/*
* Copyright (c) 2007, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#ifndef SHARE_OPTO_VECTORNODE_HPP
#define SHARE_OPTO_VECTORNODE_HPP
#include "opto/callnode.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "prims/vectorSupport.hpp"
//------------------------------VectorNode-------------------------------------
// Vector Operation
class VectorNode : public TypeNode {
public:
VectorNode(Node* n1, const TypeVect* vt) : TypeNode(vt, 2) {
init_class_id(Class_Vector);
init_req(1, n1);
}
VectorNode(Node* n1, Node* n2, const TypeVect* vt) : TypeNode(vt, 3) {
init_class_id(Class_Vector);
init_req(1, n1);
init_req(2, n2);
}
VectorNode(Node* n1, Node* n2, Node* n3, const TypeVect* vt) : TypeNode(vt, 4) {
init_class_id(Class_Vector);
init_req(1, n1);
init_req(2, n2);
init_req(3, n3);
}
VectorNode(Node *n0, Node* n1, Node* n2, Node* n3, const TypeVect* vt) : TypeNode(vt, 5) {
init_class_id(Class_Vector);
init_req(1, n0);
init_req(2, n1);
init_req(3, n2);
init_req(4, n3);
}
const TypeVect* vect_type() const { return type()->is_vect(); }
uint length() const { return vect_type()->length(); } // Vector length
uint length_in_bytes() const { return vect_type()->length_in_bytes(); }
virtual int Opcode() const;
virtual uint ideal_reg() const {
return type()->ideal_reg();
}
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
static VectorNode* scalar2vector(Node* s, uint vlen, const Type* opd_t, bool is_mask = false);
static VectorNode* shift_count(int opc, Node* cnt, uint vlen, BasicType bt);
static VectorNode* make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt, bool is_var_shift = false);
static VectorNode* make(int vopc, Node* n1, Node* n2, const TypeVect* vt, bool is_mask = false, bool is_var_shift = false);
static VectorNode* make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt);
static VectorNode* make(int vopc, Node* n1, Node* n2, Node* n3, const TypeVect* vt);
static VectorNode* make_mask_node(int vopc, Node* n1, Node* n2, uint vlen, BasicType bt);
static bool is_shift_opcode(int opc);
static bool can_transform_shift_op(Node* n, BasicType bt);
static bool is_convert_opcode(int opc);
static bool is_minmax_opcode(int opc);
static bool is_vshift_cnt_opcode(int opc);
static bool is_rotate_opcode(int opc);
static int opcode(int opc, BasicType bt);
static int replicate_opcode(BasicType bt);
static bool vector_size_supported(BasicType bt, uint vlen);
static bool implemented(int opc, uint vlen, BasicType bt);
static bool is_shift(Node* n);
static bool is_vshift_cnt(Node* n);
static bool is_type_transition_short_to_int(Node* n);
static bool is_type_transition_to_int(Node* n);
static bool is_muladds2i(Node* n);
static bool is_roundopD(Node* n);
static bool is_scalar_rotate(Node* n);
static bool is_vector_rotate_supported(int opc, uint vlen, BasicType bt);
static bool is_vector_integral_negate_supported(int opc, uint vlen, BasicType bt, bool use_predicate);
static bool is_populate_index_supported(BasicType bt);
static bool is_invariant_vector(Node* n);
// Return true if every bit in this vector is 1.
static bool is_all_ones_vector(Node* n);
// Return true if every bit in this vector is 0.
static bool is_all_zeros_vector(Node* n);
static bool is_vector_bitwise_not_pattern(Node* n);
static Node* degenerate_vector_rotate(Node* n1, Node* n2, bool is_rotate_left, int vlen,
BasicType bt, PhaseGVN* phase);
static Node* try_to_gen_masked_vector(PhaseGVN* gvn, Node* node, const TypeVect* vt);
// [Start, end) half-open range defining which operands are vectors
static void vector_operands(Node* n, uint* start, uint* end);
static bool is_vector_shift(int opc);
static bool is_vector_shift_count(int opc);
static bool is_vector_rotate(int opc);
static bool is_vector_integral_negate(int opc);
static bool is_vector_shift(Node* n) {
return is_vector_shift(n->Opcode());
}
static bool is_vector_shift_count(Node* n) {
return is_vector_shift_count(n->Opcode());
}
};
//===========================Vector=ALU=Operations=============================
//------------------------------AddVBNode--------------------------------------
// Vector add byte
class AddVBNode : public VectorNode {
public:
AddVBNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------AddVSNode--------------------------------------
// Vector add char/short
class AddVSNode : public VectorNode {
public:
AddVSNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------AddVINode--------------------------------------
// Vector add int
class AddVINode : public VectorNode {
public:
AddVINode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------AddVLNode--------------------------------------
// Vector add long
class AddVLNode : public VectorNode {
public:
AddVLNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------AddVFNode--------------------------------------
// Vector add float
class AddVFNode : public VectorNode {
public:
AddVFNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------AddVDNode--------------------------------------
// Vector add double
class AddVDNode : public VectorNode {
public:
AddVDNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------ReductionNode------------------------------------
// Perform reduction of a vector
class ReductionNode : public Node {
private:
const Type* _bottom_type;
const TypeVect* _vect_type;
public:
ReductionNode(Node *ctrl, Node* in1, Node* in2) : Node(ctrl, in1, in2),
_bottom_type(Type::get_const_basic_type(in1->bottom_type()->basic_type())),
_vect_type(in2->bottom_type()->is_vect()) {}
static ReductionNode* make(int opc, Node *ctrl, Node* in1, Node* in2, BasicType bt);
static int opcode(int opc, BasicType bt);
static bool implemented(int opc, uint vlen, BasicType bt);
static Node* make_reduction_input(PhaseGVN& gvn, int opc, BasicType bt);
virtual const Type* bottom_type() const {
return _bottom_type;
}
virtual const TypeVect* vect_type() const {
return _vect_type;
}
virtual uint ideal_reg() const {
return bottom_type()->ideal_reg();
}
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
// Needed for proper cloning.
virtual uint size_of() const { return sizeof(*this); }
};
//------------------------------AddReductionVINode--------------------------------------
// Vector add byte, short and int as a reduction
class AddReductionVINode : public ReductionNode {
public:
AddReductionVINode(Node * ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------AddReductionVLNode--------------------------------------
// Vector add long as a reduction
class AddReductionVLNode : public ReductionNode {
public:
AddReductionVLNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------AddReductionVFNode--------------------------------------
// Vector add float as a reduction
class AddReductionVFNode : public ReductionNode {
public:
AddReductionVFNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------AddReductionVDNode--------------------------------------
// Vector add double as a reduction
class AddReductionVDNode : public ReductionNode {
public:
AddReductionVDNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------SubVBNode--------------------------------------
// Vector subtract byte
class SubVBNode : public VectorNode {
public:
SubVBNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------SubVSNode--------------------------------------
// Vector subtract short
class SubVSNode : public VectorNode {
public:
SubVSNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------SubVINode--------------------------------------
// Vector subtract int
class SubVINode : public VectorNode {
public:
SubVINode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------SubVLNode--------------------------------------
// Vector subtract long
class SubVLNode : public VectorNode {
public:
SubVLNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------SubVFNode--------------------------------------
// Vector subtract float
class SubVFNode : public VectorNode {
public:
SubVFNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------SubVDNode--------------------------------------
// Vector subtract double
class SubVDNode : public VectorNode {
public:
SubVDNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------MulVBNode--------------------------------------
// Vector multiply byte
class MulVBNode : public VectorNode {
public:
MulVBNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------MulVSNode--------------------------------------
// Vector multiply short
class MulVSNode : public VectorNode {
public:
MulVSNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------MulVINode--------------------------------------
// Vector multiply int
class MulVINode : public VectorNode {
public:
MulVINode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------MulVLNode--------------------------------------
// Vector multiply long
class MulVLNode : public VectorNode {
public:
MulVLNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------MulVFNode--------------------------------------
// Vector multiply float
class MulVFNode : public VectorNode {
public:
MulVFNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------MulVDNode--------------------------------------
// Vector multiply double
class MulVDNode : public VectorNode {
public:
MulVDNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------MulAddVS2VINode--------------------------------
// Vector multiply shorts to int and add adjacent ints.
class MulAddVS2VINode : public VectorNode {
public:
MulAddVS2VINode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------FmaVDNode--------------------------------------
// Vector multiply double
class FmaVDNode : public VectorNode {
public:
FmaVDNode(Node* in1, Node* in2, Node* in3, const TypeVect* vt) : VectorNode(in1, in2, in3, vt) {}
virtual int Opcode() const;
};
//------------------------------FmaVFNode--------------------------------------
// Vector multiply float
class FmaVFNode : public VectorNode {
public:
FmaVFNode(Node* in1, Node* in2, Node* in3, const TypeVect* vt) : VectorNode(in1, in2, in3, vt) {}
virtual int Opcode() const;
};
//------------------------------CMoveVFNode--------------------------------------
// Vector float conditional move
class CMoveVFNode : public VectorNode {
public:
CMoveVFNode(Node* in1, Node* in2, Node* in3, const TypeVect* vt) : VectorNode(in1, in2, in3, vt) {}
virtual int Opcode() const;
};
//------------------------------CMoveVDNode--------------------------------------
// Vector double conditional move
class CMoveVDNode : public VectorNode {
public:
CMoveVDNode(Node* in1, Node* in2, Node* in3, const TypeVect* vt) : VectorNode(in1, in2, in3, vt) {}
virtual int Opcode() const;
};
//------------------------------MulReductionVINode--------------------------------------
// Vector multiply byte, short and int as a reduction
class MulReductionVINode : public ReductionNode {
public:
MulReductionVINode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------MulReductionVLNode--------------------------------------
// Vector multiply int as a reduction
class MulReductionVLNode : public ReductionNode {
public:
MulReductionVLNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------MulReductionVFNode--------------------------------------
// Vector multiply float as a reduction
class MulReductionVFNode : public ReductionNode {
public:
MulReductionVFNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------MulReductionVDNode--------------------------------------
// Vector multiply double as a reduction
class MulReductionVDNode : public ReductionNode {
public:
MulReductionVDNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------DivVFNode--------------------------------------
// Vector divide float
class DivVFNode : public VectorNode {
public:
DivVFNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------DivVDNode--------------------------------------
// Vector Divide double
class DivVDNode : public VectorNode {
public:
DivVDNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
};
//------------------------------AbsVBNode--------------------------------------
// Vector Abs byte
class AbsVBNode : public VectorNode {
public:
AbsVBNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------AbsVSNode--------------------------------------
// Vector Abs short
class AbsVSNode : public VectorNode {
public:
AbsVSNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------MinVNode--------------------------------------
// Vector Min
class MinVNode : public VectorNode {
public:
MinVNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------MaxVNode--------------------------------------
// Vector Max
class MaxVNode : public VectorNode {
public:
MaxVNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------AbsVINode--------------------------------------
// Vector Abs int
class AbsVINode : public VectorNode {
public:
AbsVINode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------AbsVLNode--------------------------------------
// Vector Abs long
class AbsVLNode : public VectorNode {
public:
AbsVLNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------AbsVFNode--------------------------------------
// Vector Abs float
class AbsVFNode : public VectorNode {
public:
AbsVFNode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {}
virtual int Opcode() const;
};
//------------------------------AbsVDNode--------------------------------------
// Vector Abs double
class AbsVDNode : public VectorNode {
public:
AbsVDNode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {}
virtual int Opcode() const;
};
//------------------------------NegVNode---------------------------------------
// Vector Neg parent class (not for code generation).
class NegVNode : public VectorNode {
public:
NegVNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const = 0;
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
private:
Node* degenerate_integral_negate(PhaseGVN* phase, bool is_predicated);
};
//------------------------------NegVINode--------------------------------------
// Vector Neg byte/short/int
class NegVINode : public NegVNode {
public:
NegVINode(Node* in, const TypeVect* vt) : NegVNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------NegVLNode--------------------------------------
// Vector Neg long
class NegVLNode : public NegVNode {
public:
NegVLNode(Node* in, const TypeVect* vt) : NegVNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------NegVFNode--------------------------------------
// Vector Neg float
class NegVFNode : public NegVNode {
public:
NegVFNode(Node* in, const TypeVect* vt) : NegVNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------NegVDNode--------------------------------------
// Vector Neg double
class NegVDNode : public NegVNode {
public:
NegVDNode(Node* in, const TypeVect* vt) : NegVNode(in, vt) {}
virtual int Opcode() const;
};
//------------------------------PopCountVINode---------------------------------
// Vector popcount integer bits
class PopCountVINode : public VectorNode {
public:
PopCountVINode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {}
virtual int Opcode() const;
};
//------------------------------PopCountVLNode---------------------------------
// Vector popcount long bits
class PopCountVLNode : public VectorNode {
public:
PopCountVLNode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {
assert(vt->element_basic_type() == T_LONG, "must be long");
}
virtual int Opcode() const;
};
//------------------------------SqrtVFNode--------------------------------------
// Vector Sqrt float
class SqrtVFNode : public VectorNode {
public:
SqrtVFNode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {}
virtual int Opcode() const;
};
//------------------------------RoundDoubleVNode--------------------------------
// Vector round double
class RoundDoubleModeVNode : public VectorNode {
public:
RoundDoubleModeVNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------SqrtVDNode--------------------------------------
// Vector Sqrt double
class SqrtVDNode : public VectorNode {
public:
SqrtVDNode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {}
virtual int Opcode() const;
};
//------------------------------ShiftVNode-----------------------------------
// Class ShiftV functionality. This covers the common behaviors for all kinds
// of vector shifts.
class ShiftVNode : public VectorNode {
private:
bool _is_var_shift;
public:
ShiftVNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift) :
VectorNode(in1,in2,vt), _is_var_shift(is_var_shift) {
init_class_id(Class_ShiftV);
}
virtual Node* Identity(PhaseGVN* phase);
virtual int Opcode() const = 0;
virtual uint hash() const { return VectorNode::hash() + _is_var_shift; }
virtual bool cmp(const Node& n) const {
return VectorNode::cmp(n) && _is_var_shift == ((ShiftVNode&)n)._is_var_shift;
}
bool is_var_shift() { return _is_var_shift;}
virtual uint size_of() const { return sizeof(ShiftVNode); }
};
//------------------------------LShiftVBNode-----------------------------------
// Vector left shift bytes
class LShiftVBNode : public ShiftVNode {
public:
LShiftVBNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------LShiftVSNode-----------------------------------
// Vector left shift shorts
class LShiftVSNode : public ShiftVNode {
public:
LShiftVSNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------LShiftVINode-----------------------------------
// Vector left shift ints
class LShiftVINode : public ShiftVNode {
public:
LShiftVINode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------LShiftVLNode-----------------------------------
// Vector left shift longs
class LShiftVLNode : public ShiftVNode {
public:
LShiftVLNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------RShiftVBNode-----------------------------------
// Vector right arithmetic (signed) shift bytes
class RShiftVBNode : public ShiftVNode {
public:
RShiftVBNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------RShiftVSNode-----------------------------------
// Vector right arithmetic (signed) shift shorts
class RShiftVSNode : public ShiftVNode {
public:
RShiftVSNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------RShiftVINode-----------------------------------
// Vector right arithmetic (signed) shift ints
class RShiftVINode : public ShiftVNode {
public:
RShiftVINode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------RShiftVLNode-----------------------------------
// Vector right arithmetic (signed) shift longs
class RShiftVLNode : public ShiftVNode {
public:
RShiftVLNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------URShiftVBNode----------------------------------
// Vector right logical (unsigned) shift bytes
class URShiftVBNode : public ShiftVNode {
public:
URShiftVBNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------URShiftVSNode----------------------------------
// Vector right logical (unsigned) shift shorts
class URShiftVSNode : public ShiftVNode {
public:
URShiftVSNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------URShiftVINode----------------------------------
// Vector right logical (unsigned) shift ints
class URShiftVINode : public ShiftVNode {
public:
URShiftVINode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------URShiftVLNode----------------------------------
// Vector right logical (unsigned) shift longs
class URShiftVLNode : public ShiftVNode {
public:
URShiftVLNode(Node* in1, Node* in2, const TypeVect* vt, bool is_var_shift=false) :
ShiftVNode(in1,in2,vt,is_var_shift) {}
virtual int Opcode() const;
};
//------------------------------LShiftCntVNode---------------------------------
// Vector left shift count
class LShiftCntVNode : public VectorNode {
public:
LShiftCntVNode(Node* cnt, const TypeVect* vt) : VectorNode(cnt,vt) {}
virtual int Opcode() const;
};
//------------------------------RShiftCntVNode---------------------------------
// Vector right shift count
class RShiftCntVNode : public VectorNode {
public:
RShiftCntVNode(Node* cnt, const TypeVect* vt) : VectorNode(cnt,vt) {}
virtual int Opcode() const;
};
//------------------------------AndVNode---------------------------------------
// Vector and integer
class AndVNode : public VectorNode {
public:
AndVNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
virtual Node* Identity(PhaseGVN* phase);
};
//------------------------------AndReductionVNode--------------------------------------
// Vector and byte, short, int, long as a reduction
class AndReductionVNode : public ReductionNode {
public:
AndReductionVNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------OrVNode---------------------------------------
// Vector or byte, short, int, long as a reduction
class OrVNode : public VectorNode {
public:
OrVNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
virtual Node* Identity(PhaseGVN* phase);
};
//------------------------------OrReductionVNode--------------------------------------
// Vector xor byte, short, int, long as a reduction
class OrReductionVNode : public ReductionNode {
public:
OrReductionVNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------XorReductionVNode--------------------------------------
// Vector and int, long as a reduction
class XorReductionVNode : public ReductionNode {
public:
XorReductionVNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------XorVNode---------------------------------------
// Vector xor integer
class XorVNode : public VectorNode {
public:
XorVNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1,in2,vt) {}
virtual int Opcode() const;
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
};
//------------------------------MinReductionVNode--------------------------------------
// Vector min byte, short, int, long, float, double as a reduction
class MinReductionVNode : public ReductionNode {
public:
MinReductionVNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------MaxReductionVNode--------------------------------------
// Vector min byte, short, int, long, float, double as a reduction
class MaxReductionVNode : public ReductionNode {
public:
MaxReductionVNode(Node *ctrl, Node* in1, Node* in2) : ReductionNode(ctrl, in1, in2) {}
virtual int Opcode() const;
};
//------------------------------CompressVNode--------------------------------------
// Vector compress
class CompressVNode: public VectorNode {
public:
CompressVNode(Node* vec, Node* mask, const TypeVect* vt) :
VectorNode(vec, mask, vt) {
init_class_id(Class_CompressV);
}
virtual int Opcode() const;
};
class CompressMNode: public VectorNode {
public:
CompressMNode(Node* mask, const TypeVect* vt) :
VectorNode(mask, vt) {
init_class_id(Class_CompressM);
}
virtual int Opcode() const;
};
//------------------------------ExpandVNode--------------------------------------
// Vector expand
class ExpandVNode: public VectorNode {
public:
ExpandVNode(Node* vec, Node* mask, const TypeVect* vt) :
VectorNode(vec, mask, vt) {
init_class_id(Class_ExpandV);
}
virtual int Opcode() const;
};
//================================= M E M O R Y ===============================
//------------------------------LoadVectorNode---------------------------------
// Load Vector from memory
class LoadVectorNode : public LoadNode {
public:
LoadVectorNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeVect* vt, ControlDependency control_dependency = LoadNode::DependsOnlyOnTest)
: LoadNode(c, mem, adr, at, vt, MemNode::unordered, control_dependency) {
init_class_id(Class_LoadVector);
set_mismatched_access();
}
const TypeVect* vect_type() const { return type()->is_vect(); }
uint length() const { return vect_type()->length(); } // Vector length
virtual int Opcode() const;
virtual uint ideal_reg() const { return Matcher::vector_ideal_reg(memory_size()); }
virtual BasicType memory_type() const { return T_VOID; }
virtual int memory_size() const { return vect_type()->length_in_bytes(); }
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
virtual int store_Opcode() const { return Op_StoreVector; }
static LoadVectorNode* make(int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp,
uint vlen, BasicType bt,
ControlDependency control_dependency = LoadNode::DependsOnlyOnTest);
uint element_size(void) { return type2aelembytes(vect_type()->element_basic_type()); }
};
//------------------------------LoadVectorGatherNode------------------------------
// Load Vector from memory via index map
class LoadVectorGatherNode : public LoadVectorNode {
public:
LoadVectorGatherNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeVect* vt, Node* indices)
: LoadVectorNode(c, mem, adr, at, vt) {
init_class_id(Class_LoadVectorGather);
assert(indices->bottom_type()->is_vect(), "indices must be in vector");
add_req(indices);
assert(req() == MemNode::ValueIn + 1, "match_edge expects that last input is in MemNode::ValueIn");
}
virtual int Opcode() const;
virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
};
//------------------------------StoreVectorNode--------------------------------
// Store Vector to memory
class StoreVectorNode : public StoreNode {
private:
const TypeVect* _vect_type;
public:
StoreVectorNode(Node* c, Node* mem, Node* adr, const TypePtr* at, Node* val)
: StoreNode(c, mem, adr, at, val, MemNode::unordered), _vect_type(val->bottom_type()->is_vect()) {
init_class_id(Class_StoreVector);
set_mismatched_access();
}
const TypeVect* vect_type() const { return _vect_type; }
uint length() const { return vect_type()->length(); } // Vector length
virtual int Opcode() const;
virtual uint ideal_reg() const { return Matcher::vector_ideal_reg(memory_size()); }
virtual BasicType memory_type() const { return T_VOID; }
virtual int memory_size() const { return vect_type()->length_in_bytes(); }
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
static StoreVectorNode* make(int opc, Node* ctl, Node* mem, Node* adr,
const TypePtr* atyp, Node* val, uint vlen);
uint element_size(void) { return type2aelembytes(vect_type()->element_basic_type()); }
// Needed for proper cloning.
virtual uint size_of() const { return sizeof(*this); }
};
//------------------------------StoreVectorScatterNode------------------------------
// Store Vector into memory via index map
class StoreVectorScatterNode : public StoreVectorNode {
public:
StoreVectorScatterNode(Node* c, Node* mem, Node* adr, const TypePtr* at, Node* val, Node* indices)
: StoreVectorNode(c, mem, adr, at, val) {
init_class_id(Class_StoreVectorScatter);
assert(indices->bottom_type()->is_vect(), "indices must be in vector");
add_req(indices);
assert(req() == MemNode::ValueIn + 2, "match_edge expects that last input is in MemNode::ValueIn+1");
}
virtual int Opcode() const;
virtual uint match_edge(uint idx) const { return idx == MemNode::Address ||
idx == MemNode::ValueIn ||
idx == MemNode::ValueIn + 1; }
};
//------------------------------StoreVectorMaskedNode--------------------------------
// Store Vector to memory under the influence of a predicate register(mask).
class StoreVectorMaskedNode : public StoreVectorNode {
public:
StoreVectorMaskedNode(Node* c, Node* mem, Node* dst, Node* src, const TypePtr* at, Node* mask)
: StoreVectorNode(c, mem, dst, at, src) {
init_class_id(Class_StoreVectorMasked);
set_mismatched_access();
add_req(mask);
}
virtual int Opcode() const;
virtual uint match_edge(uint idx) const {
return idx > 1;
}
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
};
//------------------------------LoadVectorMaskedNode--------------------------------
// Load Vector from memory under the influence of a predicate register(mask).
class LoadVectorMaskedNode : public LoadVectorNode {
public:
LoadVectorMaskedNode(Node* c, Node* mem, Node* src, const TypePtr* at, const TypeVect* vt, Node* mask,
ControlDependency control_dependency = LoadNode::DependsOnlyOnTest)
: LoadVectorNode(c, mem, src, at, vt, control_dependency) {
init_class_id(Class_LoadVectorMasked);
set_mismatched_access();
add_req(mask);
}
virtual int Opcode() const;
virtual uint match_edge(uint idx) const {
return idx > 1;
}
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
};
//-------------------------------LoadVectorGatherMaskedNode---------------------------------
// Load Vector from memory via index map under the influence of a predicate register(mask).
class LoadVectorGatherMaskedNode : public LoadVectorNode {
public:
LoadVectorGatherMaskedNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeVect* vt, Node* indices, Node* mask)
: LoadVectorNode(c, mem, adr, at, vt) {
init_class_id(Class_LoadVectorGatherMasked);
assert(indices->bottom_type()->is_vect(), "indices must be in vector");
assert(mask->bottom_type()->isa_vectmask(), "sanity");
add_req(indices);
add_req(mask);
assert(req() == MemNode::ValueIn + 2, "match_edge expects that last input is in MemNode::ValueIn+1");
}
virtual int Opcode() const;
virtual uint match_edge(uint idx) const { return idx == MemNode::Address ||
idx == MemNode::ValueIn ||
idx == MemNode::ValueIn + 1; }
};
//------------------------------StoreVectorScatterMaskedNode--------------------------------
// Store Vector into memory via index map under the influence of a predicate register(mask).
class StoreVectorScatterMaskedNode : public StoreVectorNode {
public:
StoreVectorScatterMaskedNode(Node* c, Node* mem, Node* adr, const TypePtr* at, Node* val, Node* indices, Node* mask)
: StoreVectorNode(c, mem, adr, at, val) {
init_class_id(Class_StoreVectorScatterMasked);
assert(indices->bottom_type()->is_vect(), "indices must be in vector");
assert(mask->bottom_type()->isa_vectmask(), "sanity");
add_req(indices);
add_req(mask);
assert(req() == MemNode::ValueIn + 3, "match_edge expects that last input is in MemNode::ValueIn+2");
}
virtual int Opcode() const;
virtual uint match_edge(uint idx) const { return idx == MemNode::Address ||
idx == MemNode::ValueIn ||
idx == MemNode::ValueIn + 1 ||
idx == MemNode::ValueIn + 2; }
};
//------------------------------VectorCmpMaskedNode--------------------------------
// Vector Comparison under the influence of a predicate register(mask).
class VectorCmpMaskedNode : public TypeNode {
public:
VectorCmpMaskedNode(Node* src1, Node* src2, Node* mask, const Type* ty): TypeNode(ty, 4) {
init_req(1, src1);
init_req(2, src2);
init_req(3, mask);
}
virtual int Opcode() const;
};
//------------------------------VectorMaskGenNode----------------------------------
class VectorMaskGenNode : public TypeNode {
public:
VectorMaskGenNode(Node* length, const Type* ty): TypeNode(ty, 2) {
init_req(1, length);
}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegVectMask; }
static Node* make(Node* length, BasicType vmask_bt);
static Node* make(Node* length, BasicType vmask_bt, int vmask_len);
};
//------------------------------VectorMaskOpNode-----------------------------------
class VectorMaskOpNode : public TypeNode {
private:
int _mopc;
const TypeVect* _vect_type;
public:
VectorMaskOpNode(Node* mask, const Type* ty, int mopc):
TypeNode(ty, 2), _mopc(mopc), _vect_type(mask->bottom_type()->is_vect()) {
assert(Matcher::has_predicated_vectors() || _vect_type->element_basic_type() == T_BOOLEAN, "");
init_req(1, mask);
}
virtual const TypeVect* vect_type() { return _vect_type; }
virtual int Opcode() const;
virtual uint size_of() const { return sizeof(VectorMaskOpNode); }
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
int get_mask_Opcode() const { return _mopc;}
static Node* make(Node* mask, const Type* ty, int mopc);
};
class VectorMaskTrueCountNode : public VectorMaskOpNode {
public:
VectorMaskTrueCountNode(Node* mask, const Type* ty):
VectorMaskOpNode(mask, ty, Op_VectorMaskTrueCount) {}
virtual int Opcode() const;
};
class VectorMaskFirstTrueNode : public VectorMaskOpNode {
public:
VectorMaskFirstTrueNode(Node* mask, const Type* ty):
VectorMaskOpNode(mask, ty, Op_VectorMaskFirstTrue) {}
virtual int Opcode() const;
};
class VectorMaskLastTrueNode : public VectorMaskOpNode {
public:
VectorMaskLastTrueNode(Node* mask, const Type* ty):
VectorMaskOpNode(mask, ty, Op_VectorMaskLastTrue) {}
virtual int Opcode() const;
};
class VectorMaskToLongNode : public VectorMaskOpNode {
public:
VectorMaskToLongNode(Node* mask, const Type* ty):
VectorMaskOpNode(mask, ty, Op_VectorMaskToLong) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegL; }
virtual Node* Identity(PhaseGVN* phase);
};
class VectorLongToMaskNode : public VectorNode {
public:
VectorLongToMaskNode(Node* mask, const TypeVect* ty):
VectorNode(mask, ty) {
}
virtual int Opcode() const;
virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
};
//-------------------------- Vector mask broadcast -----------------------------------
class MaskAllNode : public VectorNode {
public:
MaskAllNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const;
};
//--------------------------- Vector mask logical and --------------------------------
class AndVMaskNode : public AndVNode {
public:
AndVMaskNode(Node* in1, Node* in2, const TypeVect* vt) : AndVNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//--------------------------- Vector mask logical or ---------------------------------
class OrVMaskNode : public OrVNode {
public:
OrVMaskNode(Node* in1, Node* in2, const TypeVect* vt) : OrVNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//--------------------------- Vector mask logical xor --------------------------------
class XorVMaskNode : public XorVNode {
public:
XorVMaskNode(Node* in1, Node* in2, const TypeVect* vt) : XorVNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//=========================Promote_Scalar_to_Vector============================
//------------------------------ReplicateBNode---------------------------------
// Replicate byte scalar to be vector
class ReplicateBNode : public VectorNode {
public:
ReplicateBNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//------------------------------ReplicateSNode---------------------------------
// Replicate short scalar to be vector
class ReplicateSNode : public VectorNode {
public:
ReplicateSNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//------------------------------ReplicateINode---------------------------------
// Replicate int scalar to be vector
class ReplicateINode : public VectorNode {
public:
ReplicateINode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//------------------------------ReplicateLNode---------------------------------
// Replicate long scalar to be vector
class ReplicateLNode : public VectorNode {
public:
ReplicateLNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//------------------------------ReplicateFNode---------------------------------
// Replicate float scalar to be vector
class ReplicateFNode : public VectorNode {
public:
ReplicateFNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//------------------------------ReplicateDNode---------------------------------
// Replicate double scalar to be vector
class ReplicateDNode : public VectorNode {
public:
ReplicateDNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//======================Populate_Indices_into_a_Vector=========================
class PopulateIndexNode : public VectorNode {
public:
PopulateIndexNode(Node* in1, Node* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//========================Pack_Scalars_into_a_Vector===========================
//------------------------------PackNode---------------------------------------
// Pack parent class (not for code generation).
class PackNode : public VectorNode {
public:
PackNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
PackNode(Node* in1, Node* n2, const TypeVect* vt) : VectorNode(in1, n2, vt) {}
virtual int Opcode() const;
void add_opd(Node* n) {
add_req(n);
}
// Create a binary tree form for Packs. [lo, hi) (half-open) range
PackNode* binary_tree_pack(int lo, int hi);
static PackNode* make(Node* s, uint vlen, BasicType bt);
};
//------------------------------PackBNode--------------------------------------
// Pack byte scalars into vector
class PackBNode : public PackNode {
public:
PackBNode(Node* in1, const TypeVect* vt) : PackNode(in1, vt) {}
virtual int Opcode() const;
};
//------------------------------PackSNode--------------------------------------
// Pack short scalars into a vector
class PackSNode : public PackNode {
public:
PackSNode(Node* in1, const TypeVect* vt) : PackNode(in1, vt) {}
PackSNode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------PackINode--------------------------------------
// Pack integer scalars into a vector
class PackINode : public PackNode {
public:
PackINode(Node* in1, const TypeVect* vt) : PackNode(in1, vt) {}
PackINode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------PackLNode--------------------------------------
// Pack long scalars into a vector
class PackLNode : public PackNode {
public:
PackLNode(Node* in1, const TypeVect* vt) : PackNode(in1, vt) {}
PackLNode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------Pack2LNode-------------------------------------
// Pack 2 long scalars into a vector
class Pack2LNode : public PackNode {
public:
Pack2LNode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------PackFNode--------------------------------------
// Pack float scalars into vector
class PackFNode : public PackNode {
public:
PackFNode(Node* in1, const TypeVect* vt) : PackNode(in1, vt) {}
PackFNode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------PackDNode--------------------------------------
// Pack double scalars into a vector
class PackDNode : public PackNode {
public:
PackDNode(Node* in1, const TypeVect* vt) : PackNode(in1, vt) {}
PackDNode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
//------------------------------Pack2DNode-------------------------------------
// Pack 2 double scalars into a vector
class Pack2DNode : public PackNode {
public:
Pack2DNode(Node* in1, Node* in2, const TypeVect* vt) : PackNode(in1, in2, vt) {}
virtual int Opcode() const;
};
class VectorLoadConstNode : public VectorNode {
public:
VectorLoadConstNode(Node* in1, const TypeVect* vt) : VectorNode(in1, vt) {}
virtual int Opcode() const;
};
//========================Extract_Scalar_from_Vector===========================
//------------------------------ExtractNode------------------------------------
// Extract a scalar from a vector at position "pos"
class ExtractNode : public Node {
public:
ExtractNode(Node* src, ConINode* pos) : Node(NULL, src, (Node*)pos) {
assert(in(2)->get_int() >= 0, "positive constants");
}
virtual int Opcode() const;
uint pos() const { return in(2)->get_int(); }
static Node* make(Node* v, uint position, BasicType bt);
static int opcode(BasicType bt);
};
//------------------------------ExtractBNode-----------------------------------
// Extract a byte from a vector at position "pos"
class ExtractBNode : public ExtractNode {
public:
ExtractBNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ExtractUBNode----------------------------------
// Extract a boolean from a vector at position "pos"
class ExtractUBNode : public ExtractNode {
public:
ExtractUBNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ExtractCNode-----------------------------------
// Extract a char from a vector at position "pos"
class ExtractCNode : public ExtractNode {
public:
ExtractCNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::CHAR; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ExtractSNode-----------------------------------
// Extract a short from a vector at position "pos"
class ExtractSNode : public ExtractNode {
public:
ExtractSNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::SHORT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ExtractINode-----------------------------------
// Extract an int from a vector at position "pos"
class ExtractINode : public ExtractNode {
public:
ExtractINode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ExtractLNode-----------------------------------
// Extract a long from a vector at position "pos"
class ExtractLNode : public ExtractNode {
public:
ExtractLNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------ExtractFNode-----------------------------------
// Extract a float from a vector at position "pos"
class ExtractFNode : public ExtractNode {
public:
ExtractFNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------ExtractDNode-----------------------------------
// Extract a double from a vector at position "pos"
class ExtractDNode : public ExtractNode {
public:
ExtractDNode(Node* src, ConINode* pos) : ExtractNode(src, pos) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------MacroLogicVNode-------------------------------
// Vector logical operations packing node.
class MacroLogicVNode : public VectorNode {
private:
MacroLogicVNode(Node* in1, Node* in2, Node* in3, Node* fn, Node* mask, const TypeVect* vt)
: VectorNode(in1, in2, in3, fn, vt) {
if (mask) {
this->add_req(mask);
this->add_flag(Node::Flag_is_predicated_vector);
}
}
public:
virtual int Opcode() const;
static MacroLogicVNode* make(PhaseGVN& igvn, Node* in1, Node* in2, Node* in3,
Node* mask, uint truth_table, const TypeVect* vt);
};
class VectorMaskCmpNode : public VectorNode {
private:
BoolTest::mask _predicate;
protected:
virtual uint size_of() const { return sizeof(VectorMaskCmpNode); }
public:
VectorMaskCmpNode(BoolTest::mask predicate, Node* in1, Node* in2, ConINode* predicate_node, const TypeVect* vt) :
VectorNode(in1, in2, predicate_node, vt),
_predicate(predicate) {
assert(in1->bottom_type()->is_vect()->element_basic_type() == in2->bottom_type()->is_vect()->element_basic_type(),
"VectorMaskCmp inputs must have same type for elements");
assert(in1->bottom_type()->is_vect()->length() == in2->bottom_type()->is_vect()->length(),
"VectorMaskCmp inputs must have same number of elements");
assert((BoolTest::mask)predicate_node->get_int() == predicate, "Unmatched predicates");
init_class_id(Class_VectorMaskCmp);
}
virtual int Opcode() const;
virtual uint hash() const { return VectorNode::hash() + _predicate; }
virtual bool cmp( const Node &n ) const {
return VectorNode::cmp(n) && _predicate == ((VectorMaskCmpNode&)n)._predicate;
}
BoolTest::mask get_predicate() { return _predicate; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif // !PRODUCT
};
// Used to wrap other vector nodes in order to add masking functionality.
class VectorMaskWrapperNode : public VectorNode {
public:
VectorMaskWrapperNode(Node* vector, Node* mask)
: VectorNode(vector, mask, vector->bottom_type()->is_vect()) {
assert(mask->is_VectorMaskCmp(), "VectorMaskWrapper requires that second argument be a mask");
}
virtual int Opcode() const;
Node* vector_val() const { return in(1); }
Node* vector_mask() const { return in(2); }
};
class VectorTestNode : public Node {
private:
BoolTest::mask _predicate;
protected:
uint size_of() const { return sizeof(*this); }
public:
VectorTestNode(Node* in1, Node* in2, BoolTest::mask predicate) : Node(NULL, in1, in2), _predicate(predicate) {
assert(in2->bottom_type()->is_vect() == in2->bottom_type()->is_vect(), "same vector type");
}
virtual int Opcode() const;
virtual uint hash() const { return Node::hash() + _predicate; }
virtual bool cmp( const Node &n ) const {
return Node::cmp(n) && _predicate == ((VectorTestNode&)n)._predicate;
}
virtual const Type *bottom_type() const { return TypeInt::BOOL; }
virtual uint ideal_reg() const { return Op_RegI; } // TODO Should be RegFlags but due to missing comparison flags for BoolTest
// in middle-end, we make it boolean result directly.
BoolTest::mask get_predicate() const { return _predicate; }
};
class VectorBlendNode : public VectorNode {
public:
VectorBlendNode(Node* vec1, Node* vec2, Node* mask)
: VectorNode(vec1, vec2, mask, vec1->bottom_type()->is_vect()) {
}
virtual int Opcode() const;
virtual Node* Identity(PhaseGVN* phase);
Node* vec1() const { return in(1); }
Node* vec2() const { return in(2); }
Node* vec_mask() const { return in(3); }
};
class VectorRearrangeNode : public VectorNode {
public:
VectorRearrangeNode(Node* vec1, Node* shuffle)
: VectorNode(vec1, shuffle, vec1->bottom_type()->is_vect()) {
// assert(mask->is_VectorMask(), "VectorBlendNode requires that third argument be a mask");
}
virtual int Opcode() const;
Node* vec1() const { return in(1); }
Node* vec_shuffle() const { return in(2); }
};
class VectorLoadShuffleNode : public VectorNode {
public:
VectorLoadShuffleNode(Node* in, const TypeVect* vt)
: VectorNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_BYTE, "must be BYTE");
}
int GetOutShuffleSize() const { return type2aelembytes(vect_type()->element_basic_type()); }
virtual int Opcode() const;
};
class VectorLoadMaskNode : public VectorNode {
public:
VectorLoadMaskNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_BOOLEAN, "must be boolean");
}
virtual int Opcode() const;
virtual Node* Identity(PhaseGVN* phase);
};
class VectorStoreMaskNode : public VectorNode {
protected:
VectorStoreMaskNode(Node* in1, ConINode* in2, const TypeVect* vt) : VectorNode(in1, in2, vt) {}
public:
virtual int Opcode() const;
virtual Node* Identity(PhaseGVN* phase);
static VectorStoreMaskNode* make(PhaseGVN& gvn, Node* in, BasicType in_type, uint num_elem);
};
class VectorMaskCastNode : public VectorNode {
public:
VectorMaskCastNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {
const TypeVect* in_vt = in->bottom_type()->is_vect();
assert(in_vt->length() == vt->length(), "vector length must match");
}
virtual int Opcode() const;
};
// This is intended for use as a simple reinterpret node that has no cast.
class VectorReinterpretNode : public VectorNode {
private:
const TypeVect* _src_vt;
protected:
uint size_of() const { return sizeof(VectorReinterpretNode); }
public:
VectorReinterpretNode(Node* in, const TypeVect* src_vt, const TypeVect* dst_vt)
: VectorNode(in, dst_vt), _src_vt(src_vt) {
assert((!dst_vt->isa_vectmask() && !src_vt->isa_vectmask()) ||
(type2aelembytes(src_vt->element_basic_type()) >= type2aelembytes(dst_vt->element_basic_type())),
"unsupported mask widening reinterpretation");
init_class_id(Class_VectorReinterpret);
}
const TypeVect* src_type() { return _src_vt; }
virtual uint hash() const { return VectorNode::hash() + _src_vt->hash(); }
virtual bool cmp( const Node &n ) const {
return VectorNode::cmp(n) && !Type::cmp(_src_vt,((VectorReinterpretNode&)n)._src_vt);
}
virtual Node* Identity(PhaseGVN* phase);
virtual int Opcode() const;
};
class VectorCastNode : public VectorNode {
public:
VectorCastNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {}
virtual int Opcode() const;
static VectorCastNode* make(int vopc, Node* n1, BasicType bt, uint vlen);
static int opcode(int opc, BasicType bt, bool is_signed = true);
static bool implemented(int opc, uint vlen, BasicType src_type, BasicType dst_type);
virtual Node* Identity(PhaseGVN* phase);
};
class VectorCastB2XNode : public VectorCastNode {
public:
VectorCastB2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_BYTE, "must be byte");
}
virtual int Opcode() const;
};
class VectorCastS2XNode : public VectorCastNode {
public:
VectorCastS2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_SHORT, "must be short");
}
virtual int Opcode() const;
};
class VectorCastI2XNode : public VectorCastNode {
public:
VectorCastI2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_INT, "must be int");
}
virtual int Opcode() const;
};
class VectorCastL2XNode : public VectorCastNode {
public:
VectorCastL2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_LONG, "must be long");
}
virtual int Opcode() const;
};
class VectorCastF2XNode : public VectorCastNode {
public:
VectorCastF2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_FLOAT, "must be float");
}
virtual int Opcode() const;
};
class VectorCastD2XNode : public VectorCastNode {
public:
VectorCastD2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_DOUBLE, "must be double");
}
virtual int Opcode() const;
};
class RoundVFNode : public VectorNode {
public:
RoundVFNode(Node* in, const TypeVect* vt) :VectorNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_FLOAT, "must be float");
}
virtual int Opcode() const;
};
class VectorUCastB2XNode : public VectorCastNode {
public:
VectorUCastB2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_BYTE, "must be byte");
}
virtual int Opcode() const;
};
class RoundVDNode : public VectorNode {
public:
RoundVDNode(Node* in, const TypeVect* vt) : VectorNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_DOUBLE, "must be double");
}
virtual int Opcode() const;
};
class VectorUCastS2XNode : public VectorCastNode {
public:
VectorUCastS2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_SHORT, "must be short");
}
virtual int Opcode() const;
};
class VectorCastHF2FNode : public VectorCastNode {
public:
VectorCastHF2FNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_SHORT, "must be short");
}
virtual int Opcode() const;
};
class VectorCastF2HFNode : public VectorCastNode {
public:
VectorCastF2HFNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_FLOAT, "must be float");
}
virtual int Opcode() const;
};
class VectorUCastI2XNode : public VectorCastNode {
public:
VectorUCastI2XNode(Node* in, const TypeVect* vt) : VectorCastNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == T_INT, "must be int");
}
virtual int Opcode() const;
};
class VectorInsertNode : public VectorNode {
public:
VectorInsertNode(Node* vsrc, Node* new_val, ConINode* pos, const TypeVect* vt) : VectorNode(vsrc, new_val, (Node*)pos, vt) {
assert(pos->get_int() >= 0, "positive constants");
assert(pos->get_int() < (int)vt->length(), "index must be less than vector length");
assert(Type::cmp(vt, vsrc->bottom_type()) == 0, "input and output must be same type");
}
virtual int Opcode() const;
uint pos() const { return in(3)->get_int(); }
static Node* make(Node* vec, Node* new_val, int position);
};
class VectorBoxNode : public Node {
private:
const TypeInstPtr* const _box_type;
const TypeVect* const _vec_type;
public:
enum {
Box = 1,
Value = 2
};
VectorBoxNode(Compile* C, Node* box, Node* val,
const TypeInstPtr* box_type, const TypeVect* vt)
: Node(NULL, box, val), _box_type(box_type), _vec_type(vt) {
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
const TypeInstPtr* box_type() const { assert(_box_type != NULL, ""); return _box_type; };
const TypeVect* vec_type() const { assert(_vec_type != NULL, ""); return _vec_type; };
virtual int Opcode() const;
virtual const Type* bottom_type() const { return _box_type; }
virtual uint ideal_reg() const { return box_type()->ideal_reg(); }
virtual uint size_of() const { return sizeof(*this); }
static const TypeFunc* vec_box_type(const TypeInstPtr* box_type);
};
class VectorBoxAllocateNode : public CallStaticJavaNode {
public:
VectorBoxAllocateNode(Compile* C, const TypeInstPtr* vbox_type)
: CallStaticJavaNode(C, VectorBoxNode::vec_box_type(vbox_type), NULL, NULL) {
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
virtual int Opcode() const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif // !PRODUCT
};
class VectorUnboxNode : public VectorNode {
private:
bool _shuffle_to_vector;
protected:
uint size_of() const { return sizeof(*this); }
public:
VectorUnboxNode(Compile* C, const TypeVect* vec_type, Node* obj, Node* mem, bool shuffle_to_vector)
: VectorNode(mem, obj, vec_type) {
_shuffle_to_vector = shuffle_to_vector;
init_class_id(Class_VectorUnbox);
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
virtual int Opcode() const;
Node* obj() const { return in(2); }
Node* mem() const { return in(1); }
virtual Node* Identity(PhaseGVN* phase);
Node* Ideal(PhaseGVN* phase, bool can_reshape);
bool is_shuffle_to_vector() { return _shuffle_to_vector; }
};
class RotateRightVNode : public VectorNode {
public:
RotateRightVNode(Node* in1, Node* in2, const TypeVect* vt)
: VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
Node* Ideal(PhaseGVN* phase, bool can_reshape);
};
class RotateLeftVNode : public VectorNode {
public:
RotateLeftVNode(Node* in1, Node* in2, const TypeVect* vt)
: VectorNode(in1, in2, vt) {}
virtual int Opcode() const;
Node* Ideal(PhaseGVN* phase, bool can_reshape);
};
class CountLeadingZerosVNode : public VectorNode {
public:
CountLeadingZerosVNode(Node* in, const TypeVect* vt)
: VectorNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == vt->element_basic_type(),
"must be the same");
}
virtual int Opcode() const;
};
class CountTrailingZerosVNode : public VectorNode {
public:
CountTrailingZerosVNode(Node* in, const TypeVect* vt)
: VectorNode(in, vt) {
assert(in->bottom_type()->is_vect()->element_basic_type() == vt->element_basic_type(),
"must be the same");
}
virtual int Opcode() const;
};
class ReverseVNode : public VectorNode {
public:
ReverseVNode(Node* in, const TypeVect* vt)
: VectorNode(in, vt) {}
virtual Node* Identity(PhaseGVN* phase);
virtual int Opcode() const;
};
class ReverseBytesVNode : public VectorNode {
public:
ReverseBytesVNode(Node* in, const TypeVect* vt)
: VectorNode(in, vt) {}
virtual Node* Identity(PhaseGVN* phase);
virtual int Opcode() const;
};
class SignumVFNode : public VectorNode {
public:
SignumVFNode(Node* in1, Node* zero, Node* one, const TypeVect* vt)
: VectorNode(in1, zero, one, vt) {}
virtual int Opcode() const;
};
class SignumVDNode : public VectorNode {
public:
SignumVDNode(Node* in1, Node* zero, Node* one, const TypeVect* vt)
: VectorNode(in1, zero, one, vt) {}
virtual int Opcode() const;
};
#endif // SHARE_OPTO_VECTORNODE_HPP
¤ Dauer der Verarbeitung: 0.105 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|