/*
* Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "ci/ciCallProfile.hpp"
#include "ci/ciExceptionHandler.hpp"
#include "ci/ciInstanceKlass.hpp"
#include "ci/ciMethod.hpp"
#include "ci/ciMethodBlocks.hpp"
#include "ci/ciMethodData.hpp"
#include "ci/ciStreams.hpp"
#include "ci/ciSymbol.hpp"
#include "ci/ciReplay.hpp"
#include "ci/ciSymbols.hpp"
#include "ci/ciUtilities.inline.hpp"
#include "compiler/abstractCompiler.hpp"
#include "compiler/compilerDefinitions.inline.hpp"
#include "compiler/methodLiveness.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "interpreter/oopMapCache.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/generateOopMap.hpp"
#include "oops/method.inline.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/handles.inline.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/xmlstream.hpp"
#ifdef COMPILER2
#include "ci/bcEscapeAnalyzer.hpp"
#include "ci/ciTypeFlow.hpp"
#include "oops/method.hpp"
#endif
// ciMethod
//
// This class represents a Method* in the HotSpot virtual
// machine.
// ------------------------------------------------------------------
// ciMethod::ciMethod
//
// Loaded method.
ciMethod::ciMethod(const methodHandle& h_m, ciInstanceKlass* holder) :
ciMetadata(h_m()),
_holder(holder)
{
assert(h_m() != NULL, "no null method");
assert(_holder->get_instanceKlass() == h_m->method_holder(), "");
// These fields are always filled in in loaded methods.
_flags = ciFlags(h_m->access_flags());
// Easy to compute, so fill them in now.
_max_stack = h_m->max_stack();
_max_locals = h_m->max_locals();
_code_size = h_m->code_size();
_handler_count = h_m->exception_table_length();
_size_of_parameters = h_m->size_of_parameters();
_uses_monitors = h_m->access_flags().has_monitor_bytecodes();
_balanced_monitors = !_uses_monitors || h_m->access_flags().is_monitor_matching();
_is_c1_compilable = !h_m->is_not_c1_compilable();
_is_c2_compilable = !h_m->is_not_c2_compilable();
_can_be_parsed = true;
_has_reserved_stack_access = h_m->has_reserved_stack_access();
_is_overpass = h_m->is_overpass();
// Lazy fields, filled in on demand. Require allocation.
_code = NULL;
_exception_handlers = NULL;
_liveness = NULL;
_method_blocks = NULL;
#if defined(COMPILER2)
_flow = NULL;
_bcea = NULL;
#endif // COMPILER2
// Check for blackhole intrinsic and then populate the intrinsic ID.
CompilerOracle::tag_blackhole_if_possible(h_m);
_intrinsic_id = h_m->intrinsic_id();
ciEnv *env = CURRENT_ENV;
if (env->jvmti_can_hotswap_or_post_breakpoint()) {
// 6328518 check hotswap conditions under the right lock.
MutexLocker locker(Compile_lock);
if (Dependencies::check_evol_method(h_m()) != NULL) {
_is_c1_compilable = false;
_is_c2_compilable = false;
_can_be_parsed = false;
}
} else {
DEBUG_ONLY(CompilerThread::current()->check_possible_safepoint());
}
if (h_m->method_holder()->is_linked()) {
_can_be_statically_bound = h_m->can_be_statically_bound();
_can_omit_stack_trace = h_m->can_omit_stack_trace();
} else {
// Have to use a conservative value in this case.
_can_be_statically_bound = false;
_can_omit_stack_trace = true;
}
// Adjust the definition of this condition to be more useful:
// %%% take these conditions into account in vtable generation
if (!_can_be_statically_bound && h_m->is_private())
_can_be_statically_bound = true;
if (_can_be_statically_bound && h_m->is_abstract())
_can_be_statically_bound = false;
// generating _signature may allow GC and therefore move m.
// These fields are always filled in.
_name = env->get_symbol(h_m->name());
ciSymbol* sig_symbol = env->get_symbol(h_m->signature());
constantPoolHandle cpool(Thread::current(), h_m->constants());
_signature = new (env->arena()) ciSignature(_holder, cpool, sig_symbol);
_method_data = NULL;
// Take a snapshot of these values, so they will be commensurate with the MDO.
if (ProfileInterpreter || CompilerConfig::is_c1_profiling()) {
int invcnt = h_m->interpreter_invocation_count();
// if the value overflowed report it as max int
_interpreter_invocation_count = invcnt < 0 ? max_jint : invcnt ;
_interpreter_throwout_count = h_m->interpreter_throwout_count();
} else {
_interpreter_invocation_count = 0;
_interpreter_throwout_count = 0;
}
if (_interpreter_invocation_count == 0)
_interpreter_invocation_count = 1;
_instructions_size = -1;
if (ReplayCompiles) {
ciReplay::initialize(this);
}
}
// ------------------------------------------------------------------
// ciMethod::ciMethod
//
// Unloaded method.
ciMethod::ciMethod(ciInstanceKlass* holder,
ciSymbol* name,
ciSymbol* signature,
ciInstanceKlass* accessor) :
ciMetadata((Metadata*)NULL),
_name( name),
_holder( holder),
_method_data( NULL),
_method_blocks( NULL),
_intrinsic_id( vmIntrinsics::_none),
_instructions_size(-1),
_can_be_statically_bound(false),
_can_omit_stack_trace(true),
_liveness( NULL)
#if defined(COMPILER2)
,
_flow( NULL),
_bcea( NULL)
#endif // COMPILER2
{
// Usually holder and accessor are the same type but in some cases
// the holder has the wrong class loader (e.g. invokedynamic call
// sites) so we pass the accessor.
_signature = new (CURRENT_ENV->arena()) ciSignature(accessor, constantPoolHandle(), signature);
}
// ------------------------------------------------------------------
// ciMethod::load_code
//
// Load the bytecodes and exception handler table for this method.
void ciMethod::load_code() {
VM_ENTRY_MARK;
assert(is_loaded(), "only loaded methods have code");
Method* me = get_Method();
Arena* arena = CURRENT_THREAD_ENV->arena();
// Load the bytecodes.
_code = (address)arena->Amalloc(code_size());
memcpy(_code, me->code_base(), code_size());
#if INCLUDE_JVMTI
// Revert any breakpoint bytecodes in ci's copy
if (me->number_of_breakpoints() > 0) {
BreakpointInfo* bp = me->method_holder()->breakpoints();
for (; bp != NULL; bp = bp->next()) {
if (bp->match(me)) {
code_at_put(bp->bci(), bp->orig_bytecode());
}
}
}
#endif
// And load the exception table.
ExceptionTable exc_table(me);
// Allocate one extra spot in our list of exceptions. This
// last entry will be used to represent the possibility that
// an exception escapes the method. See ciExceptionHandlerStream
// for details.
_exception_handlers =
(ciExceptionHandler**)arena->Amalloc(sizeof(ciExceptionHandler*)
* (_handler_count + 1));
if (_handler_count > 0) {
for (int i=0; i<_handler_count; i++) {
_exception_handlers[i] = new (arena) ciExceptionHandler(
holder(),
/* start */ exc_table.start_pc(i),
/* limit */ exc_table.end_pc(i),
/* goto pc */ exc_table.handler_pc(i),
/* cp index */ exc_table.catch_type_index(i));
}
}
// Put an entry at the end of our list to represent the possibility
// of exceptional exit.
_exception_handlers[_handler_count] =
new (arena) ciExceptionHandler(holder(), 0, code_size(), -1, 0);
if (CIPrintMethodCodes) {
print_codes();
}
}
// ------------------------------------------------------------------
// ciMethod::has_linenumber_table
//
// length unknown until decompression
bool ciMethod::has_linenumber_table() const {
check_is_loaded();
VM_ENTRY_MARK;
return get_Method()->has_linenumber_table();
}
// ------------------------------------------------------------------
// ciMethod::line_number_from_bci
int ciMethod::line_number_from_bci(int bci) const {
check_is_loaded();
VM_ENTRY_MARK;
return get_Method()->line_number_from_bci(bci);
}
// ------------------------------------------------------------------
// ciMethod::vtable_index
//
// Get the position of this method's entry in the vtable, if any.
int ciMethod::vtable_index() {
check_is_loaded();
assert(holder()->is_linked(), "must be linked");
VM_ENTRY_MARK;
return get_Method()->vtable_index();
}
// ------------------------------------------------------------------
// ciMethod::uses_balanced_monitors
//
// Does this method use monitors in a strict stack-disciplined manner?
bool ciMethod::has_balanced_monitors() {
check_is_loaded();
if (_balanced_monitors) return true;
// Analyze the method to see if monitors are used properly.
VM_ENTRY_MARK;
methodHandle method(THREAD, get_Method());
assert(method->has_monitor_bytecodes(), "should have checked this");
// Check to see if a previous compilation computed the
// monitor-matching analysis.
if (method->guaranteed_monitor_matching()) {
_balanced_monitors = true;
return true;
}
{
ExceptionMark em(THREAD);
ResourceMark rm(THREAD);
GeneratePairingInfo gpi(method);
if (!gpi.compute_map(THREAD)) {
fatal("Unrecoverable verification or out-of-memory error");
}
if (!gpi.monitor_safe()) {
return false;
}
method->set_guaranteed_monitor_matching();
_balanced_monitors = true;
}
return true;
}
// ------------------------------------------------------------------
// ciMethod::get_flow_analysis
ciTypeFlow* ciMethod::get_flow_analysis() {
#if defined(COMPILER2)
if (_flow == NULL) {
ciEnv* env = CURRENT_ENV;
_flow = new (env->arena()) ciTypeFlow(env, this);
_flow->do_flow();
}
return _flow;
#else // COMPILER2
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
// ------------------------------------------------------------------
// ciMethod::get_osr_flow_analysis
ciTypeFlow* ciMethod::get_osr_flow_analysis(int osr_bci) {
#if defined(COMPILER2)
// OSR entry points are always place after a call bytecode of some sort
assert(osr_bci >= 0, "must supply valid OSR entry point");
ciEnv* env = CURRENT_ENV;
ciTypeFlow* flow = new (env->arena()) ciTypeFlow(env, this, osr_bci);
flow->do_flow();
return flow;
#else // COMPILER2
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
// ------------------------------------------------------------------
// ciMethod::raw_liveness_at_bci
//
// Which local variables are live at a specific bci?
MethodLivenessResult ciMethod::raw_liveness_at_bci(int bci) {
check_is_loaded();
if (_liveness == NULL) {
// Create the liveness analyzer.
Arena* arena = CURRENT_ENV->arena();
_liveness = new (arena) MethodLiveness(arena, this);
_liveness->compute_liveness();
}
return _liveness->get_liveness_at(bci);
}
// ------------------------------------------------------------------
// ciMethod::liveness_at_bci
//
// Which local variables are live at a specific bci? When debugging
// will return true for all locals in some cases to improve debug
// information.
MethodLivenessResult ciMethod::liveness_at_bci(int bci) {
if (CURRENT_ENV->should_retain_local_variables() || DeoptimizeALot) {
// Keep all locals live for the user's edification and amusement.
MethodLivenessResult result(_max_locals);
result.set_range(0, _max_locals);
result.set_is_valid();
return result;
}
return raw_liveness_at_bci(bci);
}
// ciMethod::live_local_oops_at_bci
//
// find all the live oops in the locals array for a particular bci
// Compute what the interpreter believes by using the interpreter
// oopmap generator. This is used as a double check during osr to
// guard against conservative result from MethodLiveness making us
// think a dead oop is live. MethodLiveness is conservative in the
// sense that it may consider locals to be live which cannot be live,
// like in the case where a local could contain an oop or a primitive
// along different paths. In that case the local must be dead when
// those paths merge. Since the interpreter's viewpoint is used when
// gc'ing an interpreter frame we need to use its viewpoint during
// OSR when loading the locals.
ResourceBitMap ciMethod::live_local_oops_at_bci(int bci) {
VM_ENTRY_MARK;
InterpreterOopMap mask;
OopMapCache::compute_one_oop_map(methodHandle(THREAD, get_Method()), bci, &mask);
int mask_size = max_locals();
ResourceBitMap result(mask_size);
int i;
for (i = 0; i < mask_size ; i++ ) {
if (mask.is_oop(i)) result.set_bit(i);
}
return result;
}
#ifdef COMPILER1
// ------------------------------------------------------------------
// ciMethod::bci_block_start
//
// Marks all bcis where a new basic block starts
const BitMap& ciMethod::bci_block_start() {
check_is_loaded();
if (_liveness == NULL) {
// Create the liveness analyzer.
Arena* arena = CURRENT_ENV->arena();
_liveness = new (arena) MethodLiveness(arena, this);
_liveness->compute_liveness();
}
return _liveness->get_bci_block_start();
}
#endif // COMPILER1
// ------------------------------------------------------------------
// ciMethod::check_overflow
//
// Check whether the profile counter is overflowed and adjust if true.
// For invoke* it will turn negative values into max_jint,
// and for checkcast/aastore/instanceof turn positive values into min_jint.
int ciMethod::check_overflow(int c, Bytecodes::Code code) {
switch (code) {
case Bytecodes::_aastore: // fall-through
case Bytecodes::_checkcast: // fall-through
case Bytecodes::_instanceof: {
return (c > 0 ? min_jint : c); // always non-positive
}
default: {
assert(Bytecodes::is_invoke(code), "%s", Bytecodes::name(code));
return (c < 0 ? max_jint : c); // always non-negative
}
}
}
// ------------------------------------------------------------------
// ciMethod::call_profile_at_bci
//
// Get the ciCallProfile for the invocation of this method.
// Also reports receiver types for non-call type checks (if TypeProfileCasts).
ciCallProfile ciMethod::call_profile_at_bci(int bci) {
ResourceMark rm;
ciCallProfile result;
if (method_data() != NULL && method_data()->is_mature()) {
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL && data->is_CounterData()) {
// Every profiled call site has a counter.
int count = check_overflow(data->as_CounterData()->count(), java_code_at_bci(bci));
if (!data->is_ReceiverTypeData()) {
result._receiver_count[0] = 0; // that's a definite zero
} else { // ReceiverTypeData is a subclass of CounterData
ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
// In addition, virtual call sites have receiver type information
int receivers_count_total = 0;
int morphism = 0;
// Precompute morphism for the possible fixup
for (uint i = 0; i < call->row_limit(); i++) {
ciKlass* receiver = call->receiver(i);
if (receiver == NULL) continue;
morphism++;
}
int epsilon = 0;
// For a call, it is assumed that either the type of the receiver(s)
// is recorded or an associated counter is incremented, but not both. With
// tiered compilation, however, both can happen due to the interpreter and
// C1 profiling invocations differently. Address that inconsistency here.
if (morphism == 1 && count > 0) {
epsilon = count;
count = 0;
}
for (uint i = 0; i < call->row_limit(); i++) {
ciKlass* receiver = call->receiver(i);
if (receiver == NULL) continue;
int rcount = saturated_add(call->receiver_count(i), epsilon);
if (rcount == 0) rcount = 1; // Should be valid value
receivers_count_total = saturated_add(receivers_count_total, rcount);
// Add the receiver to result data.
result.add_receiver(receiver, rcount);
// If we extend profiling to record methods,
// we will set result._method also.
}
// Determine call site's morphism.
// The call site count is 0 with known morphism (only 1 or 2 receivers)
// or < 0 in the case of a type check failure for checkcast, aastore, instanceof.
// The call site count is > 0 in the case of a polymorphic virtual call.
if (morphism > 0 && morphism == result._limit) {
// The morphism <= MorphismLimit.
if ((morphism < ciCallProfile::MorphismLimit) ||
(morphism == ciCallProfile::MorphismLimit && count == 0)) {
#ifdef ASSERT
if (count > 0) {
this->print_short_name(tty);
tty->print_cr(" @ bci:%d", bci);
this->print_codes();
assert(false, "this call site should not be polymorphic");
}
#endif
result._morphism = morphism;
}
}
// Make the count consistent if this is a call profile. If count is
// zero or less, presume that this is a typecheck profile and
// do nothing. Otherwise, increase count to be the sum of all
// receiver's counts.
if (count >= 0) {
count = saturated_add(count, receivers_count_total);
}
}
result._count = count;
}
}
return result;
}
// ------------------------------------------------------------------
// Add new receiver and sort data by receiver's profile count.
void ciCallProfile::add_receiver(ciKlass* receiver, int receiver_count) {
// Add new receiver and sort data by receiver's counts when we have space
// for it otherwise replace the less called receiver (less called receiver
// is placed to the last array element which is not used).
// First array's element contains most called receiver.
int i = _limit;
for (; i > 0 && receiver_count > _receiver_count[i-1]; i--) {
_receiver[i] = _receiver[i-1];
_receiver_count[i] = _receiver_count[i-1];
}
_receiver[i] = receiver;
_receiver_count[i] = receiver_count;
if (_limit < MorphismLimit) _limit++;
}
void ciMethod::assert_virtual_call_type_ok(int bci) {
assert(java_code_at_bci(bci) == Bytecodes::_invokevirtual ||
java_code_at_bci(bci) == Bytecodes::_invokeinterface, "unexpected bytecode %s", Bytecodes::name(java_code_at_bci(bci)));
}
void ciMethod::assert_call_type_ok(int bci) {
assert(java_code_at_bci(bci) == Bytecodes::_invokestatic ||
java_code_at_bci(bci) == Bytecodes::_invokespecial ||
java_code_at_bci(bci) == Bytecodes::_invokedynamic, "unexpected bytecode %s", Bytecodes::name(java_code_at_bci(bci)));
}
/**
* Check whether profiling provides a type for the argument i to the
* call at bci bci
*
* @param [in]bci bci of the call
* @param [in]i argument number
* @param [out]type profiled type of argument, NULL if none
* @param [out]ptr_kind whether always null, never null or maybe null
* @return true if profiling exists
*
*/
bool ciMethod::argument_profiled_type(int bci, int i, ciKlass*& type, ProfilePtrKind& ptr_kind) {
if (MethodData::profile_parameters() && method_data() != NULL && method_data()->is_mature()) {
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL) {
if (data->is_VirtualCallTypeData()) {
assert_virtual_call_type_ok(bci);
ciVirtualCallTypeData* call = (ciVirtualCallTypeData*)data->as_VirtualCallTypeData();
if (i >= call->number_of_arguments()) {
return false;
}
type = call->valid_argument_type(i);
ptr_kind = call->argument_ptr_kind(i);
return true;
} else if (data->is_CallTypeData()) {
assert_call_type_ok(bci);
ciCallTypeData* call = (ciCallTypeData*)data->as_CallTypeData();
if (i >= call->number_of_arguments()) {
return false;
}
type = call->valid_argument_type(i);
ptr_kind = call->argument_ptr_kind(i);
return true;
}
}
}
return false;
}
/**
* Check whether profiling provides a type for the return value from
* the call at bci bci
*
* @param [in]bci bci of the call
* @param [out]type profiled type of argument, NULL if none
* @param [out]ptr_kind whether always null, never null or maybe null
* @return true if profiling exists
*
*/
bool ciMethod::return_profiled_type(int bci, ciKlass*& type, ProfilePtrKind& ptr_kind) {
if (MethodData::profile_return() && method_data() != NULL && method_data()->is_mature()) {
ciProfileData* data = method_data()->bci_to_data(bci);
if (data != NULL) {
if (data->is_VirtualCallTypeData()) {
assert_virtual_call_type_ok(bci);
ciVirtualCallTypeData* call = (ciVirtualCallTypeData*)data->as_VirtualCallTypeData();
if (call->has_return()) {
type = call->valid_return_type();
ptr_kind = call->return_ptr_kind();
return true;
}
} else if (data->is_CallTypeData()) {
assert_call_type_ok(bci);
ciCallTypeData* call = (ciCallTypeData*)data->as_CallTypeData();
if (call->has_return()) {
type = call->valid_return_type();
ptr_kind = call->return_ptr_kind();
}
return true;
}
}
}
return false;
}
/**
* Check whether profiling provides a type for the parameter i
*
* @param [in]i parameter number
* @param [out]type profiled type of parameter, NULL if none
* @param [out]ptr_kind whether always null, never null or maybe null
* @return true if profiling exists
*
*/
bool ciMethod::parameter_profiled_type(int i, ciKlass*& type, ProfilePtrKind& ptr_kind) {
if (MethodData::profile_parameters() && method_data() != NULL && method_data()->is_mature()) {
ciParametersTypeData* parameters = method_data()->parameters_type_data();
if (parameters != NULL && i < parameters->number_of_parameters()) {
type = parameters->valid_parameter_type(i);
ptr_kind = parameters->parameter_ptr_kind(i);
return true;
}
}
return false;
}
// ------------------------------------------------------------------
// ciMethod::find_monomorphic_target
//
// Given a certain calling environment, find the monomorphic target
// for the call. Return NULL if the call is not monomorphic in
// its calling environment, or if there are only abstract methods.
// The returned method is never abstract.
// Note: If caller uses a non-null result, it must inform dependencies
// via assert_unique_concrete_method or assert_leaf_type.
ciMethod* ciMethod::find_monomorphic_target(ciInstanceKlass* caller,
ciInstanceKlass* callee_holder,
ciInstanceKlass* actual_recv,
bool check_access) {
check_is_loaded();
if (actual_recv->is_interface()) {
// %%% We cannot trust interface types, yet. See bug 6312651.
return NULL;
}
ciMethod* root_m = resolve_invoke(caller, actual_recv, check_access, true /* allow_abstract */);
if (root_m == NULL) {
// Something went wrong looking up the actual receiver method.
return NULL;
}
// Make certain quick checks even if UseCHA is false.
// Is it private or final?
if (root_m->can_be_statically_bound()) {
assert(!root_m->is_abstract(), "sanity");
return root_m;
}
if (actual_recv->is_leaf_type() && actual_recv == root_m->holder()) {
// Easy case. There is no other place to put a method, so don't bother
// to go through the VM_ENTRY_MARK and all the rest.
if (root_m->is_abstract()) {
return NULL;
}
return root_m;
}
// Array methods (clone, hashCode, etc.) are always statically bound.
// If we were to see an array type here, we'd return root_m.
// However, this method processes only ciInstanceKlasses. (See 4962591.)
// The inline_native_clone intrinsic narrows Object to T[] properly,
// so there is no need to do the same job here.
if (!UseCHA) return NULL;
VM_ENTRY_MARK;
methodHandle target;
{
MutexLocker locker(Compile_lock);
InstanceKlass* context = actual_recv->get_instanceKlass();
if (UseVtableBasedCHA) {
target = methodHandle(THREAD, Dependencies::find_unique_concrete_method(context,
root_m->get_Method(),
callee_holder->get_Klass(),
this->get_Method()));
} else {
if (root_m->is_abstract()) {
return NULL; // not supported
}
target = methodHandle(THREAD, Dependencies::find_unique_concrete_method(context, root_m->get_Method()));
}
assert(target() == NULL || !target()->is_abstract(), "not allowed");
// %%% Should upgrade this ciMethod API to look for 1 or 2 concrete methods.
}
#ifndef PRODUCT
if (TraceDependencies && target() != NULL && target() != root_m->get_Method()) {
tty->print("found a non-root unique target method");
tty->print_cr(" context = %s", actual_recv->get_Klass()->external_name());
tty->print(" method = ");
target->print_short_name(tty);
tty->cr();
}
#endif //PRODUCT
if (target() == NULL) {
return NULL;
}
if (target() == root_m->get_Method()) {
return root_m;
}
if (!root_m->is_public() &&
!root_m->is_protected()) {
// If we are going to reason about inheritance, it's easiest
// if the method in question is public, protected, or private.
// If the answer is not root_m, it is conservatively correct
// to return NULL, even if the CHA encountered irrelevant
// methods in other packages.
// %%% TO DO: Work out logic for package-private methods
// with the same name but different vtable indexes.
return NULL;
}
return CURRENT_THREAD_ENV->get_method(target());
}
// ------------------------------------------------------------------
// ciMethod::can_be_statically_bound
//
// Tries to determine whether a method can be statically bound in some context.
bool ciMethod::can_be_statically_bound(ciInstanceKlass* context) const {
return (holder() == context) && can_be_statically_bound();
}
// ------------------------------------------------------------------
// ciMethod::can_omit_stack_trace
//
// Tries to determine whether a method can omit stack trace in throw in compiled code.
bool ciMethod::can_omit_stack_trace() const {
if (!StackTraceInThrowable) {
return true; // stack trace is switched off.
}
if (!OmitStackTraceInFastThrow) {
return false; // Have to provide stack trace.
}
return _can_omit_stack_trace;
}
// ------------------------------------------------------------------
// ciMethod::resolve_invoke
//
// Given a known receiver klass, find the target for the call.
// Return NULL if the call has no target or the target is abstract.
ciMethod* ciMethod::resolve_invoke(ciKlass* caller, ciKlass* exact_receiver, bool check_access, bool allow_abstract) {
check_is_loaded();
VM_ENTRY_MARK;
Klass* caller_klass = caller->get_Klass();
Klass* recv = exact_receiver->get_Klass();
Klass* resolved = holder()->get_Klass();
Symbol* h_name = name()->get_symbol();
Symbol* h_signature = signature()->get_symbol();
LinkInfo link_info(resolved, h_name, h_signature, caller_klass,
check_access ? LinkInfo::AccessCheck::required : LinkInfo::AccessCheck::skip,
check_access ? LinkInfo::LoaderConstraintCheck::required : LinkInfo::LoaderConstraintCheck::skip);
Method* m = NULL;
// Only do exact lookup if receiver klass has been linked. Otherwise,
// the vtable has not been setup, and the LinkResolver will fail.
if (recv->is_array_klass()
||
(InstanceKlass::cast(recv)->is_linked() && !exact_receiver->is_interface())) {
if (holder()->is_interface()) {
m = LinkResolver::resolve_interface_call_or_null(recv, link_info);
} else {
m = LinkResolver::resolve_virtual_call_or_null(recv, link_info);
}
}
if (m == NULL) {
// Return NULL only if there was a problem with lookup (uninitialized class, etc.)
return NULL;
}
ciMethod* result = this;
if (m != get_Method()) {
result = CURRENT_THREAD_ENV->get_method(m);
}
if (result->is_abstract() && !allow_abstract) {
// Don't return abstract methods because they aren't optimizable or interesting.
return NULL;
}
return result;
}
// ------------------------------------------------------------------
// ciMethod::resolve_vtable_index
//
// Given a known receiver klass, find the vtable index for the call.
// Return Method::invalid_vtable_index if the vtable_index is unknown.
int ciMethod::resolve_vtable_index(ciKlass* caller, ciKlass* receiver) {
check_is_loaded();
int vtable_index = Method::invalid_vtable_index;
// Only do lookup if receiver klass has been linked. Otherwise,
// the vtable has not been setup, and the LinkResolver will fail.
if (!receiver->is_interface()
&& (!receiver->is_instance_klass() ||
receiver->as_instance_klass()->is_linked())) {
VM_ENTRY_MARK;
Klass* caller_klass = caller->get_Klass();
Klass* recv = receiver->get_Klass();
Symbol* h_name = name()->get_symbol();
Symbol* h_signature = signature()->get_symbol();
LinkInfo link_info(recv, h_name, h_signature, caller_klass);
vtable_index = LinkResolver::resolve_virtual_vtable_index(recv, link_info);
if (vtable_index == Method::nonvirtual_vtable_index) {
// A statically bound method. Return "no such index".
vtable_index = Method::invalid_vtable_index;
}
}
return vtable_index;
}
// ------------------------------------------------------------------
// ciMethod::get_field_at_bci
ciField* ciMethod::get_field_at_bci(int bci, bool &will_link) {
ciBytecodeStream iter(this);
iter.reset_to_bci(bci);
iter.next();
return iter.get_field(will_link);
}
// ------------------------------------------------------------------
// ciMethod::get_method_at_bci
ciMethod* ciMethod::get_method_at_bci(int bci, bool &will_link, ciSignature* *declared_signature) {
ciBytecodeStream iter(this);
iter.reset_to_bci(bci);
iter.next();
return iter.get_method(will_link, declared_signature);
}
// ------------------------------------------------------------------
ciKlass* ciMethod::get_declared_method_holder_at_bci(int bci) {
ciBytecodeStream iter(this);
iter.reset_to_bci(bci);
iter.next();
return iter.get_declared_method_holder();
}
// ------------------------------------------------------------------
// Adjust a CounterData count to be commensurate with
// interpreter_invocation_count. If the MDO exists for
// only 25% of the time the method exists, then the
// counts in the MDO should be scaled by 4X, so that
// they can be usefully and stably compared against the
// invocation counts in methods.
int ciMethod::scale_count(int count, float prof_factor) {
if (count > 0 && method_data() != NULL) {
int counter_life = method_data()->invocation_count();
int method_life = interpreter_invocation_count();
if (method_life < counter_life) { // may happen because of the snapshot timing
method_life = counter_life;
}
if (counter_life > 0) {
count = (int)((double)count * prof_factor * method_life / counter_life + 0.5);
count = (count > 0) ? count : 1;
} else {
count = 1;
}
}
return count;
}
// ------------------------------------------------------------------
// ciMethod::is_special_get_caller_class_method
//
bool ciMethod::is_ignored_by_security_stack_walk() const {
check_is_loaded();
VM_ENTRY_MARK;
return get_Method()->is_ignored_by_security_stack_walk();
}
// ------------------------------------------------------------------
// ciMethod::needs_clinit_barrier
//
bool ciMethod::needs_clinit_barrier() const {
check_is_loaded();
return is_static() && !holder()->is_initialized();
}
// ------------------------------------------------------------------
// invokedynamic support
// ------------------------------------------------------------------
// ciMethod::is_method_handle_intrinsic
//
// Return true if the method is an instance of the JVM-generated
// signature-polymorphic MethodHandle methods, _invokeBasic, _linkToVirtual, etc.
bool ciMethod::is_method_handle_intrinsic() const {
vmIntrinsics::ID iid = _intrinsic_id; // do not check if loaded
return (MethodHandles::is_signature_polymorphic(iid) &&
MethodHandles::is_signature_polymorphic_intrinsic(iid));
}
// ------------------------------------------------------------------
// ciMethod::is_compiled_lambda_form
//
// Return true if the method is a generated MethodHandle adapter.
// These are built by Java code.
bool ciMethod::is_compiled_lambda_form() const {
vmIntrinsics::ID iid = _intrinsic_id; // do not check if loaded
return iid == vmIntrinsics::_compiledLambdaForm;
}
// ------------------------------------------------------------------
// ciMethod::is_object_initializer
//
bool ciMethod::is_object_initializer() const {
return name() == ciSymbols::object_initializer_name();
}
// ------------------------------------------------------------------
// ciMethod::has_member_arg
//
// Return true if the method is a linker intrinsic like _linkToVirtual.
// These are built by the JVM.
bool ciMethod::has_member_arg() const {
vmIntrinsics::ID iid = _intrinsic_id; // do not check if loaded
return (MethodHandles::is_signature_polymorphic(iid) &&
MethodHandles::has_member_arg(iid));
}
// ------------------------------------------------------------------
// ciMethod::ensure_method_data
//
// Generate new MethodData* objects at compile time.
// Return true if allocation was successful or no MDO is required.
bool ciMethod::ensure_method_data(const methodHandle& h_m) {
EXCEPTION_CONTEXT;
if (is_native() || is_abstract() || h_m()->is_accessor()) {
return true;
}
if (h_m()->method_data() == NULL) {
Method::build_profiling_method_data(h_m, THREAD);
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
}
}
if (h_m()->method_data() != NULL) {
_method_data = CURRENT_ENV->get_method_data(h_m()->method_data());
return _method_data->load_data();
} else {
_method_data = CURRENT_ENV->get_empty_methodData();
return false;
}
}
// public, retroactive version
bool ciMethod::ensure_method_data() {
bool result = true;
if (_method_data == NULL || _method_data->is_empty()) {
GUARDED_VM_ENTRY({
methodHandle mh(Thread::current(), get_Method());
result = ensure_method_data(mh);
});
}
return result;
}
// ------------------------------------------------------------------
// ciMethod::method_data
//
ciMethodData* ciMethod::method_data() {
if (_method_data != NULL) {
return _method_data;
}
VM_ENTRY_MARK;
ciEnv* env = CURRENT_ENV;
Thread* my_thread = JavaThread::current();
methodHandle h_m(my_thread, get_Method());
if (h_m()->method_data() != NULL) {
_method_data = CURRENT_ENV->get_method_data(h_m()->method_data());
_method_data->load_data();
} else {
_method_data = CURRENT_ENV->get_empty_methodData();
}
return _method_data;
}
// ------------------------------------------------------------------
// ciMethod::method_data_or_null
// Returns a pointer to ciMethodData if MDO exists on the VM side,
// NULL otherwise.
ciMethodData* ciMethod::method_data_or_null() {
ciMethodData *md = method_data();
if (md->is_empty()) {
return NULL;
}
return md;
}
// ------------------------------------------------------------------
// ciMethod::ensure_method_counters
//
MethodCounters* ciMethod::ensure_method_counters() {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_Method());
MethodCounters* method_counters = mh->get_method_counters(CHECK_NULL);
return method_counters;
}
// ------------------------------------------------------------------
// ciMethod::has_option
//
bool ciMethod::has_option(enum CompileCommand option) {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_Method());
return CompilerOracle::has_option(mh, option);
}
// ------------------------------------------------------------------
// ciMethod::has_option_value
//
bool ciMethod::has_option_value(enum CompileCommand option, double& value) {
check_is_loaded();
VM_ENTRY_MARK;
methodHandle mh(THREAD, get_Method());
return CompilerOracle::has_option_value(mh, option, value);
}
// ------------------------------------------------------------------
// ciMethod::can_be_compiled
//
// Have previous compilations of this method succeeded?
bool ciMethod::can_be_compiled() {
check_is_loaded();
ciEnv* env = CURRENT_ENV;
if (is_c1_compile(env->comp_level())) {
return _is_c1_compilable;
}
return _is_c2_compilable;
}
// ------------------------------------------------------------------
// ciMethod::has_compiled_code
bool ciMethod::has_compiled_code() {
return instructions_size() > 0;
}
int ciMethod::highest_osr_comp_level() {
check_is_loaded();
VM_ENTRY_MARK;
return get_Method()->highest_osr_comp_level();
}
// ------------------------------------------------------------------
// ciMethod::code_size_for_inlining
//
// Code size for inlining decisions. This method returns a code
// size of 1 for methods which has the ForceInline annotation.
int ciMethod::code_size_for_inlining() {
check_is_loaded();
if (get_Method()->force_inline()) {
return 1;
}
return code_size();
}
// ------------------------------------------------------------------
// ciMethod::instructions_size
//
// This is a rough metric for "fat" methods, compared before inlining
// with InlineSmallCode. The CodeBlob::code_size accessor includes
// junk like exception handler, stubs, and constant table, which are
// not highly relevant to an inlined method. So we use the more
// specific accessor nmethod::insts_size.
int ciMethod::instructions_size() {
if (_instructions_size == -1) {
GUARDED_VM_ENTRY(
CompiledMethod* code = get_Method()->code();
if (code != NULL && (code->comp_level() == CompLevel_full_optimization)) {
_instructions_size = code->insts_end() - code->verified_entry_point();
} else {
_instructions_size = 0;
}
);
}
return _instructions_size;
}
// ------------------------------------------------------------------
// ciMethod::log_nmethod_identity
void ciMethod::log_nmethod_identity(xmlStream* log) {
GUARDED_VM_ENTRY(
CompiledMethod* code = get_Method()->code();
if (code != NULL) {
code->log_identity(log);
}
)
}
// ------------------------------------------------------------------
// ciMethod::is_not_reached
bool ciMethod::is_not_reached(int bci) {
check_is_loaded();
VM_ENTRY_MARK;
return Interpreter::is_not_reached(
methodHandle(THREAD, get_Method()), bci);
}
// ------------------------------------------------------------------
// ciMethod::was_never_executed
bool ciMethod::was_executed_more_than(int times) {
VM_ENTRY_MARK;
return get_Method()->was_executed_more_than(times);
}
// ------------------------------------------------------------------
// ciMethod::has_unloaded_classes_in_signature
bool ciMethod::has_unloaded_classes_in_signature() {
// ciSignature is resolved against some accessing class and
// signature classes aren't required to be local. As a benefit,
// it makes signature classes visible through loader constraints.
// So, encountering an unloaded class signals it is absent both in
// the callee (local) and caller contexts.
return signature()->has_unloaded_classes();
}
// ------------------------------------------------------------------
// ciMethod::is_klass_loaded
bool ciMethod::is_klass_loaded(int refinfo_index, bool must_be_resolved) const {
VM_ENTRY_MARK;
return get_Method()->is_klass_loaded(refinfo_index, must_be_resolved);
}
// ------------------------------------------------------------------
// ciMethod::check_call
bool ciMethod::check_call(int refinfo_index, bool is_static) const {
// This method is used only in C2 from InlineTree::ok_to_inline,
// and is only used under -Xcomp.
// It appears to fail when applied to an invokeinterface call site.
// FIXME: Remove this method and resolve_method_statically; refactor to use the other LinkResolver entry points.
VM_ENTRY_MARK;
{
ExceptionMark em(THREAD);
HandleMark hm(THREAD);
constantPoolHandle pool (THREAD, get_Method()->constants());
Bytecodes::Code code = (is_static ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual);
Method* spec_method = LinkResolver::resolve_method_statically(code, pool, refinfo_index, THREAD);
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
return false;
} else {
return (spec_method->is_static() == is_static);
}
}
return false;
}
// ------------------------------------------------------------------
// ciMethod::print_codes
//
// Print the bytecodes for this method.
void ciMethod::print_codes_on(outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_Method()->print_codes_on(st);)
}
#define FETCH_FLAG_FROM_VM(flag_accessor) { \
check_is_loaded(); \
VM_ENTRY_MARK; \
return get_Method()->flag_accessor(); \
}
bool ciMethod::has_loops () const { FETCH_FLAG_FROM_VM(has_loops); }
bool ciMethod::has_jsrs () const { FETCH_FLAG_FROM_VM(has_jsrs); }
bool ciMethod::is_getter () const { FETCH_FLAG_FROM_VM(is_getter); }
bool ciMethod::is_setter () const { FETCH_FLAG_FROM_VM(is_setter); }
bool ciMethod::is_accessor () const { FETCH_FLAG_FROM_VM(is_accessor); }
bool ciMethod::is_initializer () const { FETCH_FLAG_FROM_VM(is_initializer); }
bool ciMethod::is_empty () const { FETCH_FLAG_FROM_VM(is_empty_method); }
bool ciMethod::is_boxing_method() const {
if (intrinsic_id() != vmIntrinsics::_none && holder()->is_box_klass()) {
switch (intrinsic_id()) {
case vmIntrinsics::_Boolean_valueOf:
case vmIntrinsics::_Byte_valueOf:
case vmIntrinsics::_Character_valueOf:
case vmIntrinsics::_Short_valueOf:
case vmIntrinsics::_Integer_valueOf:
case vmIntrinsics::_Long_valueOf:
case vmIntrinsics::_Float_valueOf:
case vmIntrinsics::_Double_valueOf:
return true;
default:
return false;
}
}
return false;
}
bool ciMethod::is_unboxing_method() const {
if (intrinsic_id() != vmIntrinsics::_none && holder()->is_box_klass()) {
switch (intrinsic_id()) {
case vmIntrinsics::_booleanValue:
case vmIntrinsics::_byteValue:
case vmIntrinsics::_charValue:
case vmIntrinsics::_shortValue:
case vmIntrinsics::_intValue:
case vmIntrinsics::_longValue:
case vmIntrinsics::_floatValue:
case vmIntrinsics::_doubleValue:
return true;
default:
return false;
}
}
return false;
}
bool ciMethod::is_vector_method() const {
return (holder() == ciEnv::current()->vector_VectorSupport_klass()) &&
(intrinsic_id() != vmIntrinsics::_none);
}
BCEscapeAnalyzer *ciMethod::get_bcea() {
#ifdef COMPILER2
if (_bcea == NULL) {
_bcea = new (CURRENT_ENV->arena()) BCEscapeAnalyzer(this, NULL);
}
return _bcea;
#else // COMPILER2
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
ciMethodBlocks *ciMethod::get_method_blocks() {
if (_method_blocks == NULL) {
Arena *arena = CURRENT_ENV->arena();
_method_blocks = new (arena) ciMethodBlocks(arena, this);
}
return _method_blocks;
}
#undef FETCH_FLAG_FROM_VM
void ciMethod::dump_name_as_ascii(outputStream* st, Method* method) {
st->print("%s %s %s",
CURRENT_ENV->replay_name(method->method_holder()),
method->name()->as_quoted_ascii(),
method->signature()->as_quoted_ascii());
}
void ciMethod::dump_name_as_ascii(outputStream* st) {
Method* method = get_Method();
dump_name_as_ascii(st, method);
}
void ciMethod::dump_replay_data(outputStream* st) {
ResourceMark rm;
Method* method = get_Method();
if (MethodHandles::is_signature_polymorphic_method(method)) {
// ignore for now
return;
}
MethodCounters* mcs = method->method_counters();
st->print("ciMethod ");
dump_name_as_ascii(st);
st->print_cr(" %d %d %d %d %d",
mcs == NULL ? 0 : mcs->invocation_counter()->raw_counter(),
mcs == NULL ? 0 : mcs->backedge_counter()->raw_counter(),
interpreter_invocation_count(),
interpreter_throwout_count(),
_instructions_size);
}
// ------------------------------------------------------------------
// ciMethod::print_codes
//
// Print a range of the bytecodes for this method.
void ciMethod::print_codes_on(int from, int to, outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_Method()->print_codes_on(from, to, st);)
}
// ------------------------------------------------------------------
// ciMethod::print_name
//
// Print the name of this method, including signature and some flags.
void ciMethod::print_name(outputStream* st) {
check_is_loaded();
GUARDED_VM_ENTRY(get_Method()->print_name(st);)
}
// ------------------------------------------------------------------
// ciMethod::print_short_name
//
// Print the name of this method, without signature.
void ciMethod::print_short_name(outputStream* st) {
if (is_loaded()) {
GUARDED_VM_ENTRY(get_Method()->print_short_name(st););
} else {
// Fall back if method is not loaded.
holder()->print_name_on(st);
st->print("::");
name()->print_symbol_on(st);
if (WizardMode)
signature()->as_symbol()->print_symbol_on(st);
}
}
// ------------------------------------------------------------------
// ciMethod::print_impl
//
// Implementation of the print method.
void ciMethod::print_impl(outputStream* st) {
ciMetadata::print_impl(st);
st->print(" name=");
name()->print_symbol_on(st);
st->print(" holder=");
holder()->print_name_on(st);
st->print(" signature=");
signature()->as_symbol()->print_symbol_on(st);
if (is_loaded()) {
st->print(" loaded=true");
st->print(" arg_size=%d", arg_size());
st->print(" flags=");
flags().print_member_flags(st);
} else {
st->print(" loaded=false");
}
}
// ------------------------------------------------------------------
static BasicType erase_to_word_type(BasicType bt) {
if (is_subword_type(bt)) return T_INT;
if (is_reference_type(bt)) return T_OBJECT;
return bt;
}
static bool basic_types_match(ciType* t1, ciType* t2) {
if (t1 == t2) return true;
return erase_to_word_type(t1->basic_type()) == erase_to_word_type(t2->basic_type());
}
bool ciMethod::is_consistent_info(ciMethod* declared_method, ciMethod* resolved_method) {
bool invoke_through_mh_intrinsic = declared_method->is_method_handle_intrinsic() &&
!resolved_method->is_method_handle_intrinsic();
if (!invoke_through_mh_intrinsic) {
// Method name & descriptor should stay the same.
// Signatures may reference unloaded types and thus they may be not strictly equal.
ciSymbol* declared_signature = declared_method->signature()->as_symbol();
ciSymbol* resolved_signature = resolved_method->signature()->as_symbol();
return (declared_method->name()->equals(resolved_method->name())) &&
(declared_signature->equals(resolved_signature));
}
ciMethod* linker = declared_method;
ciMethod* target = resolved_method;
// Linkers have appendix argument which is not passed to callee.
int has_appendix = MethodHandles::has_member_arg(linker->intrinsic_id()) ? 1 : 0;
if (linker->arg_size() != (target->arg_size() + has_appendix)) {
return false; // argument slot count mismatch
}
ciSignature* linker_sig = linker->signature();
ciSignature* target_sig = target->signature();
if (linker_sig->count() + (linker->is_static() ? 0 : 1) !=
target_sig->count() + (target->is_static() ? 0 : 1) + has_appendix) {
return false; // argument count mismatch
}
int sbase = 0, rbase = 0;
switch (linker->intrinsic_id()) {
case vmIntrinsics::_linkToVirtual:
case vmIntrinsics::_linkToInterface:
case vmIntrinsics::_linkToSpecial: {
if (target->is_static()) {
return false;
}
if (linker_sig->type_at(0)->is_primitive_type()) {
return false; // receiver should be an oop
}
sbase = 1; // skip receiver
break;
}
case vmIntrinsics::_linkToStatic: {
if (!target->is_static()) {
return false;
}
break;
}
case vmIntrinsics::_invokeBasic: {
if (target->is_static()) {
if (target_sig->type_at(0)->is_primitive_type()) {
return false; // receiver should be an oop
}
rbase = 1; // skip receiver
}
break;
}
default:
break;
}
assert(target_sig->count() - rbase == linker_sig->count() - sbase - has_appendix, "argument count mismatch");
int arg_count = target_sig->count() - rbase;
for (int i = 0; i < arg_count; i++) {
if (!basic_types_match(linker_sig->type_at(sbase + i), target_sig->type_at(rbase + i))) {
return false;
}
}
// Only check the return type if the symbolic info has non-void return type.
// I.e. the return value of the resolved method can be dropped.
if (!linker->return_type()->is_void() &&
!basic_types_match(linker->return_type(), target->return_type())) {
return false;
}
return true; // no mismatch found
}
// ------------------------------------------------------------------
¤ Dauer der Verarbeitung: 0.76 Sekunden
(vorverarbeitet)
¤
|
Laden
Fehler beim Verzeichnis:
in der Quellcodebibliothek suchen
Die farbliche Syntaxdarstellung ist noch experimentell.
|