products/Sources/formale Sprachen/Java/openjdk-20-36_src/src/hotspot/share/opto image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: cpCache.cpp   Sprache: C

/*
 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#include "precompiled.hpp"
#include "cds/archiveBuilder.hpp"
#include "cds/heapShared.hpp"
#include "classfile/resolutionErrors.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/systemDictionaryShared.hpp"
#include "classfile/vmClasses.hpp"
#include "code/codeCache.hpp"
#include "interpreter/bytecodeStream.hpp"
#include "interpreter/bytecodes.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/linkResolver.hpp"
#include "interpreter/rewriter.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/compressedOops.hpp"
#include "oops/constantPool.inline.hpp"
#include "oops/cpCache.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/vm_version.hpp"
#include "utilities/macros.hpp"

// Implementation of ConstantPoolCacheEntry

void ConstantPoolCacheEntry::initialize_entry(int index) {
  assert(0 < index && index < 0x10000, "sanity check");
  _indices = index;
  _f1 = NULL;
  _f2 = _flags = 0;
  assert(constant_pool_index() == index, "");
}

int ConstantPoolCacheEntry::make_flags(TosState state,
                                       int option_bits,
                                       int field_index_or_method_params) {
  assert(state < number_of_states, "Invalid state in make_flags");
  int f = ((int)state << tos_state_shift) | option_bits | field_index_or_method_params;
  // Preserve existing flag bit values
  // The low bits are a field offset, or else the method parameter size.
#ifdef ASSERT
  TosState old_state = flag_state();
  assert(old_state == (TosState)0 || old_state == state,
         "inconsistent cpCache flags state");
#endif
  return (_flags | f) ;
}

void ConstantPoolCacheEntry::set_bytecode_1(Bytecodes::Code code) {
#ifdef ASSERT
  // Read once.
  volatile Bytecodes::Code c = bytecode_1();
  assert(c == 0 || c == code || code == 0, "update must be consistent");
#endif
  // Need to flush pending stores here before bytecode is written.
  Atomic::release_store(&_indices, _indices | ((u_char)code << bytecode_1_shift));
}

void ConstantPoolCacheEntry::set_bytecode_2(Bytecodes::Code code) {
#ifdef ASSERT
  // Read once.
  volatile Bytecodes::Code c = bytecode_2();
  assert(c == 0 || c == code || code == 0, "update must be consistent");
#endif
  // Need to flush pending stores here before bytecode is written.
  Atomic::release_store(&_indices, _indices | ((u_char)code << bytecode_2_shift));
}

// Sets f1, ordering with previous writes.
void ConstantPoolCacheEntry::release_set_f1(Metadata* f1) {
  assert(f1 != NULL, "");
  Atomic::release_store(&_f1, f1);
}

void ConstantPoolCacheEntry::set_indy_resolution_failed() {
  Atomic::release_store(&_flags, _flags | (1 << indy_resolution_failed_shift));
}

// Note that concurrent update of both bytecodes can leave one of them
// reset to zero.  This is harmless; the interpreter will simply re-resolve
// the damaged entry.  More seriously, the memory synchronization is needed
// to flush other fields (f1, f2) completely to memory before the bytecodes
// are updated, lest other processors see a non-zero bytecode but zero f1/f2.
void ConstantPoolCacheEntry::set_field(Bytecodes::Code get_code,
                                       Bytecodes::Code put_code,
                                       Klass* field_holder,
                                       int field_index,
                                       int field_offset,
                                       TosState field_type,
                                       bool is_final,
                                       bool is_volatile) {
  set_f1(field_holder);
  set_f2(field_offset);
  assert((field_index & field_index_mask) == field_index,
         "field index does not fit in low flag bits");
  set_field_flags(field_type,
                  ((is_volatile ? 1 : 0) << is_volatile_shift) |
                  ((is_final    ? 1 : 0) << is_final_shift),
                  field_index);
  set_bytecode_1(get_code);
  set_bytecode_2(put_code);
  NOT_PRODUCT(verify(tty));
}

void ConstantPoolCacheEntry::set_parameter_size(int value) {
  // This routine is called only in corner cases where the CPCE is not yet initialized.
  // See AbstractInterpreter::deopt_continue_after_entry.
  assert(_flags == 0 || parameter_size() == 0 || parameter_size() == value,
         "size must not change: parameter_size=%d, value=%d", parameter_size(), value);
  // Setting the parameter size by itself is only safe if the
  // current value of _flags is 0, otherwise another thread may have
  // updated it and we don't want to overwrite that value.  Don't
  // bother trying to update it once it's nonzero but always make
  // sure that the final parameter size agrees with what was passed.
  if (_flags == 0) {
    intx newflags = (value & parameter_size_mask);
    Atomic::cmpxchg(&_flags, (intx)0, newflags);
  }
  guarantee(parameter_size() == value,
            "size must not change: parameter_size=%d, value=%d", parameter_size(), value);
}

void ConstantPoolCacheEntry::set_direct_or_vtable_call(Bytecodes::Code invoke_code,
                                                       const methodHandle& method,
                                                       int vtable_index,
                                                       bool sender_is_interface) {
  bool is_vtable_call = (vtable_index >= 0);  // FIXME: split this method on this boolean
  assert(method->interpreter_entry() != NULL, "should have been set at this point");
  assert(!method->is_obsolete(),  "attempt to write obsolete method to cpCache");

  int byte_no = -1;
  bool change_to_virtual = false;
  InstanceKlass* holder = NULL;  // have to declare this outside the switch
  switch (invoke_code) {
    case Bytecodes::_invokeinterface:
      holder = method->method_holder();
      // check for private interface method invocations
      if (vtable_index == Method::nonvirtual_vtable_index && holder->is_interface() ) {
        assert(method->is_private(), "unexpected non-private method");
        assert(method->can_be_statically_bound(), "unexpected non-statically-bound method");
        // set_f2_as_vfinal_method checks if is_vfinal flag is true.
        set_method_flags(as_TosState(method->result_type()),
                         (                             1      << is_vfinal_shift) |
                         ((method->is_final_method() ? 1 : 0) << is_final_shift),
                         method()->size_of_parameters());
        set_f2_as_vfinal_method(method());
        byte_no = 2;
        set_f1(holder); // interface klass*
        break;
      }
      else {
        // We get here from InterpreterRuntime::resolve_invoke when an invokeinterface
        // instruction links to a non-interface method (in Object). This can happen when
        // an interface redeclares an Object method (like CharSequence declaring toString())
        // or when invokeinterface is used explicitly.
        // In that case, the method has no itable index and must be invoked as a virtual.
        // Set a flag to keep track of this corner case.
        assert(holder->is_interface() || holder == vmClasses::Object_klass(), "unexpected holder class");
        assert(method->is_public(), "Calling non-public method in Object with invokeinterface");
        change_to_virtual = true;

        // ...and fall through as if we were handling invokevirtual:
      }
    case Bytecodes::_invokevirtual:
      {
        if (!is_vtable_call) {
          assert(method->can_be_statically_bound(), "");
          // set_f2_as_vfinal_method checks if is_vfinal flag is true.
          set_method_flags(as_TosState(method->result_type()),
                           (                             1      << is_vfinal_shift) |
                           ((method->is_final_method() ? 1 : 0) << is_final_shift)  |
                           ((change_to_virtual         ? 1 : 0) << is_forced_virtual_shift),
                           method()->size_of_parameters());
          set_f2_as_vfinal_method(method());
        } else {
          assert(!method->can_be_statically_bound(), "");
          assert(vtable_index >= 0, "valid index");
          assert(!method->is_final_method(), "sanity");
          set_method_flags(as_TosState(method->result_type()),
                           ((change_to_virtual ? 1 : 0) << is_forced_virtual_shift),
                           method()->size_of_parameters());
          set_f2(vtable_index);
        }
        byte_no = 2;
        break;
      }

    case Bytecodes::_invokespecial:
    case Bytecodes::_invokestatic:
      assert(!is_vtable_call, "");
      // Note:  Read and preserve the value of the is_vfinal flag on any
      // invokevirtual bytecode shared with this constant pool cache entry.
      // It is cheap and safe to consult is_vfinal() at all times.
      // Once is_vfinal is set, it must stay that way, lest we get a dangling oop.
      set_method_flags(as_TosState(method->result_type()),
                       ((is_vfinal()               ? 1 : 0) << is_vfinal_shift) |
                       ((method->is_final_method() ? 1 : 0) << is_final_shift),
                       method()->size_of_parameters());
      set_f1(method());
      byte_no = 1;
      break;
    default:
      ShouldNotReachHere();
      break;
  }

  // Note:  byte_no also appears in TemplateTable::resolve.
  if (byte_no == 1) {
    assert(invoke_code != Bytecodes::_invokevirtual &&
           invoke_code != Bytecodes::_invokeinterface, "");
    bool do_resolve = true;
    // Don't mark invokespecial to method as resolved if sender is an interface.  The receiver
    // has to be checked that it is a subclass of the current class every time this bytecode
    // is executed.
    if (invoke_code == Bytecodes::_invokespecial && sender_is_interface &&
        method->name() != vmSymbols::object_initializer_name()) {
      do_resolve = false;
    }
    if (invoke_code == Bytecodes::_invokestatic) {
      assert(method->method_holder()->is_initialized() ||
             method->method_holder()->is_init_thread(Thread::current()),
             "invalid class initialization state for invoke_static");

      if (!VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
        // Don't mark invokestatic to method as resolved if the holder class has not yet completed
        // initialization. An invokestatic must only proceed if the class is initialized, but if
        // we resolve it before then that class initialization check is skipped.
        //
        // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
        // template interpreter supports fast class initialization check for
        // invokestatic which doesn't require call site re-resolution to
        // enforce class initialization barrier.
        do_resolve = false;
      }
    }
    if (do_resolve) {
      set_bytecode_1(invoke_code);
    }
  } else if (byte_no == 2)  {
    if (change_to_virtual) {
      assert(invoke_code == Bytecodes::_invokeinterface, "");
      // NOTE: THIS IS A HACK - BE VERY CAREFUL!!!
      //
      // Workaround for the case where we encounter an invokeinterface, but we
      // should really have an _invokevirtual since the resolved method is a
      // virtual method in java.lang.Object. This is a corner case in the spec
      // but is presumably legal. javac does not generate this code.
      //
      // We do not set bytecode_1() to _invokeinterface, because that is the
      // bytecode # used by the interpreter to see if it is resolved.  In this
      // case, the method gets reresolved with caller for each interface call
      // because the actual selected method may not be public.
      //
      // We set bytecode_2() to _invokevirtual.
      // See also interpreterRuntime.cpp. (8/25/2000)
    } else {
      assert(invoke_code == Bytecodes::_invokevirtual ||
             (invoke_code == Bytecodes::_invokeinterface &&
              ((method->is_private() ||
                (method->is_final() && method->method_holder() == vmClasses::Object_klass())))),
             "unexpected invocation mode");
      if (invoke_code == Bytecodes::_invokeinterface &&
          (method->is_private() || method->is_final())) {
        // We set bytecode_1() to _invokeinterface, because that is the
        // bytecode # used by the interpreter to see if it is resolved.
        // We set bytecode_2() to _invokevirtual.
        set_bytecode_1(invoke_code);
      }
    }
    // set up for invokevirtual, even if linking for invokeinterface also:
    set_bytecode_2(Bytecodes::_invokevirtual);
  } else {
    ShouldNotReachHere();
  }
  NOT_PRODUCT(verify(tty));
}

void ConstantPoolCacheEntry::set_direct_call(Bytecodes::Code invoke_code, const methodHandle& method,
                                             bool sender_is_interface) {
  int index = Method::nonvirtual_vtable_index;
  // index < 0; FIXME: inline and customize set_direct_or_vtable_call
  set_direct_or_vtable_call(invoke_code, method, index, sender_is_interface);
}

void ConstantPoolCacheEntry::set_vtable_call(Bytecodes::Code invoke_code, const methodHandle& method, int index) {
  // either the method is a miranda or its holder should accept the given index
  assert(method->method_holder()->is_interface() || method->method_holder()->verify_vtable_index(index), "");
  // index >= 0; FIXME: inline and customize set_direct_or_vtable_call
  set_direct_or_vtable_call(invoke_code, method, index, false);
}

void ConstantPoolCacheEntry::set_itable_call(Bytecodes::Code invoke_code,
                                             Klass* referenced_klass,
                                             const methodHandle& method, int index) {
  assert(method->method_holder()->verify_itable_index(index), "");
  assert(invoke_code == Bytecodes::_invokeinterface, "");
  InstanceKlass* interf = method->method_holder();
  assert(interf->is_interface(), "must be an interface");
  assert(!method->is_final_method(), "interfaces do not have final methods; cannot link to one here");
  set_f1(referenced_klass);
  set_f2((intx)method());
  set_method_flags(as_TosState(method->result_type()),
                   0,  // no option bits
                   method()->size_of_parameters());
  set_bytecode_1(Bytecodes::_invokeinterface);
}


void ConstantPoolCacheEntry::set_method_handle(const constantPoolHandle& cpool, const CallInfo &call_info) {
  set_method_handle_common(cpool, Bytecodes::_invokehandle, call_info);
}

void ConstantPoolCacheEntry::set_dynamic_call(const constantPoolHandle& cpool, const CallInfo &call_info) {
  set_method_handle_common(cpool, Bytecodes::_invokedynamic, call_info);
}

void ConstantPoolCacheEntry::set_method_handle_common(const constantPoolHandle& ;cpool,
                                                      Bytecodes::Code invoke_code,
                                                      const CallInfo &call_info) {
  // NOTE: This CPCE can be the subject of data races.
  // There are three words to update: flags, refs[f2], f1 (in that order).
  // Writers must store all other values before f1.
  // Readers must test f1 first for non-null before reading other fields.
  // Competing writers must acquire exclusive access via a lock.
  // A losing writer waits on the lock until the winner writes f1 and leaves
  // the lock, so that when the losing writer returns, he can use the linked
  // cache entry.
  // Lock fields to write
  MutexLocker ml(cpool->pool_holder()->init_monitor());

  if (!is_f1_null()) {
    return;
  }

  if (indy_resolution_failed()) {
    // Before we got here, another thread got a LinkageError exception during
    // resolution.  Ignore our success and throw their exception.
    ConstantPoolCache* cpCache = cpool->cache();
    int index = -1;
    for (int i = 0; i < cpCache->length(); i++) {
      if (cpCache->entry_at(i) == this) {
        index = i;
        break;
      }
    }
    guarantee(index >= 0, "Didn't find cpCache entry!");
    int encoded_index = ResolutionErrorTable::encode_cpcache_index(
                          ConstantPool::encode_invokedynamic_index(index));
    JavaThread* THREAD = JavaThread::current(); // For exception macros.
    ConstantPool::throw_resolution_error(cpool, encoded_index, THREAD);
    return;
  }

  Method* adapter            = call_info.resolved_method();
  const Handle appendix      = call_info.resolved_appendix();
  const bool has_appendix    = appendix.not_null();

  // Write the flags.
  // MHs and indy are always sig-poly and have a local signature.
  set_method_flags(as_TosState(adapter->result_type()),
                   ((has_appendix    ? 1 : 0) << has_appendix_shift        ) |
                   (                   1      << has_local_signature_shift ) |
                   (                   1      << is_final_shift            ),
                   adapter->size_of_parameters());

  LogStream* log_stream = NULL;
  LogStreamHandle(Debug, methodhandles, indy) lsh_indy;
  if (lsh_indy.is_enabled()) {
    ResourceMark rm;
    log_stream = &lsh_indy;
    log_stream->print_cr("set_method_handle bc=%d appendix=" PTR_FORMAT "%s method=" PTR_FORMAT " (local signature) ",
                         invoke_code,
                         p2i(appendix()),
                         (has_appendix ? "" : " (unused)"),
                         p2i(adapter));
    adapter->print_on(log_stream);
    if (has_appendix)  appendix()->print_on(log_stream);
  }

  // Method handle invokes and invokedynamic sites use both cp cache words.
  // refs[f2], if not null, contains a value passed as a trailing argument to the adapter.
  // In the general case, this could be the call site's MethodType,
  // for use with java.lang.Invokers.checkExactType, or else a CallSite object.
  // f1 contains the adapter method which manages the actual call.
  // In the general case, this is a compiled LambdaForm.
  // (The Java code is free to optimize these calls by binding other
  // sorts of methods and appendices to call sites.)
  // JVM-level linking is via f1, as if for invokespecial, and signatures are erased.
  // The appendix argument (if any) is added to the signature, and is counted in the parameter_size bits.
  // Even with the appendix, the method will never take more than 255 parameter slots.
  //
  // This means that given a call site like (List)mh.invoke("foo"),
  // the f1 method has signature '(Ljl/Object;Ljl/invoke/MethodType;)Ljl/Object;',
  // not '(Ljava/lang/String;)Ljava/util/List;'.
  // The fact that String and List are involved is encoded in the MethodType in refs[f2].
  // This allows us to create fewer Methods, while keeping type safety.
  //

  // Store appendix, if any.
  if (has_appendix) {
    const int appendix_index = f2_as_index();
    objArrayOop resolved_references = cpool->resolved_references();
    assert(appendix_index >= 0 && appendix_index < resolved_references->length(), "oob");
    assert(resolved_references->obj_at(appendix_index) == NULL, "init just once");
    resolved_references->obj_at_put(appendix_index, appendix());
  }

  release_set_f1(adapter);  // This must be the last one to set (see NOTE above)!

  // The interpreter assembly code does not check byte_2,
  // but it is used by is_resolved, method_if_resolved, etc.
  set_bytecode_1(invoke_code);
  NOT_PRODUCT(verify(tty));

  if (log_stream != NULL) {
    this->print(log_stream, 0, cpool->cache());
  }

  assert(has_appendix == this->has_appendix(), "proper storage of appendix flag");
  assert(this->has_local_signature(), "proper storage of signature flag");
}

bool ConstantPoolCacheEntry::save_and_throw_indy_exc(
  const constantPoolHandle& cpool, int cpool_index, int index, constantTag tag, TRAPS) {

  assert(HAS_PENDING_EXCEPTION, "No exception got thrown!");
  assert(PENDING_EXCEPTION->is_a(vmClasses::LinkageError_klass()),
         "No LinkageError exception");

  MutexLocker ml(THREAD, cpool->pool_holder()->init_monitor());

  // if f1 is not null or the indy_resolution_failed flag is set then another
  // thread either succeeded in resolving the method or got a LinkageError
  // exception, before this thread was able to record its failure.  So, clear
  // this thread's exception and return false so caller can use the earlier
  // thread's result.
  if (!is_f1_null() || indy_resolution_failed()) {
    CLEAR_PENDING_EXCEPTION;
    return false;
  }

  Symbol* error = PENDING_EXCEPTION->klass()->name();
  Symbol* message = java_lang_Throwable::detail_message(PENDING_EXCEPTION);

  SystemDictionary::add_resolution_error(cpool, index, error, message);
  set_indy_resolution_failed();
  return true;
}

Method* ConstantPoolCacheEntry::method_if_resolved(const constantPoolHandle& cpool) const {
  // Decode the action of set_method and set_interface_call
  Bytecodes::Code invoke_code = bytecode_1();
  if (invoke_code != (Bytecodes::Code)0) {
    Metadata* f1 = f1_ord();
    if (f1 != NULL) {
      switch (invoke_code) {
      case Bytecodes::_invokeinterface:
        assert(f1->is_klass(), "");
        return f2_as_interface_method();
      case Bytecodes::_invokestatic:
      case Bytecodes::_invokespecial:
        assert(!has_appendix(), "");
      case Bytecodes::_invokehandle:
      case Bytecodes::_invokedynamic:
        assert(f1->is_method(), "");
        return (Method*)f1;
      default:
        break;
      }
    }
  }
  invoke_code = bytecode_2();
  if (invoke_code != (Bytecodes::Code)0) {
    switch (invoke_code) {
    case Bytecodes::_invokevirtual:
      if (is_vfinal()) {
        // invokevirtual
        Method* m = f2_as_vfinal_method();
        assert(m->is_method(), "");
        return m;
      } else {
        int holder_index = cpool->uncached_klass_ref_index_at(constant_pool_index());
        if (cpool->tag_at(holder_index).is_klass()) {
          Klass* klass = cpool->resolved_klass_at(holder_index);
          return klass->method_at_vtable(f2_as_index());
        }
      }
      break;
    default:
      break;
    }
  }
  return NULL;
}


oop ConstantPoolCacheEntry::appendix_if_resolved(const constantPoolHandle& cpool) const {
  if (!has_appendix())
    return NULL;
  const int ref_index = f2_as_index();
  objArrayOop resolved_references = cpool->resolved_references();
  return resolved_references->obj_at(ref_index);
}


#if INCLUDE_JVMTI

void log_adjust(const char* entry_type, Method* old_method, Method* new_method, bool* trace_name_printed) {
  ResourceMark rm;

  if (!(*trace_name_printed)) {
    log_info(redefine, class, update)("adjust: name=%s", old_method->method_holder()->external_name());
    *trace_name_printed = true;
  }
  log_trace(redefine, class, update, constantpool)
    ("cpc %s entry update: %s", entry_type, new_method->external_name());
}

// RedefineClasses() API support:
// If this ConstantPoolCacheEntry refers to old_method then update it
// to refer to new_method.
void ConstantPoolCacheEntry::adjust_method_entry(Method* old_method,
       Method* new_method, bool * trace_name_printed) {

  if (is_vfinal()) {
    // virtual and final so _f2 contains method ptr instead of vtable index
    if (f2_as_vfinal_method() == old_method) {
      // match old_method so need an update
      // NOTE: can't use set_f2_as_vfinal_method as it asserts on different values
      _f2 = (intptr_t)new_method;
      log_adjust("vfinal", old_method, new_method, trace_name_printed);
    }
    return;
  }

  assert (_f1 != NULL, "should not call with uninteresting entry");

  if (!(_f1->is_method())) {
    // _f1 is a Klass* for an interface, _f2 is the method
    if (f2_as_interface_method() == old_method) {
      _f2 = (intptr_t)new_method;
      log_adjust("interface", old_method, new_method, trace_name_printed);
    }
  } else if (_f1 == old_method) {
    _f1 = new_method;
    log_adjust("special, static or dynamic", old_method, new_method, trace_name_printed);
  }
}

// a constant pool cache entry should never contain old or obsolete methods
bool ConstantPoolCacheEntry::check_no_old_or_obsolete_entries() {
  Method* m = get_interesting_method_entry();
  // return false if m refers to a non-deleted old or obsolete method
  if (m != NULL) {
    assert(m->is_valid() && m->is_method(), "m is a valid method");
    return !m->is_old() && !m->is_obsolete(); // old is always set for old and obsolete
  } else {
    return true;
  }
}

Method* ConstantPoolCacheEntry::get_interesting_method_entry() {
  if (!is_method_entry()) {
    // not a method entry so not interesting by default
    return NULL;
  }
  Method* m = NULL;
  if (is_vfinal()) {
    // virtual and final so _f2 contains method ptr instead of vtable index
    m = f2_as_vfinal_method();
  } else if (is_f1_null()) {
    // NULL _f1 means this is a virtual entry so also not interesting
    return NULL;
  } else {
    if (!(_f1->is_method())) {
      // _f1 is a Klass* for an interface
      m = f2_as_interface_method();
    } else {
      m = f1_as_method();
    }
  }
  assert(m != NULL && m->is_method(), "sanity check");
  if (m == NULL || !m->is_method()) {
    return NULL;
  }
  return m;
}
#endif // INCLUDE_JVMTI

void ConstantPoolCacheEntry::print(outputStream* st, int index, const ConstantPoolCache* cache) const {
  // print separator
  if (index == 0) st->print_cr(" -------------");
  // print universal entry info
  st->print_cr("%3d", index);
  st->print_cr(" - this: " PTR_FORMAT, p2i(this));
  st->print_cr(" - bytecode 1: %s %02x", Bytecodes::name(bytecode_1()), bytecode_1());
  st->print_cr(" - bytecode 2: %s %02x", Bytecodes::name(bytecode_2()), bytecode_2());
  st->print_cr(" - cp index: %5d", constant_pool_index());
  if (is_method_entry()) {
    ResourceMark rm;
    constantPoolHandle cph(Thread::current(), cache->constant_pool());
    Method* m = method_if_resolved(cph);
    st->print_cr(" - F1: [ " PTR_FORMAT "]", (intptr_t)_f1);
    st->print_cr(" - F2: [ " PTR_FORMAT "]", (intptr_t)_f2);
    st->print_cr(" - method: " INTPTR_FORMAT " %s", p2i(m), m != nullptr ? m->external_name() : nullptr);
    st->print_cr(" - flag values: [%02x|0|0|%01x|%01x|%01x|%01x|0|%01x|%01x|00|00|%02x]",
                 flag_state(), has_local_signature(), has_appendix(),
                 is_forced_virtual(), is_final(), is_vfinal(),
                 indy_resolution_failed(), parameter_size());
    st->print_cr(" - tos: %s\n - local signature: %01x\n"
                 " - has appendix: %01x\n - forced virtual: %01x\n"
                 " - final: %01x\n - virtual final: %01x\n - resolution failed: %01x\n"
                 " - num parameters: %02x",
                 type2name(as_BasicType(flag_state())), has_local_signature(), has_appendix(),
                 is_forced_virtual(), is_final(), is_vfinal(),
                 indy_resolution_failed(), parameter_size());
    if (bytecode_1() == Bytecodes::_invokehandle ||
        bytecode_1() == Bytecodes::_invokedynamic) {
      oop appendix = appendix_if_resolved(cph);
      if (appendix != nullptr) {
        st->print(" appendix: ");
        appendix->print_on(st);
      }
    }
  } else {
    assert(is_field_entry(), "must be a field entry");
    st->print_cr(" - F1: [ " PTR_FORMAT "]", (intptr_t)_f1);
    st->print_cr(" - F2: [ " PTR_FORMAT "]", (intptr_t)_f2);
    st->print_cr(" - flag values: [%02x|0|1|0|0|0|%01x|%01x|0|0|%04x]",
                 flag_state(), is_final(), is_volatile(), field_index());
    st->print_cr(" - tos: %s\n - final: %d\n - volatile: %d\n - field index: %04x",
                 type2name(as_BasicType(flag_state())), is_final(), is_volatile(), field_index());
  }
  st->print_cr(" -------------");
}

void ConstantPoolCacheEntry::verify(outputStream* st) const {
  // not implemented yet
}

// Implementation of ConstantPoolCache

ConstantPoolCache* ConstantPoolCache::allocate(ClassLoaderData* loader_data,
                                     const intStack& index_map,
                                     const intStack& invokedynamic_index_map,
                                     const intStack& invokedynamic_map, TRAPS) {

  const int length = index_map.length() + invokedynamic_index_map.length();
  int size = ConstantPoolCache::size(length);

  return new (loader_data, size, MetaspaceObj::ConstantPoolCacheType, THREAD)
    ConstantPoolCache(length, index_map, invokedynamic_index_map, invokedynamic_map);
}

void ConstantPoolCache::initialize(const intArray& inverse_index_map,
                                   const intArray& invokedynamic_inverse_index_map,
                                   const intArray& invokedynamic_references_map) {
  for (int i = 0; i < inverse_index_map.length(); i++) {
    ConstantPoolCacheEntry* e = entry_at(i);
    int original_index = inverse_index_map.at(i);
    e->initialize_entry(original_index);
    assert(entry_at(i) == e, "sanity");
  }

  // Append invokedynamic entries at the end
  int invokedynamic_offset = inverse_index_map.length();
  for (int i = 0; i < invokedynamic_inverse_index_map.length(); i++) {
    int offset = i + invokedynamic_offset;
    ConstantPoolCacheEntry* e = entry_at(offset);
    int original_index = invokedynamic_inverse_index_map.at(i);
    e->initialize_entry(original_index);
    assert(entry_at(offset) == e, "sanity");
  }

  for (int ref = 0; ref < invokedynamic_references_map.length(); ref++) {
    const int cpci = invokedynamic_references_map.at(ref);
    if (cpci >= 0) {
      entry_at(cpci)->initialize_resolved_reference_index(ref);
    }
  }
}

// Record the GC marking cycle when redefined vs. when found in the loom stack chunks.
void ConstantPoolCache::record_gc_epoch() {
  _gc_epoch = CodeCache::gc_epoch();
}

#if INCLUDE_CDS
void ConstantPoolCache::save_for_archive(TRAPS) {
  ClassLoaderData* loader_data = constant_pool()->pool_holder()->class_loader_data();
  _initial_entries = MetadataFactory::new_array<ConstantPoolCacheEntry>(loader_data, length(), CHECK);
  for (int i = 0; i < length(); i++) {
    _initial_entries->at_put(i, *entry_at(i));
  }
}

void ConstantPoolCache::remove_unshareable_info() {
  Arguments::assert_is_dumping_archive();
  // <this> is the copy to be written into the archive. It's in the ArchiveBuilder's "buffer space".
  // However, this->_initial_entries was not copied/relocated by the ArchiveBuilder, so it's
  // still pointing to the array allocated inside save_for_archive().
  assert(_initial_entries != NULL, "archived cpcache must have been initialized");
  assert(!ArchiveBuilder::current()->is_in_buffer_space(_initial_entries), "must be");
  for (int i=0; i<length(); i++) {
    // Restore each entry to the initial state -- just after Rewriter::make_constant_pool_cache()
    // has finished.
    *entry_at(i) = _initial_entries->at(i);
  }
  _initial_entries = NULL;
}
#endif // INCLUDE_CDS

void ConstantPoolCache::deallocate_contents(ClassLoaderData* data) {
  assert(!is_shared(), "shared caches are not deallocated");
  data->remove_handle(_resolved_references);
  set_resolved_references(OopHandle());
  MetadataFactory::free_array<u2>(data, _reference_map);
  set_reference_map(NULL);
#if INCLUDE_CDS
  if (_initial_entries != NULL) {
    Arguments::assert_is_dumping_archive();
    MetadataFactory::free_array<ConstantPoolCacheEntry>(data, _initial_entries);
    _initial_entries = NULL;
  }
#endif
}

#if INCLUDE_CDS_JAVA_HEAP
oop ConstantPoolCache::archived_references() {
  if (_archived_references_index < 0) {
    return NULL;
  }
  return HeapShared::get_root(_archived_references_index);
}

void ConstantPoolCache::clear_archived_references() {
  if (_archived_references_index >= 0) {
    HeapShared::clear_root(_archived_references_index);
    _archived_references_index = -1;
  }
}

void ConstantPoolCache::set_archived_references(oop o) {
  assert(DumpSharedSpaces, "called only during runtime");
  _archived_references_index = HeapShared::append_root(o);
}
#endif

#if INCLUDE_JVMTI
// RedefineClasses() API support:
// If any entry of this ConstantPoolCache points to any of
// old_methods, replace it with the corresponding new_method.
void ConstantPoolCache::adjust_method_entries(bool * trace_name_printed) {
  for (int i = 0; i < length(); i++) {
    ConstantPoolCacheEntry* entry = entry_at(i);
    Method* old_method = entry->get_interesting_method_entry();
    if (old_method == NULL || !old_method->is_old()) {
      continue// skip uninteresting entries
    }
    if (old_method->is_deleted()) {
      // clean up entries with deleted methods
      entry->initialize_entry(entry->constant_pool_index());
      continue;
    }
    Method* new_method = old_method->get_new_method();
    entry_at(i)->adjust_method_entry(old_method, new_method, trace_name_printed);
  }
}

// the constant pool cache should never contain old or obsolete methods
bool ConstantPoolCache::check_no_old_or_obsolete_entries() {
  ResourceMark rm;
  for (int i = 1; i < length(); i++) {
    Method* m = entry_at(i)->get_interesting_method_entry();
    if (m != NULL && !entry_at(i)->check_no_old_or_obsolete_entries()) {
      log_trace(redefine, class, update, constantpool)
        ("cpcache check found old method entry: class: %s, old: %d, obsolete: %d, method: %s",
         constant_pool()->pool_holder()->external_name(), m->is_old(), m->is_obsolete(), m->external_name());
      return false;
    }
  }
  return true;
}

void ConstantPoolCache::dump_cache() {
  for (int i = 1; i < length(); i++) {
    if (entry_at(i)->get_interesting_method_entry() != NULL) {
      entry_at(i)->print(tty, i, this);
    }
  }
}
#endif // INCLUDE_JVMTI

void ConstantPoolCache::metaspace_pointers_do(MetaspaceClosure* it) {
  log_trace(cds)("Iter(ConstantPoolCache): %p"this);
  it->push(&_constant_pool);
  it->push(&_reference_map);
}

// Printing

void ConstantPoolCache::print_on(outputStream* st) const {
  st->print_cr("%s", internal_name());
  // print constant pool cache entries
  for (int i = 0; i < length(); i++) entry_at(i)->print(st, i, this);
}

void ConstantPoolCache::print_value_on(outputStream* st) const {
  st->print("cache [%d]", length());
  print_address_on(st);
  st->print(" for ");
  constant_pool()->print_value_on(st);
}


// Verification

void ConstantPoolCache::verify_on(outputStream* st) {
  // print constant pool cache entries
  for (int i = 0; i < length(); i++) entry_at(i)->verify(st);
}

¤ Dauer der Verarbeitung: 0.51 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff