products/Sources/formale Sprachen/JAVA/openjdk-20-36_src/test/jdk/java/lang/Math image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: HypotTests.java   Sprache: JAVA

/*
 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


/*
 * @test
 * @library /test/lib
 * @build jdk.test.lib.RandomFactory
 * @run main HypotTests
 * @bug 4851638 4939441 8078672 8240632
 * @summary Tests for {Math, StrictMath}.hypot (use -Dseed=X to set PRNG seed)
 * @key randomness
 */


import jdk.test.lib.RandomFactory;

public class HypotTests {
    private HypotTests(){}

    static final double infinityD = Double.POSITIVE_INFINITY;
    static final double NaNd      = Double.NaN;

    /**
     * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
     * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
     * c^2.  This methods returns a long array holding the Pythagorean
     * triple corresponding to the inputs.
     */

    static long [] pythagoreanTriple(int m, int n) {
        long M = m;
        long N = n;
        long result[] = new long[3];

        result[0] = Math.abs(M*M - N*N);
        result[1] = Math.abs(2*M*N);
        result[2] = Math.abs(M*M + N*N);

        return result;
    }

    static int testHypot() {
        int failures = 0;

        double [][] testCases = {
            // Special cases
            {infinityD,         infinityD,              infinityD},
            {infinityD,         0.0,                    infinityD},
            {infinityD,         1.0,                    infinityD},
            {infinityD,         NaNd,                   infinityD},
            {NaNd,              NaNd,                   NaNd},
            {0.0,               NaNd,                   NaNd},
            {1.0,               NaNd,                   NaNd},
            {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
        };

        for(int i = 0; i < testCases.length; i++) {
            failures += testHypotCase(testCases[i][0], testCases[i][1],
                                      testCases[i][2]);
        }

        // Verify hypot(x, 0.0) is close to x over the entire exponent
        // range.
        for(int i = DoubleConsts.MIN_SUB_EXPONENT;
            i <= Double.MAX_EXPONENT;
            i++) {
            double input = Math.scalb(2, i);
            failures += testHypotCase(input, 0.0, input);
        }


        // Test Pythagorean triples

        // Small ones
        for(int m = 1; m < 10; m++) {
            for(int n = m+1; n < 11; n++) {
                long [] result = pythagoreanTriple(m, n);
                failures += testHypotCase(result[0], result[1], result[2]);
            }
        }

        // Big ones
        for(int m = 100000; m < 100100; m++) {
            for(int n = m+100000; n < 200200; n++) {
                long [] result = pythagoreanTriple(m, n);
                failures += testHypotCase(result[0], result[1], result[2]);
            }
        }

        // Approaching overflow tests

        /*
         * Create a random value r with an large-ish exponent.  The
         * result of hypot(3*r, 4*r) should be approximately 5*r. (The
         * computation of 4*r is exact since it just changes the
         * exponent).  While the exponent of r is less than or equal
         * to (MAX_EXPONENT - 3), the computation should not overflow.
         */

        java.util.Random rand = RandomFactory.getRandom();
        for(int i = 0; i < 1000; i++) {
            double d = rand.nextDouble();
            // Scale d to have an exponent equal to MAX_EXPONENT -15
            d = Math.scalb(d, Double.MAX_EXPONENT
                                 -15 - Tests.ilogb(d));
            for(int j = 0; j <= 13; j += 1) {
                failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
                d *= 2.0; // increase exponent by 1
            }
        }

        // Test for monotonicity failures.  Fix one argument and test
        // two numbers before and two numbers after each chosen value;
        // i.e.
        //
        // pcNeighbors[] =
        // {nextDown(nextDown(pc)),
        // nextDown(pc),
        // pc,
        // nextUp(pc),
        // nextUp(nextUp(pc))}
        //
        // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
        {
            double pcNeighbors[] = new double[5];
            double pcNeighborsHypot[] = new double[5];
            double pcNeighborsStrictHypot[] = new double[5];


            for(int i = -18; i <= 18; i++) {
                double pc = Math.scalb(1.0, i);

                pcNeighbors[2] = pc;
                pcNeighbors[1] = Math.nextDown(pc);
                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
                pcNeighbors[3] = Math.nextUp(pc);
                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);

                for(int j = 0; j < pcNeighbors.length; j++) {
                    pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
                    pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
                }

                for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
                    if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for Math.hypot on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsHypot[j] + " and " +
                                          pcNeighborsHypot[j+1] );
                    }

                    if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for StrictMath.hypot on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsStrictHypot[j] + " and " +
                                          pcNeighborsStrictHypot[j+1] );
                    }

                }

            }
        }

        return failures;
    }

    /**
     * Verify +0.0 is returned if both arguments are zero.
     */

    private static int testHypotZeros() {
        return testHypotCase(0.0, 0.0, +0.0, 0.0);
    }

    static int testHypotCase(double input1, double input2, double expected) {
        return testHypotCase(input1,input2, expected, 1);
    }

    static int testHypotCase(double input1, double input2, double expected,
                             double ulps) {
        int failures = 0;
        if (expected < 0.0) {
            throw new AssertionError("Result of hypot must be greater than " +
                                     "or equal to zero");
        }

        // Test Math and StrictMath methods with no inputs negated,
        // each input negated singly, and both inputs negated.  Also
        // test inputs in reversed order.

        for(int i = -1; i <= 1; i += 2) {
            for(int j = -1; j <= 1; j += 2) {
                double x = i * input1;
                double y = j * input2;
                failures += Tests.testUlpDiff("Math.hypot",       x, y, Math::hypot,       expected, ulps);
                failures += Tests.testUlpDiff("Math.hypot",       y, x, Math::hypot,       expected, ulps);

                failures += Tests.testUlpDiff("StrictMath.hypot", x, y, StrictMath::hypot, expected, ulps);
                failures += Tests.testUlpDiff("StrictMath.hypot", y, x, StrictMath::hypot, expected, ulps);
            }
        }

        return failures;
    }

    public static void main(String... argv) {
        int failures = 0;

        failures += testHypot();
        failures += testHypotZeros();

        if (failures > 0) {
            System.err.println("Testing the hypot incurred "
                               + failures + " failures.");
            throw new RuntimeException();
        }
    }
}

¤ Dauer der Verarbeitung: 0.2 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff