products/Sources/formale Sprachen/Java/openjdk-20-36_src/src/hotspot/share/memory image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: resourceArea.hpp   Sprache: C

/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#ifndef SHARE_MEMORY_RESOURCEAREA_HPP
#define SHARE_MEMORY_RESOURCEAREA_HPP

#include "memory/allocation.hpp"
#include "runtime/javaThread.hpp"

// The resource area holds temporary data structures in the VM.
// The actual allocation areas are thread local. Typical usage:
//
//   ...
//   {
//     ResourceMark rm;
//     int foo[] = NEW_RESOURCE_ARRAY(int, 64);
//     ...
//   }
//   ...

//------------------------------ResourceArea-----------------------------------
// A ResourceArea is an Arena that supports safe usage of ResourceMark.
class ResourceArea: public Arena {
  friend class VMStructs;

#ifdef ASSERT
  int _nesting;                 // current # of nested ResourceMarks
  void verify_has_resource_mark();
#endif // ASSERT

public:
  ResourceArea(MEMFLAGS flags = mtThread) :
    Arena(flags) DEBUG_ONLY(COMMA _nesting(0)) {}

  ResourceArea(size_t init_size, MEMFLAGS flags = mtThread) :
    Arena(flags, init_size) DEBUG_ONLY(COMMA _nesting(0)) {}

  char* allocate_bytes(size_t size, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);

  // Bias this resource area to specific memory type
  // (by default, ResourceArea is tagged as mtThread, per-thread general purpose storage)
  void bias_to(MEMFLAGS flags);

  DEBUG_ONLY(int nesting() const { return _nesting; })

  // Capture the state of a ResourceArea needed by a ResourceMark for
  // rollback to that mark.
  class SavedState {
    friend class ResourceArea;
    Chunk* _chunk;
    char* _hwm;
    char* _max;
    size_t _size_in_bytes;
    DEBUG_ONLY(int _nesting;)

  public:
    SavedState(ResourceArea* area) :
      _chunk(area->_chunk),
      _hwm(area->_hwm),
      _max(area->_max),
      _size_in_bytes(area->_size_in_bytes)
      DEBUG_ONLY(COMMA _nesting(area->_nesting))
    {}
  };

  // Check and adjust debug-only nesting level.
  void activate_state(const SavedState& state) {
    assert(_nesting == state._nesting, "precondition");
    assert(_nesting >= 0, "precondition");
    assert(_nesting < INT_MAX, "nesting overflow");
    DEBUG_ONLY(++_nesting;)
  }

  // Check and adjust debug-only nesting level.
  void deactivate_state(const SavedState& state) {
    assert(_nesting > state._nesting, "deactivating inactive mark");
    assert((_nesting - state._nesting) == 1, "deactivating across another mark");
    DEBUG_ONLY(--_nesting;)
  }

  // Roll back the allocation state to the indicated state values.
  // The state must be the current state for this thread.
  void rollback_to(const SavedState& state) {
    assert(_nesting > state._nesting, "rollback to inactive mark");
    assert((_nesting - state._nesting) == 1, "rollback across another mark");

    if (state._chunk->next() != nullptr) { // Delete later chunks.
      // Reset size before deleting chunks.  Otherwise, the total
      // size could exceed the total chunk size.
      assert(size_in_bytes() > state._size_in_bytes,
             "size: " SIZE_FORMAT ", saved size: " SIZE_FORMAT,
             size_in_bytes(), state._size_in_bytes);
      set_size_in_bytes(state._size_in_bytes);
      state._chunk->next_chop();
      assert(_hwm != state._hwm, "Sanity check: HWM moves when we have later chunks");
    } else {
      assert(size_in_bytes() == state._size_in_bytes, "Sanity check");
    }

    if (_hwm != state._hwm) {
      // HWM moved: resource area was used. Roll back!

      char* replaced_hwm = _hwm;

      _chunk = state._chunk;
      _hwm = state._hwm;
      _max = state._max;

      // Clear out this chunk (to detect allocation bugs).
      // If current chunk contains the replaced HWM, this means we are
      // doing the rollback within the same chunk, and we only need to
      // clear up to replaced HWM.
      if (ZapResourceArea) {
        char* limit = _chunk->contains(replaced_hwm) ? replaced_hwm : _max;
        assert(limit >= _hwm, "Sanity check: non-negative memset size");
        memset(_hwm, badResourceValue, limit - _hwm);
      }
    } else {
      // No allocations. Nothing to rollback. Check it.
      assert(_chunk == state._chunk, "Sanity check: idempotence");
      assert(_hwm == state._hwm,     "Sanity check: idempotence");
      assert(_max == state._max,     "Sanity check: idempotence");
    }
  }
};


//------------------------------ResourceMark-----------------------------------
// A resource mark releases all resources allocated after it was constructed
// when the destructor is called.  Typically used as a local variable.

// Shared part of implementation for ResourceMark and DeoptResourceMark.
class ResourceMarkImpl {
  ResourceArea* _area;          // Resource area to stack allocate
  ResourceArea::SavedState _saved_state;

  NONCOPYABLE(ResourceMarkImpl);

public:
  explicit ResourceMarkImpl(ResourceArea* area) :
    _area(area),
    _saved_state(area)
  {
    _area->activate_state(_saved_state);
  }

  explicit ResourceMarkImpl(Thread* thread)
    : ResourceMarkImpl(thread->resource_area()) {}

  ~ResourceMarkImpl() {
    reset_to_mark();
    _area->deactivate_state(_saved_state);
  }

  void reset_to_mark() const {
    _area->rollback_to(_saved_state);
  }
};

class ResourceMark: public StackObj {
  const ResourceMarkImpl _impl;
#ifdef ASSERT
  Thread* _thread;
  ResourceMark* _previous_resource_mark;
#endif // ASSERT

  NONCOPYABLE(ResourceMark);

  // Helper providing common constructor implementation.
#ifndef ASSERT
  ResourceMark(ResourceArea* area, Thread* thread) : _impl(area) {}
#else
  ResourceMark(ResourceArea* area, Thread* thread) :
    _impl(area),
    _thread(thread),
    _previous_resource_mark(nullptr)
  {
    if (_thread != nullptr) {
      assert(_thread == Thread::current(), "not the current thread");
      _previous_resource_mark = _thread->current_resource_mark();
      _thread->set_current_resource_mark(this);
    }
  }
#endif // ASSERT

public:

  ResourceMark() : ResourceMark(Thread::current()) {}

  explicit ResourceMark(Thread* thread)
    : ResourceMark(thread->resource_area(), thread) {}

  explicit ResourceMark(ResourceArea* area)
    : ResourceMark(area, DEBUG_ONLY(Thread::current_or_null()) NOT_DEBUG(nullptr)) {}

#ifdef ASSERT
  ~ResourceMark() {
    if (_thread != nullptr) {
      _thread->set_current_resource_mark(_previous_resource_mark);
    }
  }
#endif // ASSERT

  void reset_to_mark() { _impl.reset_to_mark(); }
};

//------------------------------DeoptResourceMark-----------------------------------
// A deopt resource mark releases all resources allocated after it was constructed
// when the destructor is called.  Typically used as a local variable. It differs
// from a typical resource more in that it is C-Heap allocated so that deoptimization
// can use data structures that are arena based but are not amenable to vanilla
// ResourceMarks because deoptimization can not use a stack allocated mark. During
// deoptimization we go thru the following steps:
//
// 0: start in assembly stub and call either uncommon_trap/fetch_unroll_info
// 1: create the vframeArray (contains pointers to Resource allocated structures)
//   This allocates the DeoptResourceMark.
// 2: return to assembly stub and remove stub frame and deoptee frame and create
//    the new skeletal frames.
// 3: push new stub frame and call unpack_frames
// 4: retrieve information from the vframeArray to populate the skeletal frames
// 5: release the DeoptResourceMark
// 6: return to stub and eventually to interpreter
//
// With old style eager deoptimization the vframeArray was created by the vmThread there
// was no way for the vframeArray to contain resource allocated objects and so
// a complex set of data structures to simulate an array of vframes in CHeap memory
// was used. With new style lazy deoptimization the vframeArray is created in the
// the thread that will use it and we can use a much simpler scheme for the vframeArray
// leveraging existing data structures if we simply create a way to manage this one
// special need for a ResourceMark. If ResourceMark simply inherited from CHeapObj
// then existing ResourceMarks would work fine since no one use new to allocate them
// and they would be stack allocated. This leaves open the possibility of accidental
// misuse so we duplicate the ResourceMark functionality via a shared implementation
// class.

class DeoptResourceMark: public CHeapObj<mtInternal> {
  const ResourceMarkImpl _impl;

  NONCOPYABLE(DeoptResourceMark);

public:
  explicit DeoptResourceMark(Thread* thread) : _impl(thread) {}

  void reset_to_mark() { _impl.reset_to_mark(); }
};

#endif // SHARE_MEMORY_RESOURCEAREA_HPP

¤ Dauer der Verarbeitung: 0.23 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff