Longrightarrow> x <=_r z"
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add: Semilat.ub1 [OF Semilat.intro])
done
lemma semilat_le_err_OK2:
"\ x \ A; y \ A; semilat(err A, le r, f); OK x +_f OK y = OK z \
\<Longrightarrow> y <=_r z"
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add: Semilat.ub2 [OF Semilat.intro])
done
lemma eq_order_le:
"\ x=y; order r \ \ x <=_r y"
apply (unfold Semilat.order_def)
apply blast
done
lemma OK_plus_OK_eq_Err_conv [simp]:
assumes "x \ A" and "y \ A" and "semilat(err A, le r, fe)"
shows "((OK x) +_fe (OK y) = Err) = (\(\z\A. x <=_r z & y <=_r z))"
proof -
have plus_le_conv3: "\A x y z f r.
\<lbrakk> semilat (A,r,f); x +_f y <=_r z; x \<in> A; y \<in> A; z \<in> A \<rbrakk>
\<Longrightarrow> x <=_r z \<and> y <=_r z"
by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1])
from assms show ?thesis
apply (rule_tac iffI)
apply clarify
apply (drule OK_le_err_OK [THEN iffD2])
apply (drule OK_le_err_OK [THEN iffD2])
apply (drule Semilat.lub [OF Semilat.intro, of _ _ _ "OK x" _ "OK y"])
apply assumption
apply assumption
apply simp
apply simp
apply simp
apply simp
apply (case_tac "(OK x) +_fe (OK y)")
apply assumption
apply (rename_tac z)
apply (subgoal_tac "OK z \ err A")
apply (drule eq_order_le)
apply (erule Semilat.orderI [OF Semilat.intro])
apply (blast dest: plus_le_conv3)
apply (erule subst)
apply (blast intro: Semilat.closedI [OF Semilat.intro] closedD)
done
qed
subsection \<open>semilat (err (Union AS))\<close>
(* FIXME? *)
lemma all_bex_swap_lemma [iff]:
"(\x. (\y\A. x = f y) \ P x) = (\y\A. P(f y))"
by blast
lemma closed_err_Union_lift2I:
"\ \A\AS. closed (err A) (lift2 f); AS \ {};
\<forall>A\<in>AS. \<forall>B\<in>AS. A\<noteq>B \<longrightarrow> (\<forall>a\<in>A. \<forall>b\<in>B. a +_f b = Err) \<rbrakk>
\<Longrightarrow> closed (err (\<Union>AS)) (lift2 f)"
apply (unfold closed_def err_def)
apply simp
apply clarify
apply simp
apply fast
done
text \<open>
If \<^term>\<open>AS = {}\<close> the thm collapses to
\<^prop>\<open>order r & closed {Err} f & Err +_f Err = Err\<close>
which may not hold
\<close>
lemma err_semilat_UnionI:
"\ \A\AS. err_semilat(A, r, f); AS \ {};
\<forall>A\<in>AS. \<forall>B\<in>AS. A\<noteq>B \<longrightarrow> (\<forall>a\<in>A. \<forall>b\<in>B. \<not> a <=_r b & a +_f b = Err) \<rbrakk>
\<Longrightarrow> err_semilat (\<Union>AS, r, f)"
apply (unfold semilat_def sl_def)
apply (simp add: closed_err_Union_lift2I)
apply (rule conjI)
apply blast
apply (simp add: err_def)
apply (rule conjI)
apply clarify
apply (rename_tac A a u B b)
apply (case_tac "A = B")
apply simp
apply simp
apply (rule conjI)
apply clarify
apply (rename_tac A a u B b)
apply (case_tac "A = B")
apply simp
apply simp
apply clarify
apply (rename_tac A ya yb B yd z C c a b)
apply (case_tac "A = B")
apply (case_tac "A = C")
apply simp
apply (rotate_tac -1)
apply simp
apply (rotate_tac -1)
apply (case_tac "B = C")
apply simp
apply (rotate_tac -1)
apply simp
done
end
¤ Dauer der Verarbeitung: 0.21 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|