(* Title: HOL/Tools/Nitpick/nitpick_hol.ML
Author: Jasmin Blanchette, TU Muenchen
Copyright 2008, 2009, 2010
Auxiliary HOL-related functions used by Nitpick.
*)
signature NITPICK_HOL =
sig
type const_table = term list Symtab.table
type special_fun = ((string * typ) * int list * term list) * (string * typ)
type unrolled = (string * typ) * (string * typ)
type wf_cache = ((string * typ) * (bool * bool)) list
type hol_context =
{thy: theory,
ctxt: Proof.context,
max_bisim_depth: int,
boxes: (typ option * bool option) list,
wfs: ((string * typ) option * bool option) list,
user_axioms: bool option,
debug: bool,
whacks: term list,
binary_ints: bool option,
destroy_constrs: bool,
specialize: bool,
star_linear_preds: bool,
total_consts: bool option,
needs: term list option,
tac_timeout: Time.time,
evals: term list,
case_names: (string * int) list,
def_tables: const_table * const_table,
nondef_table: const_table,
nondefs: term list,
simp_table: const_table Unsynchronized.ref,
psimp_table: const_table,
choice_spec_table: const_table,
intro_table: const_table,
ground_thm_table: term list Inttab.table,
ersatz_table: (string * string) list,
skolems: (string * string list) list Unsynchronized.ref,
special_funs: special_fun list Unsynchronized.ref,
unrolled_preds: unrolled list Unsynchronized.ref,
wf_cache: wf_cache Unsynchronized.ref,
constr_cache: (typ * (string * typ) list) list Unsynchronized.ref}
datatype fixpoint_kind = Lfp | Gfp | NoFp
datatype boxability =
InConstr | InSel | InExpr | InPair | InFunLHS | InFunRHS1 | InFunRHS2
val name_sep : string
val numeral_prefix : string
val base_prefix : string
val step_prefix : string
val unrolled_prefix : string
val ubfp_prefix : string
val lbfp_prefix : string
val quot_normal_prefix : string
val skolem_prefix : string
val special_prefix : string
val uncurry_prefix : string
val eval_prefix : string
val iter_var_prefix : string
val strip_first_name_sep : string -> string * string
val original_name : string -> string
val abs_var : indexname * typ -> term -> term
val s_conj : term * term -> term
val s_disj : term * term -> term
val strip_any_connective : term -> term list * term
val conjuncts_of : term -> term list
val disjuncts_of : term -> term list
val unarize_unbox_etc_type : typ -> typ
val uniterize_unarize_unbox_etc_type : typ -> typ
val string_for_type : Proof.context -> typ -> string
val pretty_for_type : Proof.context -> typ -> Pretty.T
val prefix_name : string -> string -> string
val shortest_name : string -> string
val short_name : string -> string
val shorten_names_in_term : term -> term
val strict_type_match : theory -> typ * typ -> bool
val type_match : theory -> typ * typ -> bool
val const_match : theory -> (string * typ) * (string * typ) -> bool
val term_match : theory -> term * term -> bool
val frac_from_term_pair : typ -> term -> term -> term
val is_fun_type : typ -> bool
val is_set_type : typ -> bool
val is_fun_or_set_type : typ -> bool
val is_set_like_type : typ -> bool
val is_pair_type : typ -> bool
val is_lfp_iterator_type : typ -> bool
val is_gfp_iterator_type : typ -> bool
val is_fp_iterator_type : typ -> bool
val is_iterator_type : typ -> bool
val is_boolean_type : typ -> bool
val is_integer_type : typ -> bool
val is_bit_type : typ -> bool
val is_word_type : typ -> bool
val is_integer_like_type : typ -> bool
val is_number_type : Proof.context -> typ -> bool
val is_higher_order_type : typ -> bool
val elem_type : typ -> typ
val pseudo_domain_type : typ -> typ
val pseudo_range_type : typ -> typ
val const_for_iterator_type : typ -> string * typ
val strip_n_binders : int -> typ -> typ list * typ
val nth_range_type : int -> typ -> typ
val num_factors_in_type : typ -> int
val curried_binder_types : typ -> typ list
val mk_flat_tuple : typ -> term list -> term
val dest_n_tuple : int -> term -> term list
val is_codatatype : Proof.context -> typ -> bool
val is_quot_type : Proof.context -> typ -> bool
val is_pure_typedef : Proof.context -> typ -> bool
val is_univ_typedef : Proof.context -> typ -> bool
val is_data_type : Proof.context -> typ -> bool
val is_record_get : theory -> string * typ -> bool
val is_record_update : theory -> string * typ -> bool
val is_abs_fun : Proof.context -> string * typ -> bool
val is_rep_fun : Proof.context -> string * typ -> bool
val is_quot_abs_fun : Proof.context -> string * typ -> bool
val is_quot_rep_fun : Proof.context -> string * typ -> bool
val mate_of_rep_fun : Proof.context -> string * typ -> string * typ
val is_nonfree_constr : Proof.context -> string * typ -> bool
val is_free_constr : Proof.context -> string * typ -> bool
val is_constr : Proof.context -> string * typ -> bool
val is_sel : string -> bool
val is_sel_like_and_no_discr : string -> bool
val box_type : hol_context -> boxability -> typ -> typ
val binarize_nat_and_int_in_type : typ -> typ
val binarize_nat_and_int_in_term : term -> term
val discr_for_constr : string * typ -> string * typ
val num_sels_for_constr_type : typ -> int
val nth_sel_name_for_constr_name : string -> int -> string
val nth_sel_for_constr : string * typ -> int -> string * typ
val binarized_and_boxed_nth_sel_for_constr :
hol_context -> bool -> string * typ -> int -> string * typ
val sel_no_from_name : string -> int
val close_form : term -> term
val distinctness_formula : typ -> term list -> term
val register_frac_type :
string -> (string * string) list -> morphism -> Context.generic
-> Context.generic
val register_frac_type_global :
string -> (string * string) list -> theory -> theory
val unregister_frac_type :
string -> morphism -> Context.generic -> Context.generic
val unregister_frac_type_global : string -> theory -> theory
val register_ersatz :
(string * string) list -> morphism -> Context.generic -> Context.generic
val register_ersatz_global : (string * string) list -> theory -> theory
val register_codatatype :
typ -> string -> (string * typ) list -> morphism -> Context.generic ->
Context.generic
val register_codatatype_global :
typ -> string -> (string * typ) list -> theory -> theory
val unregister_codatatype :
typ -> morphism -> Context.generic -> Context.generic
val unregister_codatatype_global : typ -> theory -> theory
val binarized_and_boxed_data_type_constrs :
hol_context -> bool -> typ -> (string * typ) list
val constr_name_for_sel_like : string -> string
val binarized_and_boxed_constr_for_sel : hol_context -> bool ->
string * typ -> string * typ
val card_of_type : (typ * int) list -> typ -> int
val bounded_card_of_type : int -> int -> (typ * int) list -> typ -> int
val bounded_exact_card_of_type :
hol_context -> typ list -> int -> int -> (typ * int) list -> typ -> int
val typical_card_of_type : typ -> int
val is_finite_type : hol_context -> typ -> bool
val is_special_eligible_arg : bool -> typ list -> term -> bool
val s_let :
typ list -> string -> int -> typ -> typ -> (term -> term) -> term -> term
val s_betapply : typ list -> term * term -> term
val s_betapplys : typ list -> term * term list -> term
val discriminate_value : hol_context -> string * typ -> term -> term
val select_nth_constr_arg :
Proof.context -> string * typ -> term -> int -> typ -> term
val construct_value : Proof.context -> string * typ -> term list -> term
val coerce_term : hol_context -> typ list -> typ -> typ -> term -> term
val special_bounds : term list -> (indexname * typ) list
val is_funky_typedef : Proof.context -> typ -> bool
val all_defs_of : theory -> (term * term) list -> term list
val all_nondefs_of : Proof.context -> (term * term) list -> term list
val arity_of_built_in_const : string * typ -> int option
val is_built_in_const : string * typ -> bool
val term_under_def : term -> term
val case_const_names : Proof.context -> (string * int) list
val unfold_defs_in_term : hol_context -> term -> term
val const_def_tables :
Proof.context -> (term * term) list -> term list
-> const_table * const_table
val const_nondef_table : term list -> const_table
val const_simp_table : Proof.context -> (term * term) list -> const_table
val const_psimp_table : Proof.context -> (term * term) list -> const_table
val const_choice_spec_table :
Proof.context -> (term * term) list -> const_table
val inductive_intro_table :
Proof.context -> (term * term) list -> const_table * const_table
-> const_table
val ground_theorem_table : theory -> term list Inttab.table
val ersatz_table : Proof.context -> (string * string) list
val add_simps : const_table Unsynchronized.ref -> string -> term list -> unit
val inverse_axioms_for_rep_fun : Proof.context -> string * typ -> term list
val optimized_typedef_axioms : Proof.context -> string * typ list -> term list
val optimized_quot_type_axioms :
Proof.context -> string * typ list -> term list
val def_of_const : theory -> const_table * const_table -> string * typ ->
term option
val fixpoint_kind_of_rhs : term -> fixpoint_kind
val fixpoint_kind_of_const :
theory -> const_table * const_table -> string * typ -> fixpoint_kind
val is_raw_inductive_pred : hol_context -> string * typ -> bool
val is_constr_pattern : Proof.context -> term -> bool
val is_constr_pattern_lhs : Proof.context -> term -> bool
val is_constr_pattern_formula : Proof.context -> term -> bool
val nondef_props_for_const :
theory -> bool -> const_table -> string * typ -> term list
val is_choice_spec_fun : hol_context -> string * typ -> bool
val is_choice_spec_axiom : Proof.context -> const_table -> term -> bool
val is_raw_equational_fun : hol_context -> string * typ -> bool
val is_equational_fun : hol_context -> string * typ -> bool
val codatatype_bisim_axioms : hol_context -> typ -> term list
val is_well_founded_inductive_pred : hol_context -> string * typ -> bool
val unrolled_inductive_pred_const : hol_context -> bool -> string * typ ->
term
val equational_fun_axioms : hol_context -> string * typ -> term list
val is_equational_fun_surely_complete : hol_context -> string * typ -> bool
val merged_type_var_table_for_terms :
theory -> term list -> (sort * string) list
val merge_type_vars_in_term :
theory -> bool -> (sort * string) list -> term -> term
val ground_types_in_type : hol_context -> bool -> typ -> typ list
val ground_types_in_terms : hol_context -> bool -> term list -> typ list
end;
structure Nitpick_HOL : NITPICK_HOL =
struct
open Nitpick_Util
type const_table = term list Symtab.table
type special_fun = ((string * typ) * int list * term list) * (string * typ)
type unrolled = (string * typ) * (string * typ)
type wf_cache = ((string * typ) * (bool * bool)) list
type hol_context =
{thy: theory,
ctxt: Proof.context,
max_bisim_depth: int,
boxes: (typ option * bool option) list,
wfs: ((string * typ) option * bool option) list,
user_axioms: bool option,
debug: bool,
whacks: term list,
binary_ints: bool option,
destroy_constrs: bool,
specialize: bool,
star_linear_preds: bool,
total_consts: bool option,
needs: term list option,
tac_timeout: Time.time,
evals: term list,
case_names: (string * int) list,
def_tables: const_table * const_table,
nondef_table: const_table,
nondefs: term list,
simp_table: const_table Unsynchronized.ref,
psimp_table: const_table,
choice_spec_table: const_table,
intro_table: const_table,
ground_thm_table: term list Inttab.table,
ersatz_table: (string * string) list,
skolems: (string * string list) list Unsynchronized.ref,
special_funs: special_fun list Unsynchronized.ref,
unrolled_preds: unrolled list Unsynchronized.ref,
wf_cache: wf_cache Unsynchronized.ref,
constr_cache: (typ * (string * typ) list) list Unsynchronized.ref}
datatype fixpoint_kind = Lfp | Gfp | NoFp
datatype boxability =
InConstr | InSel | InExpr | InPair | InFunLHS | InFunRHS1 | InFunRHS2
(* FIXME: Get rid of 'codatatypes' and related functionality *)
structure Data = Generic_Data
(
type T = {frac_types: (string * (string * string) list) list,
ersatz_table: (string * string) list,
codatatypes: (string * (string * (string * typ) list)) list}
val empty = {frac_types = [], ersatz_table = [], codatatypes = []}
val extend = I
fun merge ({frac_types = fs1, ersatz_table = et1, codatatypes = cs1},
{frac_types = fs2, ersatz_table = et2, codatatypes = cs2}) : T =
{frac_types = AList.merge (op =) (K true) (fs1, fs2),
ersatz_table = AList.merge (op =) (K true) (et1, et2),
codatatypes = AList.merge (op =) (K true) (cs1, cs2)}
)
val name_sep = "$"
val numeral_prefix = nitpick_prefix ^ "num" ^ name_sep
val sel_prefix = nitpick_prefix ^ "sel"
val discr_prefix = nitpick_prefix ^ "is" ^ name_sep
val lfp_iterator_prefix = nitpick_prefix ^ "lfpit" ^ name_sep
val gfp_iterator_prefix = nitpick_prefix ^ "gfpit" ^ name_sep
val unrolled_prefix = nitpick_prefix ^ "unroll" ^ name_sep
val base_prefix = nitpick_prefix ^ "base" ^ name_sep
val step_prefix = nitpick_prefix ^ "step" ^ name_sep
val ubfp_prefix = nitpick_prefix ^ "ubfp" ^ name_sep
val lbfp_prefix = nitpick_prefix ^ "lbfp" ^ name_sep
val quot_normal_prefix = nitpick_prefix ^ "qn" ^ name_sep
val skolem_prefix = nitpick_prefix ^ "sk"
val special_prefix = nitpick_prefix ^ "sp"
val uncurry_prefix = nitpick_prefix ^ "unc"
val eval_prefix = nitpick_prefix ^ "eval"
val iter_var_prefix = "i"
(** Constant/type information and term/type manipulation **)
fun sel_prefix_for j = sel_prefix ^ string_of_int j ^ name_sep
fun quot_normal_name_for_type ctxt T =
quot_normal_prefix ^ YXML.content_of (Syntax.string_of_typ ctxt T)
val strip_first_name_sep =
Substring.full #> Substring.position name_sep ##> Substring.triml 1
#> apply2 Substring.string
fun original_name s =
if String.isPrefix nitpick_prefix s then
case strip_first_name_sep s of (s1, "") => s1 | (_, s2) => original_name s2
else
s
fun s_conj (t1, \<^const>\<open>True\<close>) = t1
| s_conj (\<^const>\<open>True\<close>, t2) = t2
| s_conj (t1, t2) =
if t1 = \<^const>\<open>False\<close> orelse t2 = \<^const>\<open>False\<close> then \<^const>\<open>False\<close>
else HOLogic.mk_conj (t1, t2)
fun s_disj (t1, \<^const>\<open>False\<close>) = t1
| s_disj (\<^const>\<open>False\<close>, t2) = t2
| s_disj (t1, t2) =
if t1 = \<^const>\<open>True\<close> orelse t2 = \<^const>\<open>True\<close> then \<^const>\<open>True\<close>
else HOLogic.mk_disj (t1, t2)
fun strip_connective conn_t (t as (t0 $ t1 $ t2)) =
if t0 = conn_t then strip_connective t0 t2 @ strip_connective t0 t1 else [t]
| strip_connective _ t = [t]
fun strip_any_connective (t as (t0 $ _ $ _)) =
if t0 = \<^const>\<open>HOL.conj\<close> orelse t0 = \<^const>\<open>HOL.disj\<close> then
(strip_connective t0 t, t0)
else
([t], \<^const>\<open>Not\<close>)
| strip_any_connective t = ([t], \<^const>\<open>Not\<close>)
val conjuncts_of = strip_connective \<^const>\<open>HOL.conj\<close>
val disjuncts_of = strip_connective \<^const>\<open>HOL.disj\<close>
(* When you add constants to these lists, make sure to handle them in
"Nitpick_Nut.nut_from_term", and perhaps in "Nitpick_Mono.consider_term" as
well. *)
val built_in_consts =
[(\<^const_name>\<open>Pure.all\<close>, 1),
(\<^const_name>\<open>Pure.eq\<close>, 2),
(\<^const_name>\<open>Pure.imp\<close>, 2),
(\<^const_name>\<open>Pure.conjunction\<close>, 2),
(\<^const_name>\<open>Trueprop\<close>, 1),
(\<^const_name>\<open>Not\<close>, 1),
(\<^const_name>\<open>False\<close>, 0),
(\<^const_name>\<open>True\<close>, 0),
(\<^const_name>\<open>All\<close>, 1),
(\<^const_name>\<open>Ex\<close>, 1),
(\<^const_name>\<open>HOL.eq\<close>, 1),
(\<^const_name>\<open>HOL.conj\<close>, 2),
(\<^const_name>\<open>HOL.disj\<close>, 2),
(\<^const_name>\<open>HOL.implies\<close>, 2),
(\<^const_name>\<open>If\<close>, 3),
(\<^const_name>\<open>Let\<close>, 2),
(\<^const_name>\<open>Pair\<close>, 2),
(\<^const_name>\<open>fst\<close>, 1),
(\<^const_name>\<open>snd\<close>, 1),
(\<^const_name>\<open>Set.member\<close>, 2),
(\<^const_name>\<open>Collect\<close>, 1),
(\<^const_name>\<open>Id\<close>, 0),
(\<^const_name>\<open>converse\<close>, 1),
(\<^const_name>\<open>trancl\<close>, 1),
(\<^const_name>\<open>relcomp\<close>, 2),
(\<^const_name>\<open>finite\<close>, 1),
(\<^const_name>\<open>unknown\<close>, 0),
(\<^const_name>\<open>is_unknown\<close>, 1),
(\<^const_name>\<open>safe_The\<close>, 1),
(\<^const_name>\<open>Frac\<close>, 0),
(\<^const_name>\<open>norm_frac\<close>, 0),
(\<^const_name>\<open>Suc\<close>, 0),
(\<^const_name>\<open>nat\<close>, 0),
(\<^const_name>\<open>nat_gcd\<close>, 0),
(\<^const_name>\<open>nat_lcm\<close>, 0)]
val built_in_typed_consts =
[((\<^const_name>\<open>zero_class.zero\<close>, nat_T), 0),
((\<^const_name>\<open>one_class.one\<close>, nat_T), 0),
((\<^const_name>\<open>plus_class.plus\<close>, nat_T --> nat_T --> nat_T), 0),
((\<^const_name>\<open>minus_class.minus\<close>, nat_T --> nat_T --> nat_T), 0),
((\<^const_name>\<open>times_class.times\<close>, nat_T --> nat_T --> nat_T), 0),
((\<^const_name>\<open>Rings.divide\<close>, nat_T --> nat_T --> nat_T), 0),
((\<^const_name>\<open>ord_class.less\<close>, nat_T --> nat_T --> bool_T), 2),
((\<^const_name>\<open>ord_class.less_eq\<close>, nat_T --> nat_T --> bool_T), 2),
((\<^const_name>\<open>of_nat\<close>, nat_T --> int_T), 0),
((\<^const_name>\<open>zero_class.zero\<close>, int_T), 0),
((\<^const_name>\<open>one_class.one\<close>, int_T), 0),
((\<^const_name>\<open>plus_class.plus\<close>, int_T --> int_T --> int_T), 0),
((\<^const_name>\<open>minus_class.minus\<close>, int_T --> int_T --> int_T), 0),
((\<^const_name>\<open>times_class.times\<close>, int_T --> int_T --> int_T), 0),
((\<^const_name>\<open>Rings.divide\<close>, int_T --> int_T --> int_T), 0),
((\<^const_name>\<open>uminus_class.uminus\<close>, int_T --> int_T), 0),
((\<^const_name>\<open>ord_class.less\<close>, int_T --> int_T --> bool_T), 2),
((\<^const_name>\<open>ord_class.less_eq\<close>, int_T --> int_T --> bool_T), 2)]
fun unarize_type \<^typ>\<open>unsigned_bit word\<close> = nat_T
| unarize_type \<^typ>\<open>signed_bit word\<close> = int_T
| unarize_type (Type (s, Ts as _ :: _)) = Type (s, map unarize_type Ts)
| unarize_type T = T
fun unarize_unbox_etc_type (Type (\<^type_name>\<open>fun_box\<close>, Ts)) =
unarize_unbox_etc_type (Type (\<^type_name>\<open>fun\<close>, Ts))
| unarize_unbox_etc_type (Type (\<^type_name>\<open>pair_box\<close>, Ts)) =
Type (\<^type_name>\<open>prod\<close>, map unarize_unbox_etc_type Ts)
| unarize_unbox_etc_type \<^typ>\<open>unsigned_bit word\<close> = nat_T
| unarize_unbox_etc_type \<^typ>\<open>signed_bit word\<close> = int_T
| unarize_unbox_etc_type (Type (s, Ts as _ :: _)) =
Type (s, map unarize_unbox_etc_type Ts)
| unarize_unbox_etc_type T = T
fun uniterize_type (Type (s, Ts as _ :: _)) = Type (s, map uniterize_type Ts)
| uniterize_type \<^typ>\<open>bisim_iterator\<close> = nat_T
| uniterize_type T = T
val uniterize_unarize_unbox_etc_type = uniterize_type o unarize_unbox_etc_type
fun string_for_type ctxt = Syntax.string_of_typ ctxt o unarize_unbox_etc_type
fun pretty_for_type ctxt = Syntax.pretty_typ ctxt o unarize_unbox_etc_type
val prefix_name = Long_Name.qualify o Long_Name.base_name
val shortest_name = Long_Name.base_name
val prefix_abs_vars = Term.map_abs_vars o prefix_name
fun short_name s =
case space_explode name_sep s of
[_] => s |> String.isPrefix nitpick_prefix s ? unprefix nitpick_prefix
| ss => map shortest_name ss |> space_implode "_"
fun shorten_names_in_type (Type (s, Ts)) =
Type (short_name s, map shorten_names_in_type Ts)
| shorten_names_in_type T = T
val shorten_names_in_term =
map_aterms (fn Const (s, T) => Const (short_name s, T) | t => t)
#> map_types shorten_names_in_type
fun strict_type_match thy (T1, T2) =
(Sign.typ_match thy (T2, T1) Vartab.empty; true)
handle Type.TYPE_MATCH => false
fun type_match thy = strict_type_match thy o apply2 unarize_unbox_etc_type
fun const_match thy ((s1, T1), (s2, T2)) =
s1 = s2 andalso type_match thy (T1, T2)
fun term_match thy (Const x1, Const x2) = const_match thy (x1, x2)
| term_match thy (Free (s1, T1), Free (s2, T2)) =
const_match thy ((shortest_name s1, T1), (shortest_name s2, T2))
| term_match _ (t1, t2) = t1 aconv t2
fun frac_from_term_pair T t1 t2 =
case snd (HOLogic.dest_number t1) of
0 => HOLogic.mk_number T 0
| n1 => case snd (HOLogic.dest_number t2) of
1 => HOLogic.mk_number T n1
| n2 => Const (\<^const_name>\<open>divide\<close>, T --> T --> T)
$ HOLogic.mk_number T n1 $ HOLogic.mk_number T n2
fun is_fun_type (Type (\<^type_name>\<open>fun\<close>, _)) = true
| is_fun_type _ = false
fun is_set_type (Type (\<^type_name>\<open>set\<close>, _)) = true
| is_set_type _ = false
val is_fun_or_set_type = is_fun_type orf is_set_type
fun is_set_like_type (Type (\<^type_name>\<open>fun\<close>, [_, T'])) =
(body_type T' = bool_T)
| is_set_like_type (Type (\<^type_name>\<open>set\<close>, _)) = true
| is_set_like_type _ = false
fun is_pair_type (Type (\<^type_name>\<open>prod\<close>, _)) = true
| is_pair_type _ = false
fun is_lfp_iterator_type (Type (s, _)) = String.isPrefix lfp_iterator_prefix s
| is_lfp_iterator_type _ = false
fun is_gfp_iterator_type (Type (s, _)) = String.isPrefix gfp_iterator_prefix s
| is_gfp_iterator_type _ = false
val is_fp_iterator_type = is_lfp_iterator_type orf is_gfp_iterator_type
fun is_iterator_type T =
(T = \<^typ>\<open>bisim_iterator\<close> orelse is_fp_iterator_type T)
fun is_boolean_type T = (T = prop_T orelse T = bool_T)
fun is_integer_type T = (T = nat_T orelse T = int_T)
fun is_bit_type T = (T = \<^typ>\<open>unsigned_bit\<close> orelse T = \<^typ>\<open>signed_bit\<close>)
fun is_word_type (Type (\<^type_name>\<open>word\<close>, _)) = true
| is_word_type _ = false
val is_integer_like_type = is_iterator_type orf is_integer_type orf is_word_type
fun is_frac_type ctxt (Type (s, [])) =
s |> AList.defined (op =) (#frac_types (Data.get (Context.Proof ctxt)))
| is_frac_type _ _ = false
fun is_number_type ctxt = is_integer_like_type orf is_frac_type ctxt
fun is_higher_order_type (Type (\<^type_name>\<open>fun\<close>, _)) = true
| is_higher_order_type (Type (\<^type_name>\<open>set\<close>, _)) = true
| is_higher_order_type (Type (_, Ts)) = exists is_higher_order_type Ts
| is_higher_order_type _ = false
fun elem_type (Type (\<^type_name>\<open>set\<close>, [T'])) = T'
| elem_type T = raise TYPE ("Nitpick_HOL.elem_type", [T], [])
fun pseudo_domain_type (Type (\<^type_name>\<open>fun\<close>, [T1, _])) = T1
| pseudo_domain_type T = elem_type T
fun pseudo_range_type (Type (\<^type_name>\<open>fun\<close>, [_, T2])) = T2
| pseudo_range_type (Type (\<^type_name>\<open>set\<close>, _)) = bool_T
| pseudo_range_type T = raise TYPE ("Nitpick_HOL.pseudo_range_type", [T], [])
fun iterator_type_for_const gfp (s, T) =
Type ((if gfp then gfp_iterator_prefix else lfp_iterator_prefix) ^ s,
binder_types T)
fun const_for_iterator_type (Type (s, Ts)) =
(strip_first_name_sep s |> snd, Ts ---> bool_T)
| const_for_iterator_type T =
raise TYPE ("Nitpick_HOL.const_for_iterator_type", [T], [])
fun strip_n_binders 0 T = ([], T)
| strip_n_binders n (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
strip_n_binders (n - 1) T2 |>> cons T1
| strip_n_binders n (Type (\<^type_name>\<open>fun_box\<close>, Ts)) =
strip_n_binders n (Type (\<^type_name>\<open>fun\<close>, Ts))
| strip_n_binders _ T = raise TYPE ("Nitpick_HOL.strip_n_binders", [T], [])
val nth_range_type = snd oo strip_n_binders
fun num_factors_in_type (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) =
fold (Integer.add o num_factors_in_type) [T1, T2] 0
| num_factors_in_type _ = 1
val curried_binder_types = maps HOLogic.flatten_tupleT o binder_types
fun maybe_curried_binder_types T =
(if is_pair_type (body_type T) then binder_types else curried_binder_types) T
fun mk_flat_tuple _ [t] = t
| mk_flat_tuple (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) (t :: ts) =
HOLogic.pair_const T1 T2 $ t $ (mk_flat_tuple T2 ts)
| mk_flat_tuple T ts = raise TYPE ("Nitpick_HOL.mk_flat_tuple", [T], ts)
fun dest_n_tuple 1 t = [t]
| dest_n_tuple n t = HOLogic.dest_prod t ||> dest_n_tuple (n - 1) |> op ::
fun typedef_info ctxt s =
if is_frac_type ctxt (Type (s, [])) then
SOME {abs_type = Type (s, []), rep_type = \<^typ>\<open>int * int\<close>,
Abs_name = \<^const_name>\<open>Abs_Frac\<close>,
Rep_name = \<^const_name>\<open>Rep_Frac\<close>,
prop_of_Rep = \<^prop>\<open>Rep_Frac x \<in> Collect Frac\<close>
|> Logic.varify_global,
Abs_inverse = NONE, Rep_inverse = NONE}
else case Typedef.get_info ctxt s of
(* When several entries are returned, it shouldn't matter much which one
we take (according to Florian Haftmann). *)
(* The "Logic.varifyT_global" calls are a temporary hack because these
types's type variables sometimes clash with locally fixed type variables.
Remove these calls once "Typedef" is fully localized. *)
({abs_type, rep_type, Abs_name, Rep_name, ...},
{Rep, Abs_inverse, Rep_inverse, ...}) :: _ =>
SOME {abs_type = Logic.varifyT_global abs_type,
rep_type = Logic.varifyT_global rep_type, Abs_name = Abs_name,
Rep_name = Rep_name, prop_of_Rep = Thm.prop_of Rep,
Abs_inverse = SOME Abs_inverse, Rep_inverse = SOME Rep_inverse}
| _ => NONE
val is_raw_typedef = is_some oo typedef_info
val is_raw_free_datatype = is_some oo Ctr_Sugar.ctr_sugar_of
val is_interpreted_type =
member (op =) [\<^type_name>\<open>prod\<close>, \<^type_name>\<open>set\<close>, \<^type_name>\<open>bool\<close>,
\<^type_name>\<open>nat\<close>, \<^type_name>\<open>int\<close>, \<^type_name>\<open>natural\<close>,
\<^type_name>\<open>integer\<close>]
fun repair_constr_type (Type (_, Ts)) T =
snd (dest_Const (Ctr_Sugar.mk_ctr Ts (Const (Name.uu, T))))
fun register_frac_type_generic frac_s ersaetze generic =
let
val {frac_types, ersatz_table, codatatypes} = Data.get generic
val frac_types = AList.update (op =) (frac_s, ersaetze) frac_types
in Data.put {frac_types = frac_types, ersatz_table = ersatz_table,
codatatypes = codatatypes} generic end
(* TODO: Consider morphism. *)
fun register_frac_type frac_s ersaetze (_ : morphism) =
register_frac_type_generic frac_s ersaetze
val register_frac_type_global = Context.theory_map oo register_frac_type_generic
fun unregister_frac_type_generic frac_s = register_frac_type_generic frac_s []
(* TODO: Consider morphism. *)
fun unregister_frac_type frac_s (_ : morphism) =
unregister_frac_type_generic frac_s
val unregister_frac_type_global =
Context.theory_map o unregister_frac_type_generic
fun register_ersatz_generic ersatz generic =
let
val {frac_types, ersatz_table, codatatypes} = Data.get generic
val ersatz_table = AList.merge (op =) (K true) (ersatz_table, ersatz)
in Data.put {frac_types = frac_types, ersatz_table = ersatz_table,
codatatypes = codatatypes} generic end
(* TODO: Consider morphism. *)
fun register_ersatz ersatz (_ : morphism) =
register_ersatz_generic ersatz
val register_ersatz_global = Context.theory_map o register_ersatz_generic
fun register_codatatype_generic coT case_name constr_xs generic =
let
val {frac_types, ersatz_table, codatatypes} = Data.get generic
val constr_xs = map (apsnd (repair_constr_type coT)) constr_xs
val (co_s, coTs) = dest_Type coT
val _ =
if forall is_TFree coTs andalso not (has_duplicates (op =) coTs) andalso
co_s <> \<^type_name>\<open>fun\<close> andalso not (is_interpreted_type co_s) then
()
else
raise TYPE ("Nitpick_HOL.register_codatatype_generic", [coT], [])
val codatatypes = AList.update (op =) (co_s, (case_name, constr_xs))
codatatypes
in Data.put {frac_types = frac_types, ersatz_table = ersatz_table,
codatatypes = codatatypes} generic end
(* TODO: Consider morphism. *)
fun register_codatatype coT case_name constr_xs (_ : morphism) =
register_codatatype_generic coT case_name constr_xs
val register_codatatype_global =
Context.theory_map ooo register_codatatype_generic
fun unregister_codatatype_generic coT = register_codatatype_generic coT "" []
(* TODO: Consider morphism. *)
fun unregister_codatatype coT (_ : morphism) =
unregister_codatatype_generic coT
val unregister_codatatype_global =
Context.theory_map o unregister_codatatype_generic
fun is_raw_codatatype ctxt s =
Option.map #fp (BNF_FP_Def_Sugar.fp_sugar_of ctxt s)
= SOME BNF_Util.Greatest_FP
fun is_registered_codatatype ctxt s =
not (null (these (Option.map snd (AList.lookup (op =)
(#codatatypes (Data.get (Context.Proof ctxt))) s))))
fun is_codatatype ctxt (Type (s, _)) =
is_raw_codatatype ctxt s orelse is_registered_codatatype ctxt s
| is_codatatype _ _ = false
fun is_registered_type ctxt (T as Type (s, _)) =
is_frac_type ctxt T orelse is_registered_codatatype ctxt s
| is_registered_type _ _ = false
fun is_raw_quot_type ctxt (Type (s, _)) =
is_some (Quotient_Info.lookup_quotients ctxt s)
| is_raw_quot_type _ _ = false
fun is_quot_type ctxt T =
is_raw_quot_type ctxt T andalso not (is_registered_type ctxt T) andalso
T <> \<^typ>\<open>int\<close>
fun is_pure_typedef ctxt (T as Type (s, _)) =
is_frac_type ctxt T orelse
(is_raw_typedef ctxt s andalso
not (is_raw_free_datatype ctxt s orelse is_raw_quot_type ctxt T orelse
is_codatatype ctxt T orelse is_integer_like_type T))
| is_pure_typedef _ _ = false
fun is_univ_typedef ctxt (Type (s, _)) =
(case typedef_info ctxt s of
SOME {prop_of_Rep, ...} =>
let
val t_opt =
try (snd o HOLogic.dest_mem o HOLogic.dest_Trueprop) prop_of_Rep
in
case t_opt of
SOME (Const (\<^const_name>\<open>top\<close>, _)) => true
(* "Multiset.multiset" FIXME unchecked *)
| SOME (Const (\<^const_name>\<open>Collect\<close>, _)
$ Abs (_, _, Const (\<^const_name>\<open>finite\<close>, _) $ _)) => true
(* "FinFun.finfun" FIXME unchecked *)
| SOME (Const (\<^const_name>\<open>Collect\<close>, _) $ Abs (_, _,
Const (\<^const_name>\<open>Ex\<close>, _) $ Abs (_, _,
Const (\<^const_name>\<open>finite\<close>, _) $ _))) => true
| _ => false
end
| NONE => false)
| is_univ_typedef _ _ = false
fun is_data_type ctxt (T as Type (s, _)) =
(is_raw_typedef ctxt s orelse is_registered_type ctxt T orelse
T = \<^typ>\<open>ind\<close> orelse is_raw_quot_type ctxt T) andalso
not (is_interpreted_type s)
| is_data_type _ _ = false
fun all_record_fields thy T =
let val (recs, more) = Record.get_extT_fields thy T in
recs @ more :: all_record_fields thy (snd more)
end
handle TYPE _ => []
val num_record_fields = Integer.add 1 o length o fst oo Record.get_extT_fields
fun no_of_record_field thy s T1 =
find_index (curry (op =) s o fst) (Record.get_extT_fields thy T1 ||> single |> op @)
fun is_record_get thy (s, Type (\<^type_name>\<open>fun\<close>, [T1, _])) =
exists (curry (op =) s o fst) (all_record_fields thy T1)
| is_record_get _ _ = false
fun is_record_update thy (s, T) =
String.isSuffix Record.updateN s andalso
exists (curry (op =) (unsuffix Record.updateN s) o fst) (all_record_fields thy (body_type T))
handle TYPE _ => false
fun is_abs_fun ctxt (s, Type (\<^type_name>\<open>fun\<close>, [_, Type (s', _)])) =
(case typedef_info ctxt s' of
SOME {Abs_name, ...} => s = Abs_name
| NONE => false)
| is_abs_fun _ _ = false
fun is_rep_fun ctxt (s, Type (\<^type_name>\<open>fun\<close>, [Type (s', _), _])) =
(case typedef_info ctxt s' of
SOME {Rep_name, ...} => s = Rep_name
| NONE => false)
| is_rep_fun _ _ = false
fun is_quot_abs_fun ctxt (x as (_, Type (\<^type_name>\<open>fun\<close>,
[_, abs_T as Type (s', _)]))) =
try (Quotient_Term.absrep_const_chk ctxt Quotient_Term.AbsF) s'
= SOME (Const x) andalso not (is_registered_type ctxt abs_T)
| is_quot_abs_fun _ _ = false
fun is_quot_rep_fun ctxt (s, Type (\<^type_name>\<open>fun\<close>,
[abs_T as Type (abs_s, _), _])) =
(case try (Quotient_Term.absrep_const_chk ctxt Quotient_Term.RepF) abs_s of
SOME (Const (s', _)) =>
s = s' andalso not (is_registered_type ctxt abs_T)
| _ => false)
| is_quot_rep_fun _ _ = false
fun mate_of_rep_fun ctxt (x as (_, Type (\<^type_name>\<open>fun\<close>,
[T1 as Type (s', _), T2]))) =
(case typedef_info ctxt s' of
SOME {Abs_name, ...} => (Abs_name, Type (\<^type_name>\<open>fun\<close>, [T2, T1]))
| NONE => raise TERM ("Nitpick_HOL.mate_of_rep_fun", [Const x]))
| mate_of_rep_fun _ x = raise TERM ("Nitpick_HOL.mate_of_rep_fun", [Const x])
fun rep_type_for_quot_type ctxt (T as Type (s, _)) =
let
val thy = Proof_Context.theory_of ctxt
val {qtyp, rtyp, ...} = the (Quotient_Info.lookup_quotients ctxt s)
in
instantiate_type thy qtyp T rtyp
end
| rep_type_for_quot_type _ T =
raise TYPE ("Nitpick_HOL.rep_type_for_quot_type", [T], [])
fun equiv_relation_for_quot_type thy (Type (s, Ts)) =
let
val {qtyp, equiv_rel, equiv_thm, ...} =
the (Quotient_Info.lookup_quotients thy s)
val partial =
case Thm.prop_of equiv_thm of
\<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>equivp\<close>, _) $ _) => false
| \<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>part_equivp\<close>, _) $ _) => true
| _ => raise NOT_SUPPORTED "Ill-formed quotient type equivalence \
\relation theorem"
val Ts' = qtyp |> dest_Type |> snd
in (subst_atomic_types (Ts' ~~ Ts) equiv_rel, partial) end
| equiv_relation_for_quot_type _ T =
raise TYPE ("Nitpick_HOL.equiv_relation_for_quot_type", [T], [])
fun is_raw_free_datatype_constr ctxt (s, T) =
case body_type T of
dtT as Type (dt_s, _) =>
let
val ctrs =
case Ctr_Sugar.ctr_sugar_of ctxt dt_s of
SOME {ctrs, ...} => map dest_Const ctrs
| _ => []
in
exists (fn (s', T') => s = s' andalso repair_constr_type dtT T' = T) ctrs
end
| _ => false
fun is_registered_coconstr ctxt (s, T) =
case body_type T of
coT as Type (co_s, _) =>
let
val ctrs =
co_s
|> AList.lookup (op =) (#codatatypes (Data.get (Context.Proof ctxt)))
|> Option.map snd |> these
in
exists (fn (s', T') => s = s' andalso repair_constr_type coT T' = T) ctrs
end
| _ => false
fun is_nonfree_constr ctxt (s, T) =
member (op =) [\<^const_name>\<open>FunBox\<close>, \<^const_name>\<open>PairBox\<close>,
\<^const_name>\<open>Quot\<close>, \<^const_name>\<open>Zero_Rep\<close>,
\<^const_name>\<open>Suc_Rep\<close>] s orelse
let val (x as (_, T)) = (s, unarize_unbox_etc_type T) in
is_raw_free_datatype_constr ctxt x orelse
(is_abs_fun ctxt x andalso is_pure_typedef ctxt (range_type T)) orelse
is_registered_coconstr ctxt x
end
fun is_free_constr ctxt (s, T) =
is_nonfree_constr ctxt (s, T) andalso
let val (x as (_, T)) = (s, unarize_unbox_etc_type T) in
not (is_abs_fun ctxt x) orelse is_univ_typedef ctxt (range_type T)
end
fun is_stale_constr ctxt (x as (s, T)) =
is_registered_type ctxt (body_type T) andalso is_nonfree_constr ctxt x andalso
not (s = \<^const_name>\<open>Abs_Frac\<close> orelse is_registered_coconstr ctxt x)
fun is_constr ctxt (x as (_, T)) =
is_nonfree_constr ctxt x andalso
not (is_interpreted_type (fst (dest_Type (unarize_type (body_type T))))) andalso
not (is_stale_constr ctxt x)
val is_sel = String.isPrefix discr_prefix orf String.isPrefix sel_prefix
val is_sel_like_and_no_discr =
String.isPrefix sel_prefix orf
(member (op =) [\<^const_name>\<open>fst\<close>, \<^const_name>\<open>snd\<close>])
fun in_fun_lhs_for InConstr = InSel
| in_fun_lhs_for _ = InFunLHS
fun in_fun_rhs_for InConstr = InConstr
| in_fun_rhs_for InSel = InSel
| in_fun_rhs_for InFunRHS1 = InFunRHS2
| in_fun_rhs_for _ = InFunRHS1
fun is_boxing_worth_it (hol_ctxt : hol_context) boxy T =
case T of
Type (\<^type_name>\<open>fun\<close>, _) =>
(boxy = InPair orelse boxy = InFunLHS) andalso
not (is_boolean_type (body_type T))
| Type (\<^type_name>\<open>prod\<close>, Ts) =>
boxy = InPair orelse boxy = InFunRHS1 orelse boxy = InFunRHS2 orelse
((boxy = InExpr orelse boxy = InFunLHS) andalso
exists (is_boxing_worth_it hol_ctxt InPair)
(map (box_type hol_ctxt InPair) Ts))
| _ => false
and should_box_type (hol_ctxt as {thy, boxes, ...}) boxy z =
case triple_lookup (type_match thy) boxes (Type z) of
SOME (SOME box_me) => box_me
| _ => is_boxing_worth_it hol_ctxt boxy (Type z)
and box_type hol_ctxt boxy T =
case T of
Type (z as (\<^type_name>\<open>fun\<close>, [T1, T2])) =>
if boxy <> InConstr andalso boxy <> InSel andalso
should_box_type hol_ctxt boxy z then
Type (\<^type_name>\<open>fun_box\<close>,
[box_type hol_ctxt InFunLHS T1, box_type hol_ctxt InFunRHS1 T2])
else
box_type hol_ctxt (in_fun_lhs_for boxy) T1
--> box_type hol_ctxt (in_fun_rhs_for boxy) T2
| Type (z as (\<^type_name>\<open>prod\<close>, Ts)) =>
if boxy <> InConstr andalso boxy <> InSel
andalso should_box_type hol_ctxt boxy z then
Type (\<^type_name>\<open>pair_box\<close>, map (box_type hol_ctxt InSel) Ts)
else
Type (\<^type_name>\<open>prod\<close>,
map (box_type hol_ctxt
(if boxy = InConstr orelse boxy = InSel then boxy
else InPair)) Ts)
| _ => T
fun binarize_nat_and_int_in_type \<^typ>\<open>nat\<close> = \<^typ>\<open>unsigned_bit word\<close>
| binarize_nat_and_int_in_type \<^typ>\<open>int\<close> = \<^typ>\<open>signed_bit word\<close>
| binarize_nat_and_int_in_type (Type (s, Ts)) =
Type (s, map binarize_nat_and_int_in_type Ts)
| binarize_nat_and_int_in_type T = T
val binarize_nat_and_int_in_term = map_types binarize_nat_and_int_in_type
fun discr_for_constr (s, T) = (discr_prefix ^ s, body_type T --> bool_T)
fun num_sels_for_constr_type T = length (maybe_curried_binder_types T)
fun nth_sel_name_for_constr_name s n =
if s = \<^const_name>\<open>Pair\<close> then
if n = 0 then \<^const_name>\<open>fst\<close> else \<^const_name>\<open>snd\<close>
else
sel_prefix_for n ^ s
fun nth_sel_for_constr x ~1 = discr_for_constr x
| nth_sel_for_constr (s, T) n =
(nth_sel_name_for_constr_name s n,
body_type T --> nth (maybe_curried_binder_types T) n)
fun binarized_and_boxed_nth_sel_for_constr hol_ctxt binarize =
apsnd ((binarize ? binarize_nat_and_int_in_type) o box_type hol_ctxt InSel)
oo nth_sel_for_constr
fun sel_no_from_name s =
if String.isPrefix discr_prefix s then
~1
else if String.isPrefix sel_prefix s then
s |> unprefix sel_prefix |> Int.fromString |> the
else if s = \<^const_name>\<open>snd\<close> then
1
else
0
val close_form =
let
fun close_up zs zs' =
fold (fn (z as ((s, _), T)) => fn t' =>
Logic.all_const T $ Abs (s, T, abstract_over (Var z, t')))
(take (length zs' - length zs) zs')
fun aux zs (\<^const>\<open>Pure.imp\<close> $ t1 $ t2) =
let val zs' = Term.add_vars t1 zs in
close_up zs zs' (Logic.mk_implies (t1, aux zs' t2))
end
| aux zs t = close_up zs (Term.add_vars t zs) t
in aux [] end
fun distinctness_formula T =
all_distinct_unordered_pairs_of
#> map (fn (t1, t2) => \<^const>\<open>Not\<close> $ (HOLogic.eq_const T $ t1 $ t2))
#> List.foldr (s_conj o swap) \<^const>\<open>True\<close>
fun zero_const T = Const (\<^const_name>\<open>zero_class.zero\<close>, T)
fun suc_const T = Const (\<^const_name>\<open>Suc\<close>, T --> T)
fun uncached_data_type_constrs ({ctxt, ...} : hol_context) (T as Type (s, _)) =
if is_interpreted_type s then
[]
else
(case AList.lookup (op =) (#codatatypes (Data.get (Context.Proof ctxt))) s of
SOME (_, xs' as (_ :: _)) => map (apsnd (repair_constr_type T)) xs'
| _ =>
if is_frac_type ctxt T then
case typedef_info ctxt s of
SOME {abs_type, rep_type, Abs_name, ...} =>
[(Abs_name, varify_and_instantiate_type ctxt abs_type T rep_type --> T)]
| NONE => [] (* impossible *)
else
case Ctr_Sugar.ctr_sugar_of ctxt s of
SOME {ctrs, ...} =>
map (apsnd (repair_constr_type T) o dest_Const) ctrs
| NONE =>
if is_raw_quot_type ctxt T then
[(\<^const_name>\<open>Quot\<close>, rep_type_for_quot_type ctxt T --> T)]
else case typedef_info ctxt s of
SOME {abs_type, rep_type, Abs_name, ...} =>
[(Abs_name, varify_and_instantiate_type ctxt abs_type T rep_type --> T)]
| NONE =>
if T = \<^typ>\<open>ind\<close> then [dest_Const \<^const>\<open>Zero_Rep\<close>, dest_Const \<^const>\<open>Suc_Rep\<close>]
else [])
| uncached_data_type_constrs _ _ = []
fun data_type_constrs (hol_ctxt as {constr_cache, ...}) T =
case AList.lookup (op =) (!constr_cache) T of
SOME xs => xs
| NONE =>
let val xs = uncached_data_type_constrs hol_ctxt T in
(Unsynchronized.change constr_cache (cons (T, xs)); xs)
end
fun binarized_and_boxed_data_type_constrs hol_ctxt binarize =
map (apsnd ((binarize ? binarize_nat_and_int_in_type)
o box_type hol_ctxt InConstr)) o data_type_constrs hol_ctxt
fun constr_name_for_sel_like \<^const_name>\<open>fst\<close> = \<^const_name>\<open>Pair\<close>
| constr_name_for_sel_like \<^const_name>\<open>snd\<close> = \<^const_name>\<open>Pair\<close>
| constr_name_for_sel_like s' = original_name s'
fun binarized_and_boxed_constr_for_sel hol_ctxt binarize (s', T') =
let val s = constr_name_for_sel_like s' in
AList.lookup (op =)
(binarized_and_boxed_data_type_constrs hol_ctxt binarize (domain_type T'))
s
|> the |> pair s
end
fun card_of_type assigns (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
reasonable_power (card_of_type assigns T2) (card_of_type assigns T1)
| card_of_type assigns (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) =
card_of_type assigns T1 * card_of_type assigns T2
| card_of_type assigns (Type (\<^type_name>\<open>set\<close>, [T'])) =
reasonable_power 2 (card_of_type assigns T')
| card_of_type _ (Type (\<^type_name>\<open>itself\<close>, _)) = 1
| card_of_type _ \<^typ>\<open>prop\<close> = 2
| card_of_type _ \<^typ>\<open>bool\<close> = 2
| card_of_type assigns T =
case AList.lookup (op =) assigns T of
SOME k => k
| NONE => if T = \<^typ>\<open>bisim_iterator\<close> then 0
else raise TYPE ("Nitpick_HOL.card_of_type", [T], [])
fun bounded_card_of_type max default_card assigns
(Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
let
val k1 = bounded_card_of_type max default_card assigns T1
val k2 = bounded_card_of_type max default_card assigns T2
in
if k1 = max orelse k2 = max then max
else Int.min (max, reasonable_power k2 k1)
handle TOO_LARGE _ => max
end
| bounded_card_of_type max default_card assigns
(Type (\<^type_name>\<open>prod\<close>, [T1, T2])) =
let
val k1 = bounded_card_of_type max default_card assigns T1
val k2 = bounded_card_of_type max default_card assigns T2
in if k1 = max orelse k2 = max then max else Int.min (max, k1 * k2) end
| bounded_card_of_type max default_card assigns
(Type (\<^type_name>\<open>set\<close>, [T'])) =
bounded_card_of_type max default_card assigns (T' --> bool_T)
| bounded_card_of_type max default_card assigns T =
Int.min (max, if default_card = ~1 then
card_of_type assigns T
else
card_of_type assigns T
handle TYPE ("Nitpick_HOL.card_of_type", _, _) =>
default_card)
(* Similar to "ATP_Util.tiny_card_of_type". *)
fun bounded_exact_card_of_type hol_ctxt finitizable_dataTs max default_card
assigns T =
let
fun aux avoid T =
(if member (op =) avoid T then
0
else if member (op =) finitizable_dataTs T then
raise SAME ()
else case T of
Type (\<^type_name>\<open>fun\<close>, [T1, T2]) =>
(case (aux avoid T1, aux avoid T2) of
(_, 1) => 1
| (0, _) => 0
| (_, 0) => 0
| (k1, k2) =>
if k1 >= max orelse k2 >= max then max
else Int.min (max, reasonable_power k2 k1))
| Type (\<^type_name>\<open>prod\<close>, [T1, T2]) =>
(case (aux avoid T1, aux avoid T2) of
(0, _) => 0
| (_, 0) => 0
| (k1, k2) =>
if k1 >= max orelse k2 >= max then max
else Int.min (max, k1 * k2))
| Type (\<^type_name>\<open>set\<close>, [T']) => aux avoid (T' --> bool_T)
| Type (\<^type_name>\<open>itself\<close>, _) => 1
| \<^typ>\<open>prop\<close> => 2
| \<^typ>\<open>bool\<close> => 2
| Type _ =>
(case data_type_constrs hol_ctxt T of
[] => if is_integer_type T orelse is_bit_type T then 0
else raise SAME ()
| constrs =>
let
val constr_cards =
map (Integer.prod o map (aux (T :: avoid)) o binder_types o snd)
constrs
in
if exists (curry (op =) 0) constr_cards then 0
else Int.min (max, Integer.sum constr_cards)
end)
| _ => raise SAME ())
handle SAME () =>
AList.lookup (op =) assigns T |> the_default default_card
in Int.min (max, aux [] T) end
val typical_atomic_card = 4
val typical_card_of_type = bounded_card_of_type 16777217 typical_atomic_card []
fun is_finite_type hol_ctxt T =
bounded_exact_card_of_type hol_ctxt [] 1 2 [] T > 0
fun is_special_eligible_arg strict Ts t =
case map snd (Term.add_vars t []) @ map (nth Ts) (loose_bnos t) of
[] => true
| bad_Ts =>
let
val bad_Ts_cost =
if strict then fold (curry (op *) o typical_card_of_type) bad_Ts 1
else fold (Integer.max o typical_card_of_type) bad_Ts 0
val T_cost = typical_card_of_type (fastype_of1 (Ts, t))
in (bad_Ts_cost, T_cost) |> (if strict then op < else op <=) end
fun abs_var ((s, j), T) body = Abs (s, T, abstract_over (Var ((s, j), T), body))
fun let_var s = (nitpick_prefix ^ s, 999)
val let_inline_threshold = 20
fun s_let Ts s n abs_T body_T f t =
if (n - 1) * (size_of_term t - 1) <= let_inline_threshold orelse
is_special_eligible_arg false Ts t then
f t
else
let val z = (let_var s, abs_T) in
Const (\<^const_name>\<open>Let\<close>, abs_T --> (abs_T --> body_T) --> body_T)
$ t $ abs_var z (incr_boundvars 1 (f (Var z)))
end
fun loose_bvar1_count (Bound i, k) = if i = k then 1 else 0
| loose_bvar1_count (t1 $ t2, k) =
loose_bvar1_count (t1, k) + loose_bvar1_count (t2, k)
| loose_bvar1_count (Abs (_, _, t), k) = loose_bvar1_count (t, k + 1)
| loose_bvar1_count _ = 0
fun s_betapply _ (t1 as Const (\<^const_name>\<open>Pure.eq\<close>, _) $ t1', t2) =
if t1' aconv t2 then \<^prop>\True\ else t1 $ t2
| s_betapply _ (t1 as Const (\<^const_name>\<open>HOL.eq\<close>, _) $ t1', t2) =
if t1' aconv t2 then \<^term>\True\ else t1 $ t2
| s_betapply _ (Const (\<^const_name>\<open>If\<close>, _) $ \<^const>\<open>True\<close> $ t1', _) = t1'
| s_betapply _ (Const (\<^const_name>\<open>If\<close>, _) $ \<^const>\<open>False\<close> $ _, t2) = t2
| s_betapply Ts (Const (\<^const_name>\<open>Let\<close>,
Type (_, [bound_T, Type (_, [_, body_T])]))
$ t12 $ Abs (s, T, t13'), t2) =
let val body_T' = range_type body_T in
Const (\<^const_name>\<open>Let\<close>, bound_T --> (bound_T --> body_T') --> body_T')
$ t12 $ Abs (s, T, s_betapply (T :: Ts) (t13', incr_boundvars 1 t2))
end
| s_betapply Ts (t1 as Abs (s1, T1, t1'), t2) =
(s_let Ts s1 (loose_bvar1_count (t1', 0)) T1 (fastype_of1 (T1 :: Ts, t1'))
(curry betapply t1) t2
(* FIXME: fix all "s_betapply []" calls *)
handle TERM _ => betapply (t1, t2)
| General.Subscript => betapply (t1, t2))
| s_betapply _ (t1, t2) = t1 $ t2
fun s_betapplys Ts = Library.foldl (s_betapply Ts)
fun s_beta_norm Ts t =
let
fun aux _ (Var _) = raise Same.SAME
| aux Ts (Abs (s, T, t')) = Abs (s, T, aux (T :: Ts) t')
| aux Ts ((t1 as Abs _) $ t2) =
Same.commit (aux Ts) (s_betapply Ts (t1, t2))
| aux Ts (t1 $ t2) =
((case aux Ts t1 of
t1 as Abs _ => Same.commit (aux Ts) (s_betapply Ts (t1, t2))
| t1 => t1 $ Same.commit (aux Ts) t2)
handle Same.SAME => t1 $ aux Ts t2)
| aux _ _ = raise Same.SAME
in aux Ts t handle Same.SAME => t end
fun discr_term_for_constr hol_ctxt (x as (s, T)) =
let val dataT = body_type T in
if s = \<^const_name>\<open>Suc\<close> then
Abs (Name.uu, dataT, \<^const>\<open>Not\<close> $ HOLogic.mk_eq (zero_const dataT, Bound 0))
else if length (data_type_constrs hol_ctxt dataT) >= 2 then
Const (discr_for_constr x)
else
Abs (Name.uu, dataT, \<^const>\<open>True\<close>)
end
fun discriminate_value (hol_ctxt as {ctxt, ...}) x t =
case head_of t of
Const x' =>
if x = x' then \<^const>\True\
else if is_nonfree_constr ctxt x' then \<^const>\False\
else s_betapply [] (discr_term_for_constr hol_ctxt x, t)
| _ => s_betapply [] (discr_term_for_constr hol_ctxt x, t)
fun nth_arg_sel_term_for_constr (x as (s, T)) n =
let val (arg_Ts, dataT) = strip_type T in
if dataT = nat_T then
\<^term>\<open>%n::nat. n - 1\<close>
else if is_pair_type dataT then
Const (nth_sel_for_constr x n)
else
let
fun aux m (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) =
let
val (m, t1) = aux m T1
val (m, t2) = aux m T2
in (m, HOLogic.mk_prod (t1, t2)) end
| aux m T =
(m + 1, Const (nth_sel_name_for_constr_name s m, dataT --> T)
$ Bound 0)
val m = fold (Integer.add o num_factors_in_type)
(List.take (arg_Ts, n)) 0
in Abs ("x", dataT, aux m (nth arg_Ts n) |> snd) end
end
fun select_nth_constr_arg ctxt x t n res_T =
(case strip_comb t of
(Const x', args) =>
if x = x' then
if is_free_constr ctxt x then nth args n else raise SAME ()
else if is_nonfree_constr ctxt x' then
Const (\<^const_name>\<open>unknown\<close>, res_T)
else
raise SAME ()
| _ => raise SAME())
handle SAME () => s_betapply [] (nth_arg_sel_term_for_constr x n, t)
fun construct_value _ x [] = Const x
| construct_value ctxt (x as (s, _)) args =
let val args = map Envir.eta_contract args in
case hd args of
Const (s', _) $ t =>
if is_sel_like_and_no_discr s' andalso
constr_name_for_sel_like s' = s andalso
forall (fn (n, t') => select_nth_constr_arg ctxt x t n dummyT = t')
(index_seq 0 (length args) ~~ args) then
t
else
list_comb (Const x, args)
| _ => list_comb (Const x, args)
end
fun constr_expand (hol_ctxt as {ctxt, ...}) T t =
(case head_of t of
Const x => if is_nonfree_constr ctxt x then t else raise SAME ()
| _ => raise SAME ())
handle SAME () =>
let
val x' as (_, T') =
if is_pair_type T then
let val (T1, T2) = HOLogic.dest_prodT T in
(\<^const_name>\<open>Pair\<close>, T1 --> T2 --> T)
end
else
data_type_constrs hol_ctxt T |> hd
val arg_Ts = binder_types T'
in
list_comb (Const x', map2 (select_nth_constr_arg ctxt x' t)
(index_seq 0 (length arg_Ts)) arg_Ts)
end
fun coerce_bound_no f j t =
case t of
t1 $ t2 => coerce_bound_no f j t1 $ coerce_bound_no f j t2
| Abs (s, T, t') => Abs (s, T, coerce_bound_no f (j + 1) t')
| Bound j' => if j' = j then f t else t
| _ => t
fun coerce_bound_0_in_term hol_ctxt new_T old_T =
old_T <> new_T ? coerce_bound_no (coerce_term hol_ctxt [new_T] old_T new_T) 0
and coerce_term (hol_ctxt as {ctxt, ...}) Ts new_T old_T t =
if old_T = new_T then
t
else
case (new_T, old_T) of
(Type (new_s, new_Ts as [new_T1, new_T2]),
Type (\<^type_name>\<open>fun\<close>, [old_T1, old_T2])) =>
(case eta_expand Ts t 1 of
Abs (s, _, t') =>
Abs (s, new_T1,
t' |> coerce_bound_0_in_term hol_ctxt new_T1 old_T1
|> coerce_term hol_ctxt (new_T1 :: Ts) new_T2 old_T2)
|> Envir.eta_contract
|> new_s <> \<^type_name>\<open>fun\<close>
? construct_value ctxt
(\<^const_name>\<open>FunBox\<close>,
Type (\<^type_name>\<open>fun\<close>, new_Ts) --> new_T)
o single
| t' => raise TERM ("Nitpick_HOL.coerce_term", [t']))
| (Type (new_s, new_Ts as [new_T1, new_T2]),
Type (old_s, old_Ts as [old_T1, old_T2])) =>
if old_s = \<^type_name>\<open>fun_box\<close> orelse
old_s = \<^type_name>\<open>pair_box\<close> orelse old_s = \<^type_name>\<open>prod\<close> then
case constr_expand hol_ctxt old_T t of
Const (old_s, _) $ t1 =>
if new_s = \<^type_name>\<open>fun\<close> then
coerce_term hol_ctxt Ts new_T (Type (\<^type_name>\<open>fun\<close>, old_Ts)) t1
else
construct_value ctxt
(old_s, Type (\<^type_name>\<open>fun\<close>, new_Ts) --> new_T)
[coerce_term hol_ctxt Ts (Type (\<^type_name>\<open>fun\<close>, new_Ts))
(Type (\<^type_name>\<open>fun\<close>, old_Ts)) t1]
| Const _ $ t1 $ t2 =>
construct_value ctxt
(if new_s = \<^type_name>\<open>prod\<close> then \<^const_name>\<open>Pair\<close>
else \<^const_name>\<open>PairBox\<close>, new_Ts ---> new_T)
(@{map 3} (coerce_term hol_ctxt Ts) [new_T1, new_T2] [old_T1, old_T2]
[t1, t2])
| t' => raise TERM ("Nitpick_HOL.coerce_term", [t'])
else
raise TYPE ("Nitpick_HOL.coerce_term", [new_T, old_T], [t])
| _ => raise TYPE ("Nitpick_HOL.coerce_term", [new_T, old_T], [t])
fun is_ground_term (t1 $ t2) = is_ground_term t1 andalso is_ground_term t2
| is_ground_term (Const _) = true
| is_ground_term _ = false
fun special_bounds ts =
fold Term.add_vars ts [] |> sort (Term_Ord.fast_indexname_ord o apply2 fst)
fun is_funky_typedef_name ctxt s =
member (op =) [\<^type_name>\<open>unit\<close>, \<^type_name>\<open>prod\<close>, \<^type_name>\<open>set\<close>,
\<^type_name>\<open>Sum_Type.sum\<close>, \<^type_name>\<open>int\<close>] s orelse
is_frac_type ctxt (Type (s, []))
fun is_funky_typedef ctxt (Type (s, _)) = is_funky_typedef_name ctxt s
| is_funky_typedef _ _ = false
fun all_defs_of thy subst =
let
val def_names =
thy |> Theory.defs_of
|> Defs.all_specifications_of
|> maps snd |> map_filter #def
|> Ord_List.make fast_string_ord
in
Thm.all_axioms_of thy
|> map (apsnd (subst_atomic subst o Thm.prop_of))
|> sort (fast_string_ord o apply2 fst)
|> Ord_List.inter (fast_string_ord o apsnd fst) def_names
|> map snd
end
(* Ideally we would check against "Complex_Main", not "Hilbert_Choice", but any
theory will do as long as it contains all the "axioms" and "axiomatization"
commands. *)
fun is_built_in_theory thy_id =
Context.subthy_id (thy_id, Context.theory_id \<^theory>\<open>Hilbert_Choice\<close>)
fun all_nondefs_of ctxt subst =
ctxt |> Spec_Rules.get
|> filter (Spec_Rules.is_unknown o #rough_classification)
|> maps #rules
|> filter_out (is_built_in_theory o Thm.theory_id)
|> map (subst_atomic subst o Thm.prop_of)
fun arity_of_built_in_const (s, T) =
if s = \<^const_name>\<open>If\<close> then
if nth_range_type 3 T = \<^typ>\<open>bool\<close> then NONE else SOME 3
else
case AList.lookup (op =) built_in_consts s of
SOME n => SOME n
| NONE =>
case AList.lookup (op =) built_in_typed_consts (s, unarize_type T) of
SOME n => SOME n
| NONE =>
case s of
\<^const_name>\<open>zero_class.zero\<close> => if is_iterator_type T then SOME 0 else NONE
| \<^const_name>\<open>Suc\<close> => if is_iterator_type (domain_type T) then SOME 0 else NONE
| _ => NONE
val is_built_in_const = is_some o arity_of_built_in_const
(* This function is designed to work for both real definition axioms and
simplification rules (equational specifications). *)
fun term_under_def t =
case t of
\<^const>\<open>Pure.imp\<close> $ _ $ t2 => term_under_def t2
| Const (\<^const_name>\<open>Pure.eq\<close>, _) $ t1 $ _ => term_under_def t1
| \<^const>\<open>Trueprop\<close> $ t1 => term_under_def t1
| Const (\<^const_name>\<open>HOL.eq\<close>, _) $ t1 $ _ => term_under_def t1
| Abs (_, _, t') => term_under_def t'
| t1 $ _ => term_under_def t1
| _ => t
(* Here we crucially rely on "specialize_type" performing a preorder traversal
of the term, without which the wrong occurrence of a constant could be
matched in the face of overloading. *)
fun def_props_for_const thy table (x as (s, _)) =
if is_built_in_const x then
[]
else
these (Symtab.lookup table s)
|> map_filter (try (specialize_type thy x))
|> filter (curry (op =) (Const x) o term_under_def)
fun normalized_rhs_of t =
let
fun aux (v as Var _) (SOME t) = SOME (lambda v t)
| aux (c as Const (\<^const_name>\<open>Pure.type\<close>, _)) (SOME t) = SOME (lambda c t)
| aux _ _ = NONE
val (lhs, rhs) =
case t of
Const (\<^const_name>\<open>Pure.eq\<close>, _) $ t1 $ t2 => (t1, t2)
| \<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ t1 $ t2) =>
(t1, t2)
| _ => raise TERM ("Nitpick_HOL.normalized_rhs_of", [t])
val args = strip_comb lhs |> snd
in fold_rev aux args (SOME rhs) end
fun get_def_of_const thy table (x as (s, _)) =
x |> def_props_for_const thy table |> List.last
|> normalized_rhs_of |> Option.map (prefix_abs_vars s)
handle List.Empty => NONE
| TERM _ => NONE
fun def_of_const_ext thy (unfold_table, fallback_table) (x as (s, _)) =
if is_built_in_const x orelse original_name s <> s then
NONE
else case get_def_of_const thy unfold_table x of
SOME def => SOME (true, def)
| NONE => get_def_of_const thy fallback_table x |> Option.map (pair false)
val def_of_const = Option.map snd ooo def_of_const_ext
fun fixpoint_kind_of_rhs (Abs (_, _, t)) = fixpoint_kind_of_rhs t
| fixpoint_kind_of_rhs (Const (\<^const_name>\<open>lfp\<close>, _) $ Abs _) = Lfp
| fixpoint_kind_of_rhs (Const (\<^const_name>\<open>gfp\<close>, _) $ Abs _) = Gfp
| fixpoint_kind_of_rhs _ = NoFp
fun is_mutually_inductive_pred_def thy table t =
let
fun is_good_arg (Bound _) = true
| is_good_arg (Const (s, _)) =
s = \<^const_name>\<open>True\<close> orelse s = \<^const_name>\<open>False\<close> orelse
s = \<^const_name>\<open>undefined\<close>
| is_good_arg _ = false
in
case t |> strip_abs_body |> strip_comb of
(Const x, ts as (_ :: _)) =>
(case def_of_const thy table x of
SOME t' => fixpoint_kind_of_rhs t' <> NoFp andalso
forall is_good_arg ts
| NONE => false)
| _ => false
end
fun unfold_mutually_inductive_preds thy table =
map_aterms (fn t as Const x =>
(case def_of_const thy table x of
SOME t' =>
let val t' = Envir.eta_contract t' in
if is_mutually_inductive_pred_def thy table t' then t' else t
end
| NONE => t)
| t => t)
fun case_const_names ctxt =
map_filter (fn {casex = Const (s, T), ...} =>
(case rev (binder_types T) of
[] => NONE
| T :: Ts => if is_data_type ctxt T then SOME (s, length Ts) else NONE))
(Ctr_Sugar.ctr_sugars_of ctxt) @
map (apsnd length o snd) (#codatatypes (Data.get (Context.Proof ctxt)))
fun fixpoint_kind_of_const thy table x =
if is_built_in_const x then NoFp
else fixpoint_kind_of_rhs (the (def_of_const thy table x))
handle Option.Option => NoFp
fun is_raw_inductive_pred ({thy, def_tables, intro_table, ...} : hol_context) x =
fixpoint_kind_of_const thy def_tables x <> NoFp andalso
not (null (def_props_for_const thy intro_table x))
fun is_inductive_pred hol_ctxt (x as (s, _)) =
String.isPrefix ubfp_prefix s orelse String.isPrefix lbfp_prefix s orelse
is_raw_inductive_pred hol_ctxt x
fun lhs_of_equation t =
case t of
Const (\<^const_name>\<open>Pure.all\<close>, _) $ Abs (_, _, t1) => lhs_of_equation t1
| Const (\<^const_name>\<open>Pure.eq\<close>, _) $ t1 $ _ => SOME t1
| \<^const>\<open>Pure.imp\<close> $ _ $ t2 => lhs_of_equation t2
| \<^const>\<open>Trueprop\<close> $ t1 => lhs_of_equation t1
| Const (\<^const_name>\<open>All\<close>, _) $ Abs (_, _, t1) => lhs_of_equation t1
| Const (\<^const_name>\<open>HOL.eq\<close>, _) $ t1 $ _ => SOME t1
| \<^const>\<open>HOL.implies\<close> $ _ $ t2 => lhs_of_equation t2
| _ => NONE
fun is_constr_pattern _ (Bound _) = true
| is_constr_pattern _ (Var _) = true
| is_constr_pattern ctxt t =
case strip_comb t of
(Const x, args) =>
is_nonfree_constr ctxt x andalso forall (is_constr_pattern ctxt) args
| _ => false
fun is_constr_pattern_lhs ctxt t =
forall (is_constr_pattern ctxt) (snd (strip_comb t))
fun is_constr_pattern_formula ctxt t =
case lhs_of_equation t of
SOME t' => is_constr_pattern_lhs ctxt t'
| NONE => false
(* Similar to "specialize_type" but returns all matches rather than only the
first (preorder) match. *)
fun multi_specialize_type thy slack (s, T) t =
let
fun aux (Const (s', T')) ys =
if s = s' then
ys |> (if AList.defined (op =) ys T' then
I
else
cons (T', Envir.subst_term_types (Sign.typ_match thy (T', T)
Vartab.empty) t)
handle Type.TYPE_MATCH => I
| TERM _ =>
if slack then
I
else
raise NOT_SUPPORTED
("too much polymorphism in axiom \"" ^
Syntax.string_of_term_global thy t ^
"\" involving " ^ quote s))
else
ys
| aux _ ys = ys
in map snd (fold_aterms aux t []) end
fun nondef_props_for_const thy slack table (x as (s, _)) =
these (Symtab.lookup table s) |> maps (multi_specialize_type thy slack x)
fun unvarify_term (t1 $ t2) = unvarify_term t1 $ unvarify_term t2
| unvarify_term (Var ((s, 0), T)) = Free (s, T)
| unvarify_term (Abs (s, T, t')) = Abs (s, T, unvarify_term t')
| unvarify_term t = t
fun axiom_for_choice_spec ctxt =
unvarify_term
#> Object_Logic.atomize_term ctxt
#> Choice_Specification.close_form
#> HOLogic.mk_Trueprop
fun is_choice_spec_fun ({thy, ctxt, def_tables, nondef_table, choice_spec_table, ...}
: hol_context) x =
case nondef_props_for_const thy true choice_spec_table x of
[] => false
| ts => case def_of_const thy def_tables x of
SOME (Const (\<^const_name>\<open>Eps\<close>, _) $ _) => true
| SOME _ => false
| NONE =>
let val ts' = nondef_props_for_const thy true nondef_table x in
length ts' = length ts andalso
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.86 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|