products/Sources/formale Sprachen/Java/openjdk-20-36_src/src/hotspot/share/oops image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: method.hpp   Sprache: C

/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#include "precompiled.hpp"
#include "cds/cppVtables.hpp"
#include "cds/metaspaceShared.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/metadataOnStackMark.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmClasses.hpp"
#include "code/codeCache.hpp"
#include "code/debugInfoRec.hpp"
#include "compiler/compilationPolicy.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/bytecodeStream.hpp"
#include "interpreter/bytecodeTracer.hpp"
#include "interpreter/bytecodes.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/oopMapCache.hpp"
#include "logging/log.hpp"
#include "logging/logTag.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/constMethod.hpp"
#include "oops/constantPool.hpp"
#include "oops/klass.inline.hpp"
#include "oops/method.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/continuationEntry.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/relocator.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/vm_version.hpp"
#include "services/memTracker.hpp"
#include "utilities/align.hpp"
#include "utilities/quickSort.hpp"
#include "utilities/vmError.hpp"
#include "utilities/xmlstream.hpp"

// Implementation of Method

Method* Method::allocate(ClassLoaderData* loader_data,
                         int byte_code_size,
                         AccessFlags access_flags,
                         InlineTableSizes* sizes,
                         ConstMethod::MethodType method_type,
                         Symbol* name,
                         TRAPS) {
  assert(!access_flags.is_native() || byte_code_size == 0,
         "native methods should not contain byte codes");
  ConstMethod* cm = ConstMethod::allocate(loader_data,
                                          byte_code_size,
                                          sizes,
                                          method_type,
                                          CHECK_NULL);
  int size = Method::size(access_flags.is_native());
  return new (loader_data, size, MetaspaceObj::MethodType, THREAD) Method(cm, access_flags, name);
}

Method::Method(ConstMethod* xconst, AccessFlags access_flags, Symbol* name) {
  NoSafepointVerifier no_safepoint;
  set_constMethod(xconst);
  set_access_flags(access_flags);
  set_intrinsic_id(vmIntrinsics::_none);
  set_force_inline(false);
  set_hidden(false);
  set_dont_inline(false);
  set_changes_current_thread(false);
  set_has_injected_profile(false);
  set_method_data(NULL);
  clear_method_counters();
  set_vtable_index(Method::garbage_vtable_index);

  // Fix and bury in Method*
  set_interpreter_entry(NULL); // sets i2i entry and from_int
  set_adapter_entry(NULL);
  Method::clear_code(); // from_c/from_i get set to c2i/i2i

  if (access_flags.is_native()) {
    clear_native_function();
    set_signature_handler(NULL);
  }

  NOT_PRODUCT(set_compiled_invocation_count(0);)
  // Name is very useful for debugging.
  NOT_PRODUCT(_name = name;)
}

// Release Method*.  The nmethod will be gone when we get here because
// we've walked the code cache.
void Method::deallocate_contents(ClassLoaderData* loader_data) {
  MetadataFactory::free_metadata(loader_data, constMethod());
  set_constMethod(NULL);
  MetadataFactory::free_metadata(loader_data, method_data());
  set_method_data(NULL);
  MetadataFactory::free_metadata(loader_data, method_counters());
  clear_method_counters();
  // The nmethod will be gone when we get here.
  if (code() != NULL) _code = NULL;
}

void Method::release_C_heap_structures() {
  if (method_data()) {
    method_data()->release_C_heap_structures();

    // Destroy MethodData embedded lock
    method_data()->~MethodData();
  }
}

address Method::get_i2c_entry() {
  assert(adapter() != NULL, "must have");
  return adapter()->get_i2c_entry();
}

address Method::get_c2i_entry() {
  assert(adapter() != NULL, "must have");
  return adapter()->get_c2i_entry();
}

address Method::get_c2i_unverified_entry() {
  assert(adapter() != NULL, "must have");
  return adapter()->get_c2i_unverified_entry();
}

address Method::get_c2i_no_clinit_check_entry() {
  assert(VM_Version::supports_fast_class_init_checks(), "");
  assert(adapter() != NULL, "must have");
  return adapter()->get_c2i_no_clinit_check_entry();
}

char* Method::name_and_sig_as_C_string() const {
  return name_and_sig_as_C_string(constants()->pool_holder(), name(), signature());
}

char* Method::name_and_sig_as_C_string(char* buf, int size) const {
  return name_and_sig_as_C_string(constants()->pool_holder(), name(), signature(), buf, size);
}

char* Method::name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature) {
  const char* klass_name = klass->external_name();
  int klass_name_len  = (int)strlen(klass_name);
  int method_name_len = method_name->utf8_length();
  int len             = klass_name_len + 1 + method_name_len + signature->utf8_length();
  char* dest          = NEW_RESOURCE_ARRAY(char, len + 1);
  strcpy(dest, klass_name);
  dest[klass_name_len] = '.';
  strcpy(&dest[klass_name_len + 1], method_name->as_C_string());
  strcpy(&dest[klass_name_len + 1 + method_name_len], signature->as_C_string());
  dest[len] = 0;
  return dest;
}

char* Method::name_and_sig_as_C_string(Klass* klass, Symbol* method_name, Symbol* signature, char* buf, int size) {
  Symbol* klass_name = klass->name();
  klass_name->as_klass_external_name(buf, size);
  int len = (int)strlen(buf);

  if (len < size - 1) {
    buf[len++] = '.';

    method_name->as_C_string(&(buf[len]), size - len);
    len = (int)strlen(buf);

    signature->as_C_string(&(buf[len]), size - len);
  }

  return buf;
}

const char* Method::external_name() const {
  return external_name(constants()->pool_holder(), name(), signature());
}

void Method::print_external_name(outputStream *os) const {
  print_external_name(os, constants()->pool_holder(), name(), signature());
}

const char* Method::external_name(Klass* klass, Symbol* method_name, Symbol* signature) {
  stringStream ss;
  print_external_name(&ss, klass, method_name, signature);
  return ss.as_string();
}

void Method::print_external_name(outputStream *os, Klass* klass, Symbol* method_name, Symbol* signature) {
  signature->print_as_signature_external_return_type(os);
  os->print(" %s.%s(", klass->external_name(), method_name->as_C_string());
  signature->print_as_signature_external_parameters(os);
  os->print(")");
}

int Method::fast_exception_handler_bci_for(const methodHandle& mh, Klass* ex_klass, int throw_bci, TRAPS) {
  if (log_is_enabled(Debug, exceptions)) {
    ResourceMark rm(THREAD);
    log_debug(exceptions)("Looking for catch handler for exception of type \"%s\" in method \"%s\"",
                          ex_klass == NULL ? "NULL" : ex_klass->external_name(), mh->name()->as_C_string());
  }
  // exception table holds quadruple entries of the form (beg_bci, end_bci, handler_bci, klass_index)
  // access exception table
  ExceptionTable table(mh());
  int length = table.length();
  // iterate through all entries sequentially
  constantPoolHandle pool(THREAD, mh->constants());
  for (int i = 0; i < length; i ++) {
    //reacquire the table in case a GC happened
    ExceptionTable table(mh());
    int beg_bci = table.start_pc(i);
    int end_bci = table.end_pc(i);
    assert(beg_bci <= end_bci, "inconsistent exception table");
    log_debug(exceptions)(" - checking exception table entry for BCI %d to %d",
                         beg_bci, end_bci);

    if (beg_bci <= throw_bci && throw_bci < end_bci) {
      // exception handler bci range covers throw_bci => investigate further
      log_debug(exceptions)(" - entry covers throw point BCI %d", throw_bci);

      int handler_bci = table.handler_pc(i);
      int klass_index = table.catch_type_index(i);
      if (klass_index == 0) {
        if (log_is_enabled(Info, exceptions)) {
          ResourceMark rm(THREAD);
          log_info(exceptions)("Found catch-all handler for exception of type \"%s\" in method \"%s\" at BCI: %d",
                               ex_klass == NULL ? "NULL" : ex_klass->external_name(), mh->name()->as_C_string(), handler_bci);
        }
        return handler_bci;
      } else if (ex_klass == NULL) {
        // Is this even possible?
        if (log_is_enabled(Info, exceptions)) {
          ResourceMark rm(THREAD);
          log_info(exceptions)("NULL exception class is implicitly caught by handler in method \"%s\" at BCI: %d",
                               mh()->name()->as_C_string(), handler_bci);
        }
        return handler_bci;
      } else {
        if (log_is_enabled(Debug, exceptions)) {
          ResourceMark rm(THREAD);
          log_debug(exceptions)(" - resolving catch type \"%s\"",
                               pool->klass_name_at(klass_index)->as_C_string());
        }
        // we know the exception class => get the constraint class
        // this may require loading of the constraint class; if verification
        // fails or some other exception occurs, return handler_bci
        Klass* k = pool->klass_at(klass_index, THREAD);
        if (HAS_PENDING_EXCEPTION) {
          if (log_is_enabled(Debug, exceptions)) {
            ResourceMark rm(THREAD);
            log_debug(exceptions)(" - exception \"%s\" occurred resolving catch type",
                                 PENDING_EXCEPTION->klass()->external_name());
          }
          return handler_bci;
        }
        assert(k != NULL, "klass not loaded");
        if (ex_klass->is_subtype_of(k)) {
          if (log_is_enabled(Info, exceptions)) {
            ResourceMark rm(THREAD);
            log_info(exceptions)("Found matching handler for exception of type \"%s\" in method \"%s\" at BCI: %d",
                                 ex_klass == NULL ? "NULL" : ex_klass->external_name(), mh->name()->as_C_string(), handler_bci);
          }
          return handler_bci;
        }
      }
    }
  }

  if (log_is_enabled(Debug, exceptions)) {
    ResourceMark rm(THREAD);
    log_debug(exceptions)("No catch handler found for exception of type \"%s\" in method \"%s\"",
                          ex_klass->external_name(), mh->name()->as_C_string());
  }

  return -1;
}

void Method::mask_for(int bci, InterpreterOopMap* mask) {
  methodHandle h_this(Thread::current(), this);
  // Only GC uses the OopMapCache during thread stack root scanning
  // any other uses generate an oopmap but do not save it in the cache.
  if (Universe::heap()->is_gc_active()) {
    method_holder()->mask_for(h_this, bci, mask);
  } else {
    OopMapCache::compute_one_oop_map(h_this, bci, mask);
  }
  return;
}


int Method::bci_from(address bcp) const {
  if (is_native() && bcp == 0) {
    return 0;
  }
  // Do not have a ResourceMark here because AsyncGetCallTrace stack walking code
  // may call this after interrupting a nested ResourceMark.
  assert(is_native() && bcp == code_base() || contains(bcp) || VMError::is_error_reported(),
         "bcp doesn't belong to this method. bcp: " PTR_FORMAT, p2i(bcp));

  return bcp - code_base();
}


int Method::validate_bci(int bci) const {
  return (bci == 0 || bci < code_size()) ? bci : -1;
}

// Return bci if it appears to be a valid bcp
// Return -1 otherwise.
// Used by profiling code, when invalid data is a possibility.
// The caller is responsible for validating the Method* itself.
int Method::validate_bci_from_bcp(address bcp) const {
  // keep bci as -1 if not a valid bci
  int bci = -1;
  if (bcp == 0 || bcp == code_base()) {
    // code_size() may return 0 and we allow 0 here
    // the method may be native
    bci = 0;
  } else if (contains(bcp)) {
    bci = bcp - code_base();
  }
  // Assert that if we have dodged any asserts, bci is negative.
  assert(bci == -1 || bci == bci_from(bcp_from(bci)), "sane bci if >=0");
  return bci;
}

address Method::bcp_from(int bci) const {
  assert((is_native() && bci == 0) || (!is_native() && 0 <= bci && bci < code_size()),
         "illegal bci: %d for %s method", bci, is_native() ? "native" : "non-native");
  address bcp = code_base() + bci;
  assert(is_native() && bcp == code_base() || contains(bcp), "bcp doesn't belong to this method");
  return bcp;
}

address Method::bcp_from(address bcp) const {
  if (is_native() && bcp == NULL) {
    return code_base();
  } else {
    return bcp;
  }
}

int Method::size(bool is_native) {
  // If native, then include pointers for native_function and signature_handler
  int extra_bytes = (is_native) ? 2*sizeof(address*) : 0;
  int extra_words = align_up(extra_bytes, BytesPerWord) / BytesPerWord;
  return align_metadata_size(header_size() + extra_words);
}

Symbol* Method::klass_name() const {
  return method_holder()->name();
}

void Method::metaspace_pointers_do(MetaspaceClosure* it) {
  log_trace(cds)("Iter(Method): %p"this);

  if (!method_holder()->is_rewritten()) {
    it->push(&_constMethod, MetaspaceClosure::_writable);
  } else {
    it->push(&_constMethod);
  }
  it->push(&_method_data);
  it->push(&_method_counters);
  NOT_PRODUCT(it->push(&_name);)
}

#if INCLUDE_CDS
// Attempt to return method to original state.  Clear any pointers
// (to objects outside the shared spaces).  We won't be able to predict
// where they should point in a new JVM.  Further initialize some
// entries now in order allow them to be write protected later.

void Method::remove_unshareable_info() {
  unlink_method();
  JFR_ONLY(REMOVE_METHOD_ID(this);)
}

void Method::restore_unshareable_info(TRAPS) {
  assert(is_method() && is_valid_method(this), "ensure C++ vtable is restored");
}
#endif

void Method::set_vtable_index(int index) {
  if (is_shared() && !MetaspaceShared::remapped_readwrite() && method_holder()->verified_at_dump_time()) {
    // At runtime initialize_vtable is rerun as part of link_class_impl()
    // for a shared class loaded by the non-boot loader to obtain the loader
    // constraints based on the runtime classloaders' context.
    return// don't write into the shared class
  } else {
    _vtable_index = index;
  }
}

void Method::set_itable_index(int index) {
  if (is_shared() && !MetaspaceShared::remapped_readwrite() && method_holder()->verified_at_dump_time()) {
    // At runtime initialize_itable is rerun as part of link_class_impl()
    // for a shared class loaded by the non-boot loader to obtain the loader
    // constraints based on the runtime classloaders' context. The dumptime
    // itable index should be the same as the runtime index.
    assert(_vtable_index == itable_index_max - index,
           "archived itable index is different from runtime index");
    return// don’t write into the shared class
  } else {
    _vtable_index = itable_index_max - index;
  }
  assert(valid_itable_index(), "");
}

// The RegisterNatives call being attempted tried to register with a method that
// is not native.  Ask JVM TI what prefixes have been specified.  Then check
// to see if the native method is now wrapped with the prefixes.  See the
// SetNativeMethodPrefix(es) functions in the JVM TI Spec for details.
static Method* find_prefixed_native(Klass* k, Symbol* name, Symbol* signature, TRAPS) {
#if INCLUDE_JVMTI
  ResourceMark rm(THREAD);
  Method* method;
  int name_len = name->utf8_length();
  char* name_str = name->as_utf8();
  int prefix_count;
  char** prefixes = JvmtiExport::get_all_native_method_prefixes(&prefix_count);
  for (int i = 0; i < prefix_count; i++) {
    char* prefix = prefixes[i];
    int prefix_len = (int)strlen(prefix);

    // try adding this prefix to the method name and see if it matches another method name
    int trial_len = name_len + prefix_len;
    char* trial_name_str = NEW_RESOURCE_ARRAY(char, trial_len + 1);
    strcpy(trial_name_str, prefix);
    strcat(trial_name_str, name_str);
    TempNewSymbol trial_name = SymbolTable::probe(trial_name_str, trial_len);
    if (trial_name == NULL) {
      continue// no such symbol, so this prefix wasn't used, try the next prefix
    }
    method = k->lookup_method(trial_name, signature);
    if (method == NULL) {
      continue// signature doesn't match, try the next prefix
    }
    if (method->is_native()) {
      method->set_is_prefixed_native();
      return method; // wahoo, we found a prefixed version of the method, return it
    }
    // found as non-native, so prefix is good, add it, probably just need more prefixes
    name_len = trial_len;
    name_str = trial_name_str;
  }
#endif // INCLUDE_JVMTI
  return NULL; // not found
}

bool Method::register_native(Klass* k, Symbol* name, Symbol* signature, address entry, TRAPS) {
  Method* method = k->lookup_method(name, signature);
  if (method == NULL) {
    ResourceMark rm(THREAD);
    stringStream st;
    st.print("Method '");
    print_external_name(&st, k, name, signature);
    st.print("' name or signature does not match");
    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodError(), st.as_string(), false);
  }
  if (!method->is_native()) {
    // trying to register to a non-native method, see if a JVM TI agent has added prefix(es)
    method = find_prefixed_native(k, name, signature, THREAD);
    if (method == NULL) {
      ResourceMark rm(THREAD);
      stringStream st;
      st.print("Method '");
      print_external_name(&st, k, name, signature);
      st.print("' is not declared as native");
      THROW_MSG_(vmSymbols::java_lang_NoSuchMethodError(), st.as_string(), false);
    }
  }

  if (entry != NULL) {
    method->set_native_function(entry, native_bind_event_is_interesting);
  } else {
    method->clear_native_function();
  }
  if (log_is_enabled(Debug, jni, resolve)) {
    ResourceMark rm(THREAD);
    log_debug(jni, resolve)("[Registering JNI native method %s.%s]",
                            method->method_holder()->external_name(),
                            method->name()->as_C_string());
  }
  return true;
}

bool Method::was_executed_more_than(int n) {
  // Invocation counter is reset when the Method* is compiled.
  // If the method has compiled code we therefore assume it has
  // be executed more than n times.
  if (is_accessor() || is_empty_method() || (code() != NULL)) {
    // interpreter doesn't bump invocation counter of trivial methods
    // compiler does not bump invocation counter of compiled methods
    return true;
  }
  else if ((method_counters() != NULL &&
            method_counters()->invocation_counter()->carry()) ||
           (method_data() != NULL &&
            method_data()->invocation_counter()->carry())) {
    // The carry bit is set when the counter overflows and causes
    // a compilation to occur.  We don't know how many times
    // the counter has been reset, so we simply assume it has
    // been executed more than n times.
    return true;
  } else {
    return invocation_count() > n;
  }
}

void Method::print_invocation_count() {
  //---<  compose+print method return type, klass, name, and signature  >---
  if (is_static()) tty->print("static ");
  if (is_final()) tty->print("final ");
  if (is_synchronized()) tty->print("synchronized ");
  if (is_native()) tty->print("native ");
  tty->print("%s::", method_holder()->external_name());
  name()->print_symbol_on(tty);
  signature()->print_symbol_on(tty);

  if (WizardMode) {
    // dump the size of the byte codes
    tty->print(" {%d}", code_size());
  }
  tty->cr();

  // Counting based on signed int counters tends to overflow with
  // longer-running workloads on fast machines. The counters under
  // consideration here, however, are limited in range by counting
  // logic. See InvocationCounter:count_limit for example.
  // No "overflow precautions" need to be implemented here.
  tty->print_cr (" interpreter_invocation_count: " INT32_FORMAT_W(11), interpreter_invocation_count());
  tty->print_cr (" invocation_counter: " INT32_FORMAT_W(11), invocation_count());
  tty->print_cr (" backedge_counter: " INT32_FORMAT_W(11), backedge_count());

  if (method_data() != NULL) {
    tty->print_cr (" decompile_count: " UINT32_FORMAT_W(11), method_data()->decompile_count());
  }

#ifndef PRODUCT
  if (CountCompiledCalls) {
    tty->print_cr (" compiled_invocation_count: " INT64_FORMAT_W(11), compiled_invocation_count());
  }
#endif
}

// Build a MethodData* object to hold profiling information collected on this
// method when requested.
void Method::build_profiling_method_data(const methodHandle& method, TRAPS) {
  // Do not profile the method if metaspace has hit an OOM previously
  // allocating profiling data. Callers clear pending exception so don't
  // add one here.
  if (ClassLoaderDataGraph::has_metaspace_oom()) {
    return;
  }

  ClassLoaderData* loader_data = method->method_holder()->class_loader_data();
  MethodData* method_data = MethodData::allocate(loader_data, method, THREAD);
  if (HAS_PENDING_EXCEPTION) {
    CompileBroker::log_metaspace_failure();
    ClassLoaderDataGraph::set_metaspace_oom(true);
    return;   // return the exception (which is cleared)
  }

  if (!Atomic::replace_if_null(&method->_method_data, method_data)) {
    MetadataFactory::free_metadata(loader_data, method_data);
    return;
  }

  if (PrintMethodData && (Verbose || WizardMode)) {
    ResourceMark rm(THREAD);
    tty->print("build_profiling_method_data for ");
    method->print_name(tty);
    tty->cr();
    // At the end of the run, the MDO, full of data, will be dumped.
  }
}

MethodCounters* Method::build_method_counters(Thread* current, Method* m) {
  // Do not profile the method if metaspace has hit an OOM previously
  if (ClassLoaderDataGraph::has_metaspace_oom()) {
    return NULL;
  }

  methodHandle mh(current, m);
  MethodCounters* counters;
  if (current->is_Java_thread()) {
    JavaThread* THREAD = JavaThread::cast(current); // For exception macros.
    // Use the TRAPS version for a JavaThread so it will adjust the GC threshold
    // if needed.
    counters = MethodCounters::allocate_with_exception(mh, THREAD);
    if (HAS_PENDING_EXCEPTION) {
      CLEAR_PENDING_EXCEPTION;
    }
  } else {
    // Call metaspace allocation that doesn't throw exception if the
    // current thread isn't a JavaThread, ie. the VMThread.
    counters = MethodCounters::allocate_no_exception(mh);
  }

  if (counters == NULL) {
    CompileBroker::log_metaspace_failure();
    ClassLoaderDataGraph::set_metaspace_oom(true);
    return NULL;
  }

  if (!mh->init_method_counters(counters)) {
    MetadataFactory::free_metadata(mh->method_holder()->class_loader_data(), counters);
  }

  return mh->method_counters();
}

bool Method::init_method_counters(MethodCounters* counters) {
  // Try to install a pointer to MethodCounters, return true on success.
  return Atomic::replace_if_null(&_method_counters, counters);
}

int Method::extra_stack_words() {
  // not an inline function, to avoid a header dependency on Interpreter
  return extra_stack_entries() * Interpreter::stackElementSize;
}

// Derive size of parameters, return type, and fingerprint,
// all in one pass, which is run at load time.
// We need the first two, and might as well grab the third.
void Method::compute_from_signature(Symbol* sig) {
  // At this point, since we are scanning the signature,
  // we might as well compute the whole fingerprint.
  Fingerprinter fp(sig, is_static());
  set_size_of_parameters(fp.size_of_parameters());
  set_num_stack_arg_slots(fp.num_stack_arg_slots());
  constMethod()->set_result_type(fp.return_type());
  constMethod()->set_fingerprint(fp.fingerprint());
}

bool Method::is_vanilla_constructor() const {
  // Returns true if this method is a vanilla constructor, i.e. an "<init>" "()V" method
  // which only calls the superclass vanilla constructor and possibly does stores of
  // zero constants to local fields:
  //
  //   aload_0
  //   invokespecial
  //   indexbyte1
  //   indexbyte2
  //
  // followed by an (optional) sequence of:
  //
  //   aload_0
  //   aconst_null / iconst_0 / fconst_0 / dconst_0
  //   putfield
  //   indexbyte1
  //   indexbyte2
  //
  // followed by:
  //
  //   return

  assert(name() == vmSymbols::object_initializer_name(),    "Should only be called for default constructors");
  assert(signature() == vmSymbols::void_method_signature(), "Should only be called for default constructors");
  int size = code_size();
  // Check if size match
  if (size == 0 || size % 5 != 0) return false;
  address cb = code_base();
  int last = size - 1;
  if (cb[0] != Bytecodes::_aload_0 || cb[1] != Bytecodes::_invokespecial || cb[last] != Bytecodes::_return) {
    // Does not call superclass default constructor
    return false;
  }
  // Check optional sequence
  for (int i = 4; i < last; i += 5) {
    if (cb[i] != Bytecodes::_aload_0) return false;
    if (!Bytecodes::is_zero_const(Bytecodes::cast(cb[i+1]))) return false;
    if (cb[i+2] != Bytecodes::_putfield) return false;
  }
  return true;
}


bool Method::compute_has_loops_flag() {
  BytecodeStream bcs(methodHandle(Thread::current(), this));
  Bytecodes::Code bc;

  while ((bc = bcs.next()) >= 0) {
    switch (bc) {
      case Bytecodes::_ifeq:
      case Bytecodes::_ifnull:
      case Bytecodes::_iflt:
      case Bytecodes::_ifle:
      case Bytecodes::_ifne:
      case Bytecodes::_ifnonnull:
      case Bytecodes::_ifgt:
      case Bytecodes::_ifge:
      case Bytecodes::_if_icmpeq:
      case Bytecodes::_if_icmpne:
      case Bytecodes::_if_icmplt:
      case Bytecodes::_if_icmpgt:
      case Bytecodes::_if_icmple:
      case Bytecodes::_if_icmpge:
      case Bytecodes::_if_acmpeq:
      case Bytecodes::_if_acmpne:
      case Bytecodes::_goto:
      case Bytecodes::_jsr:
        if (bcs.dest() < bcs.next_bci()) _access_flags.set_has_loops();
        break;

      case Bytecodes::_goto_w:
      case Bytecodes::_jsr_w:
        if (bcs.dest_w() < bcs.next_bci()) _access_flags.set_has_loops();
        break;

      case Bytecodes::_lookupswitch: {
        Bytecode_lookupswitch lookupswitch(this, bcs.bcp());
        if (lookupswitch.default_offset() < 0) {
          _access_flags.set_has_loops();
        } else {
          for (int i = 0; i < lookupswitch.number_of_pairs(); ++i) {
            LookupswitchPair pair = lookupswitch.pair_at(i);
            if (pair.offset() < 0) {
              _access_flags.set_has_loops();
              break;
            }
          }
        }
        break;
      }
      case Bytecodes::_tableswitch: {
        Bytecode_tableswitch tableswitch(this, bcs.bcp());
        if (tableswitch.default_offset() < 0) {
          _access_flags.set_has_loops();
        } else {
          for (int i = 0; i < tableswitch.length(); ++i) {
            if (tableswitch.dest_offset_at(i) < 0) {
              _access_flags.set_has_loops();
            }
          }
        }
        break;
      }
      default:
        break;
    }
  }
  _access_flags.set_loops_flag_init();
  return _access_flags.has_loops();
}

bool Method::is_final_method(AccessFlags class_access_flags) const {
  // or "does_not_require_vtable_entry"
  // default method or overpass can occur, is not final (reuses vtable entry)
  // private methods in classes get vtable entries for backward class compatibility.
  if (is_overpass() || is_default_method())  return false;
  return is_final() || class_access_flags.is_final();
}

bool Method::is_final_method() const {
  return is_final_method(method_holder()->access_flags());
}

bool Method::is_default_method() const {
  if (method_holder() != NULL &&
      method_holder()->is_interface() &&
      !is_abstract() && !is_private()) {
    return true;
  } else {
    return false;
  }
}

bool Method::can_be_statically_bound(AccessFlags class_access_flags) const {
  if (is_final_method(class_access_flags))  return true;
#ifdef ASSERT
  bool is_nonv = (vtable_index() == nonvirtual_vtable_index);
  if (class_access_flags.is_interface()) {
      ResourceMark rm;
      assert(is_nonv == is_static() || is_nonv == is_private(),
             "nonvirtual unexpected for non-static, non-private: %s",
             name_and_sig_as_C_string());
  }
#endif
  assert(valid_vtable_index() || valid_itable_index(), "method must be linked before we ask this question");
  return vtable_index() == nonvirtual_vtable_index;
}

bool Method::can_be_statically_bound() const {
  return can_be_statically_bound(method_holder()->access_flags());
}

bool Method::can_be_statically_bound(InstanceKlass* context) const {
  return (method_holder() == context) && can_be_statically_bound();
}

/**
 *  Returns false if this is one of specially treated methods for
 *  which we have to provide stack trace in throw in compiled code.
 *  Returns true otherwise.
 */

bool Method::can_omit_stack_trace() {
  if (klass_name() == vmSymbols::sun_invoke_util_ValueConversions()) {
    return false// All methods in sun.invoke.util.ValueConversions
  }
  return true;
}

bool Method::is_accessor() const {
  return is_getter() || is_setter();
}

bool Method::is_getter() const {
  if (code_size() != 5) return false;
  if (size_of_parameters() != 1) return false;
  if (java_code_at(0) != Bytecodes::_aload_0)  return false;
  if (java_code_at(1) != Bytecodes::_getfield) return false;
  switch (java_code_at(4)) {
    case Bytecodes::_ireturn:
    case Bytecodes::_lreturn:
    case Bytecodes::_freturn:
    case Bytecodes::_dreturn:
    case Bytecodes::_areturn:
      break;
    default:
      return false;
  }
  return true;
}

bool Method::is_setter() const {
  if (code_size() != 6) return false;
  if (java_code_at(0) != Bytecodes::_aload_0) return false;
  switch (java_code_at(1)) {
    case Bytecodes::_iload_1:
    case Bytecodes::_aload_1:
    case Bytecodes::_fload_1:
      if (size_of_parameters() != 2) return false;
      break;
    case Bytecodes::_dload_1:
    case Bytecodes::_lload_1:
      if (size_of_parameters() != 3) return false;
      break;
    default:
      return false;
  }
  if (java_code_at(2) != Bytecodes::_putfield) return false;
  if (java_code_at(5) != Bytecodes::_return)   return false;
  return true;
}

bool Method::is_constant_getter() const {
  int last_index = code_size() - 1;
  // Check if the first 1-3 bytecodes are a constant push
  // and the last bytecode is a return.
  return (2 <= code_size() && code_size() <= 4 &&
          Bytecodes::is_const(java_code_at(0)) &&
          Bytecodes::length_for(java_code_at(0)) == last_index &&
          Bytecodes::is_return(java_code_at(last_index)));
}

bool Method::is_initializer() const {
  return is_object_initializer() || is_static_initializer();
}

bool Method::has_valid_initializer_flags() const {
  return (is_static() ||
          method_holder()->major_version() < 51);
}

bool Method::is_static_initializer() const {
  // For classfiles version 51 or greater, ensure that the clinit method is
  // static.  Non-static methods with the name "<clinit>" are not static
  // initializers. (older classfiles exempted for backward compatibility)
  return name() == vmSymbols::class_initializer_name() &&
         has_valid_initializer_flags();
}

bool Method::is_object_initializer() const {
   return name() == vmSymbols::object_initializer_name();
}

bool Method::needs_clinit_barrier() const {
  return is_static() && !method_holder()->is_initialized();
}

objArrayHandle Method::resolved_checked_exceptions_impl(Method* method, TRAPS) {
  int length = method->checked_exceptions_length();
  if (length == 0) {  // common case
    return objArrayHandle(THREAD, Universe::the_empty_class_array());
  } else {
    methodHandle h_this(THREAD, method);
    objArrayOop m_oop = oopFactory::new_objArray(vmClasses::Class_klass(), length, CHECK_(objArrayHandle()));
    objArrayHandle mirrors (THREAD, m_oop);
    for (int i = 0; i < length; i++) {
      CheckedExceptionElement* table = h_this->checked_exceptions_start(); // recompute on each iteration, not gc safe
      Klass* k = h_this->constants()->klass_at(table[i].class_cp_index, CHECK_(objArrayHandle()));
      if (log_is_enabled(Warning, exceptions) &&
          !k->is_subclass_of(vmClasses::Throwable_klass())) {
        ResourceMark rm(THREAD);
        log_warning(exceptions)(
          "Class %s in throws clause of method %s is not a subtype of class java.lang.Throwable",
          k->external_name(), method->external_name());
      }
      mirrors->obj_at_put(i, k->java_mirror());
    }
    return mirrors;
  }
};


int Method::line_number_from_bci(int bci) const {
  int best_bci  =  0;
  int best_line = -1;
  if (bci == SynchronizationEntryBCI) bci = 0;
  if (0 <= bci && bci < code_size() && has_linenumber_table()) {
    // The line numbers are a short array of 2-tuples [start_pc, line_number].
    // Not necessarily sorted and not necessarily one-to-one.
    CompressedLineNumberReadStream stream(compressed_linenumber_table());
    while (stream.read_pair()) {
      if (stream.bci() == bci) {
        // perfect match
        return stream.line();
      } else {
        // update best_bci/line
        if (stream.bci() < bci && stream.bci() >= best_bci) {
          best_bci  = stream.bci();
          best_line = stream.line();
        }
      }
    }
  }
  return best_line;
}


bool Method::is_klass_loaded_by_klass_index(int klass_index) const {
  if( constants()->tag_at(klass_index).is_unresolved_klass() ) {
    Thread *thread = Thread::current();
    Symbol* klass_name = constants()->klass_name_at(klass_index);
    Handle loader(thread, method_holder()->class_loader());
    Handle prot  (thread, method_holder()->protection_domain());
    return SystemDictionary::find_instance_klass(thread, klass_name, loader, prot) != NULL;
  } else {
    return true;
  }
}


bool Method::is_klass_loaded(int refinfo_index, bool must_be_resolved) const {
  int klass_index = constants()->klass_ref_index_at(refinfo_index);
  if (must_be_resolved) {
    // Make sure klass is resolved in constantpool.
    if (constants()->tag_at(klass_index).is_unresolved_klass()) return false;
  }
  return is_klass_loaded_by_klass_index(klass_index);
}


void Method::set_native_function(address function, bool post_event_flag) {
  assert(function != NULL, "use clear_native_function to unregister natives");
  assert(!is_special_native_intrinsic() || function == SharedRuntime::native_method_throw_unsatisfied_link_error_entry(), "");
  address* native_function = native_function_addr();

  // We can see racers trying to place the same native function into place. Once
  // is plenty.
  address current = *native_function;
  if (current == function) return;
  if (post_event_flag && JvmtiExport::should_post_native_method_bind() &&
      function != NULL) {
    // native_method_throw_unsatisfied_link_error_entry() should only
    // be passed when post_event_flag is false.
    assert(function !=
      SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
      "post_event_flag mismatch");

    // post the bind event, and possible change the bind function
    JvmtiExport::post_native_method_bind(this, &function);
  }
  *native_function = function;
  // This function can be called more than once. We must make sure that we always
  // use the latest registered method -> check if a stub already has been generated.
  // If so, we have to make it not_entrant.
  CompiledMethod* nm = code(); // Put it into local variable to guard against concurrent updates
  if (nm != NULL) {
    nm->make_not_entrant();
  }
}


bool Method::has_native_function() const {
  if (is_special_native_intrinsic())
    return false;  // special-cased in SharedRuntime::generate_native_wrapper
  address func = native_function();
  return (func != NULL && func != SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
}


void Method::clear_native_function() {
  // Note: is_method_handle_intrinsic() is allowed here.
  set_native_function(
    SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
    !native_bind_event_is_interesting);
  this->unlink_code();
}


void Method::set_signature_handler(address handler) {
  address* signature_handler =  signature_handler_addr();
  *signature_handler = handler;
}


void Method::print_made_not_compilable(int comp_level, bool is_osr, bool report, const char* reason) {
  assert(reason != NULL, "must provide a reason");
  if (PrintCompilation && report) {
    ttyLocker ttyl;
    tty->print("made not %scompilable on ", is_osr ? "OSR " : "");
    if (comp_level == CompLevel_all) {
      tty->print("all levels ");
    } else {
      tty->print("level %d ", comp_level);
    }
    this->print_short_name(tty);
    int size = this->code_size();
    if (size > 0) {
      tty->print(" (%d bytes)", size);
    }
    if (reason != NULL) {
      tty->print(" %s", reason);
    }
    tty->cr();
  }
  if ((TraceDeoptimization || LogCompilation) && (xtty != NULL)) {
    ttyLocker ttyl;
    xtty->begin_elem("make_not_compilable thread='" UINTX_FORMAT "' osr='%d' level='%d'",
                     os::current_thread_id(), is_osr, comp_level);
    if (reason != NULL) {
      xtty->print(" reason=\'%s\'", reason);
    }
    xtty->method(this);
    xtty->stamp();
    xtty->end_elem();
  }
}

bool Method::is_always_compilable() const {
  // Generated adapters must be compiled
  if (is_special_native_intrinsic() && is_synthetic()) {
    assert(!is_not_c1_compilable(), "sanity check");
    assert(!is_not_c2_compilable(), "sanity check");
    return true;
  }

  return false;
}

bool Method::is_not_compilable(int comp_level) const {
  if (number_of_breakpoints() > 0)
    return true;
  if (is_always_compilable())
    return false;
  if (comp_level == CompLevel_any)
    return is_not_c1_compilable() && is_not_c2_compilable();
  if (is_c1_compile(comp_level))
    return is_not_c1_compilable();
  if (is_c2_compile(comp_level))
    return is_not_c2_compilable();
  return false;
}

// call this when compiler finds that this method is not compilable
void Method::set_not_compilable(const char* reason, int comp_level, bool report) {
  if (is_always_compilable()) {
    // Don't mark a method which should be always compilable
    return;
  }
  print_made_not_compilable(comp_level, /*is_osr*/ false, report, reason);
  if (comp_level == CompLevel_all) {
    set_not_c1_compilable();
    set_not_c2_compilable();
  } else {
    if (is_c1_compile(comp_level))
      set_not_c1_compilable();
    if (is_c2_compile(comp_level))
      set_not_c2_compilable();
  }
  assert(!CompilationPolicy::can_be_compiled(methodHandle(Thread::current(), this), comp_level), "sanity check");
}

bool Method::is_not_osr_compilable(int comp_level) const {
  if (is_not_compilable(comp_level))
    return true;
  if (comp_level == CompLevel_any)
    return is_not_c1_osr_compilable() && is_not_c2_osr_compilable();
  if (is_c1_compile(comp_level))
    return is_not_c1_osr_compilable();
  if (is_c2_compile(comp_level))
    return is_not_c2_osr_compilable();
  return false;
}

void Method::set_not_osr_compilable(const char* reason, int comp_level, bool report) {
  print_made_not_compilable(comp_level, /*is_osr*/ true, report, reason);
  if (comp_level == CompLevel_all) {
    set_not_c1_osr_compilable();
    set_not_c2_osr_compilable();
  } else {
    if (is_c1_compile(comp_level))
      set_not_c1_osr_compilable();
    if (is_c2_compile(comp_level))
      set_not_c2_osr_compilable();
  }
  assert(!CompilationPolicy::can_be_osr_compiled(methodHandle(Thread::current(), this), comp_level), "sanity check");
}

// Revert to using the interpreter and clear out the nmethod
void Method::clear_code() {
  // this may be NULL if c2i adapters have not been made yet
  // Only should happen at allocate time.
  if (adapter() == NULL) {
    _from_compiled_entry    = NULL;
  } else {
    _from_compiled_entry    = adapter()->get_c2i_entry();
  }
  OrderAccess::storestore();
  _from_interpreted_entry = _i2i_entry;
  OrderAccess::storestore();
  _code = NULL;
}

void Method::unlink_code(CompiledMethod *compare) {
  MutexLocker ml(CompiledMethod_lock->owned_by_self() ? NULL : CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
  // We need to check if either the _code or _from_compiled_code_entry_point
  // refer to this nmethod because there is a race in setting these two fields
  // in Method* as seen in bugid 4947125.
  if (code() == compare ||
      from_compiled_entry() == compare->verified_entry_point()) {
    clear_code();
  }
}

void Method::unlink_code() {
  MutexLocker ml(CompiledMethod_lock->owned_by_self() ? NULL : CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
  clear_code();
}

#if INCLUDE_CDS
// Called by class data sharing to remove any entry points (which are not shared)
void Method::unlink_method() {
  Arguments::assert_is_dumping_archive();
  _code = NULL;
  _adapter = NULL;
  _i2i_entry = NULL;
  _from_compiled_entry = NULL;
  _from_interpreted_entry = NULL;

  if (is_native()) {
    *native_function_addr() = NULL;
    set_signature_handler(NULL);
  }
  NOT_PRODUCT(set_compiled_invocation_count(0);)

  set_method_data(NULL);
  clear_method_counters();
}
#endif

// Called when the method_holder is getting linked. Setup entrypoints so the method
// is ready to be called from interpreter, compiler, and vtables.
void Method::link_method(const methodHandle& h_method, TRAPS) {
  // If the code cache is full, we may reenter this function for the
  // leftover methods that weren't linked.
  if (adapter() != NULL) {
    return;
  }
  assert( _code == NULL, "nothing compiled yet" );

  // Setup interpreter entrypoint
  assert(this == h_method(), "wrong h_method()" );

  assert(adapter() == NULL, "init'd to NULL");
  address entry = Interpreter::entry_for_method(h_method);
  assert(entry != NULL, "interpreter entry must be non-null");
  // Sets both _i2i_entry and _from_interpreted_entry
  set_interpreter_entry(entry);

  // Don't overwrite already registered native entries.
  if (is_native() && !has_native_function()) {
    set_native_function(
      SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
      !native_bind_event_is_interesting);
  }

  // Setup compiler entrypoint.  This is made eagerly, so we do not need
  // special handling of vtables.  An alternative is to make adapters more
  // lazily by calling make_adapter() from from_compiled_entry() for the
  // normal calls.  For vtable calls life gets more complicated.  When a
  // call-site goes mega-morphic we need adapters in all methods which can be
  // called from the vtable.  We need adapters on such methods that get loaded
  // later.  Ditto for mega-morphic itable calls.  If this proves to be a
  // problem we'll make these lazily later.
  (void) make_adapters(h_method, CHECK);

  // ONLY USE the h_method now as make_adapter may have blocked

  if (h_method->is_continuation_native_intrinsic()) {
    // the entry points to this method will be set in set_code, called when first resolving this method
    _from_interpreted_entry = NULL;
    _from_compiled_entry = NULL;
    _i2i_entry = NULL;
  }
}

address Method::make_adapters(const methodHandle& mh, TRAPS) {
  // Adapters for compiled code are made eagerly here.  They are fairly
  // small (generally < 100 bytes) and quick to make (and cached and shared)
  // so making them eagerly shouldn't be too expensive.
  AdapterHandlerEntry* adapter = AdapterHandlerLibrary::get_adapter(mh);
  if (adapter == NULL ) {
    if (!is_init_completed()) {
      // Don't throw exceptions during VM initialization because java.lang.* classes
      // might not have been initialized, causing problems when constructing the
      // Java exception object.
      vm_exit_during_initialization("Out of space in CodeCache for adapters");
    } else {
      THROW_MSG_NULL(vmSymbols::java_lang_VirtualMachineError(), "Out of space in CodeCache for adapters");
    }
  }

  mh->set_adapter_entry(adapter);
  mh->_from_compiled_entry = adapter->get_c2i_entry();
  return adapter->get_c2i_entry();
}

// The verified_code_entry() must be called when a invoke is resolved
// on this method.

// It returns the compiled code entry point, after asserting not null.
// This function is called after potential safepoints so that nmethod
// or adapter that it points to is still live and valid.
// This function must not hit a safepoint!
address Method::verified_code_entry() {
  debug_only(NoSafepointVerifier nsv;)
  assert(_from_compiled_entry != NULL, "must be set");
  return _from_compiled_entry;
}

// Check that if an nmethod ref exists, it has a backlink to this or no backlink at all
// (could be racing a deopt).
// Not inline to avoid circular ref.
bool Method::check_code() const {
  // cached in a register or local.  There's a race on the value of the field.
  CompiledMethod *code = Atomic::load_acquire(&_code);
  return code == NULL || (code->method() == NULL) || (code->method() == (Method*)this && !code->is_osr_method());
}

// Install compiled code.  Instantly it can execute.
void Method::set_code(const methodHandle& mh, CompiledMethod *code) {
  assert_lock_strong(CompiledMethod_lock);
  assert( code, "use clear_code to remove code" );
  assert( mh->check_code(), "" );

  guarantee(mh->adapter() != NULL, "Adapter blob must already exist!");

  // These writes must happen in this order, because the interpreter will
  // directly jump to from_interpreted_entry which jumps to an i2c adapter
  // which jumps to _from_compiled_entry.
  mh->_code = code;             // Assign before allowing compiled code to exec

  int comp_level = code->comp_level();
  // In theory there could be a race here. In practice it is unlikely
  // and not worth worrying about.
  if (comp_level > mh->highest_comp_level()) {
    mh->set_highest_comp_level(comp_level);
  }

  OrderAccess::storestore();
  mh->_from_compiled_entry = code->verified_entry_point();
  OrderAccess::storestore();

  if (mh->is_continuation_native_intrinsic()) {
    assert(mh->_from_interpreted_entry == NULL, "initialized incorrectly"); // see link_method

    if (mh->is_continuation_enter_intrinsic()) {
      // This is the entry used when we're in interpreter-only mode; see InterpreterMacroAssembler::jump_from_interpreted
      mh->_i2i_entry = ContinuationEntry::interpreted_entry();
    } else if (mh->is_continuation_yield_intrinsic()) {
      mh->_i2i_entry = mh->get_i2c_entry();
    } else {
      guarantee(false"Unknown Continuation native intrinsic");
    }
    // This must come last, as it is what's tested in LinkResolver::resolve_static_call
    Atomic::release_store(&mh->_from_interpreted_entry , mh->get_i2c_entry());
  } else if (!mh->is_method_handle_intrinsic()) {
    // Instantly compiled code can execute.
    mh->_from_interpreted_entry = mh->get_i2c_entry();
  }
}


bool Method::is_overridden_in(Klass* k) const {
  InstanceKlass* ik = InstanceKlass::cast(k);

  if (ik->is_interface()) return false;

  // If method is an interface, we skip it - except if it
  // is a miranda method
  if (method_holder()->is_interface()) {
    // Check that method is not a miranda method
    if (ik->lookup_method(name(), signature()) == NULL) {
      // No implementation exist - so miranda method
      return false;
    }
    return true;
  }

  assert(ik->is_subclass_of(method_holder()), "should be subklass");
  if (!has_vtable_index()) {
    return false;
  } else {
    Method* vt_m = ik->method_at_vtable(vtable_index());
    return vt_m != this;
  }
}


// give advice about whether this Method* should be cached or not
bool Method::should_not_be_cached() const {
  if (is_old()) {
    // This method has been redefined. It is either EMCP or obsolete
    // and we don't want to cache it because that would pin the method
    // down and prevent it from being collectible if and when it
    // finishes executing.
    return true;
  }

  // caching this method should be just fine
  return false;
}


/**
 *  Returns true if this is one of the specially treated methods for
 *  security related stack walks (like Reflection.getCallerClass).
 */

bool Method::is_ignored_by_security_stack_walk() const {
  if (intrinsic_id() == vmIntrinsics::_invoke) {
    // This is Method.invoke() -- ignore it
    return true;
  }
  if (method_holder()->is_subclass_of(vmClasses::reflect_MethodAccessorImpl_klass())) {
    // This is an auxiliary frame -- ignore it
    return true;
  }
  if (is_method_handle_intrinsic() || is_compiled_lambda_form()) {
    // This is an internal adapter frame for method handles -- ignore it
    return true;
  }
  return false;
}


// Constant pool structure for invoke methods:
enum {
  _imcp_invoke_name = 1,        // utf8: 'invokeExact', etc.
  _imcp_invoke_signature,       // utf8: (variable Symbol*)
  _imcp_limit
};

// Test if this method is an MH adapter frame generated by Java code.
// Cf. java/lang/invoke/InvokerBytecodeGenerator
bool Method::is_compiled_lambda_form() const {
  return intrinsic_id() == vmIntrinsics::_compiledLambdaForm;
}

// Test if this method is an internal MH primitive method.
bool Method::is_method_handle_intrinsic() const {
  vmIntrinsics::ID iid = intrinsic_id();
  return (MethodHandles::is_signature_polymorphic(iid) &&
          MethodHandles::is_signature_polymorphic_intrinsic(iid));
}

bool Method::has_member_arg() const {
  vmIntrinsics::ID iid = intrinsic_id();
  return (MethodHandles::is_signature_polymorphic(iid) &&
          MethodHandles::has_member_arg(iid));
}

// Make an instance of a signature-polymorphic internal MH primitive.
methodHandle Method::make_method_handle_intrinsic(vmIntrinsics::ID iid,
                                                         Symbol* signature,
                                                         TRAPS) {
  ResourceMark rm(THREAD);
  methodHandle empty;

  InstanceKlass* holder = vmClasses::MethodHandle_klass();
  Symbol* name = MethodHandles::signature_polymorphic_intrinsic_name(iid);
  assert(iid == MethodHandles::signature_polymorphic_name_id(name), "");

  log_info(methodhandles)("make_method_handle_intrinsic MH.%s%s", name->as_C_string(), signature->as_C_string());

  // invariant:   cp->symbol_at_put is preceded by a refcount increment (more usually a lookup)
  name->increment_refcount();
  signature->increment_refcount();

  int cp_length = _imcp_limit;
  ClassLoaderData* loader_data = holder->class_loader_data();
  constantPoolHandle cp;
  {
    ConstantPool* cp_oop = ConstantPool::allocate(loader_data, cp_length, CHECK_(empty));
    cp = constantPoolHandle(THREAD, cp_oop);
  }
  cp->copy_fields(holder->constants());
  cp->set_pool_holder(holder);
  cp->symbol_at_put(_imcp_invoke_name,       name);
  cp->symbol_at_put(_imcp_invoke_signature,  signature);
  cp->set_has_preresolution();

  // decide on access bits:  public or not?
  int flags_bits = (JVM_ACC_NATIVE | JVM_ACC_SYNTHETIC | JVM_ACC_FINAL);
  bool must_be_static = MethodHandles::is_signature_polymorphic_static(iid);
  if (must_be_static)  flags_bits |= JVM_ACC_STATIC;
  assert((flags_bits & JVM_ACC_PUBLIC) == 0, "do not expose these methods");

  methodHandle m;
  {
    InlineTableSizes sizes;
    Method* m_oop = Method::allocate(loader_data, 0,
                                     accessFlags_from(flags_bits), &sizes,
                                     ConstMethod::NORMAL,
                                     name,
                                     CHECK_(empty));
    m = methodHandle(THREAD, m_oop);
  }
  m->set_constants(cp());
  m->set_name_index(_imcp_invoke_name);
  m->set_signature_index(_imcp_invoke_signature);
  assert(MethodHandles::is_signature_polymorphic_name(m->name()), "");
  assert(m->signature() == signature, "");
  m->compute_from_signature(signature);
  m->init_intrinsic_id(klass_id_for_intrinsics(m->method_holder()));
  assert(m->is_method_handle_intrinsic(), "");
#ifdef ASSERT
  if (!MethodHandles::is_signature_polymorphic(m->intrinsic_id()))  m->print();
  assert(MethodHandles::is_signature_polymorphic(m->intrinsic_id()), "must be an invoker");
  assert(m->intrinsic_id() == iid, "correctly predicted iid");
#endif //ASSERT

  // Finally, set up its entry points.
  assert(m->can_be_statically_bound(), "");
  m->set_vtable_index(Method::nonvirtual_vtable_index);
  m->link_method(m, CHECK_(empty));

  if (iid == vmIntrinsics::_linkToNative) {
    m->set_interpreter_entry(m->adapter()->get_i2c_entry());
  }
  if (log_is_enabled(Debug, methodhandles)) {
    LogTarget(Debug, methodhandles) lt;
    LogStream ls(lt);
    m->print_on(&ls);
  }

  return m;
}

Klass* Method::check_non_bcp_klass(Klass* klass) {
  if (klass != NULL && klass->class_loader() != NULL) {
    if (klass->is_objArray_klass())
      klass = ObjArrayKlass::cast(klass)->bottom_klass();
    return klass;
  }
  return NULL;
}


methodHandle Method::clone_with_new_data(const methodHandle& m, u_char* new_code, int new_code_length,
                                                u_char* new_compressed_linenumber_table, int new_compressed_linenumber_size, TRAPS) {
  // Code below does not work for native methods - they should never get rewritten anyway
  assert(!m->is_native(), "cannot rewrite native methods");
  // Allocate new Method*
  AccessFlags flags = m->access_flags();

  ConstMethod* cm = m->constMethod();
  int checked_exceptions_len = cm->checked_exceptions_length();
  int localvariable_len = cm->localvariable_table_length();
  int exception_table_len = cm->exception_table_length();
  int method_parameters_len = cm->method_parameters_length();
  int method_annotations_len = cm->method_annotations_length();
  int parameter_annotations_len = cm->parameter_annotations_length();
  int type_annotations_len = cm->type_annotations_length();
  int default_annotations_len = cm->default_annotations_length();

  InlineTableSizes sizes(
      localvariable_len,
      new_compressed_linenumber_size,
      exception_table_len,
      checked_exceptions_len,
      method_parameters_len,
      cm->generic_signature_index(),
      method_annotations_len,
      parameter_annotations_len,
      type_annotations_len,
      default_annotations_len,
      0);

  ClassLoaderData* loader_data = m->method_holder()->class_loader_data();
  Method* newm_oop = Method::allocate(loader_data,
                                      new_code_length,
                                      flags,
                                      &sizes,
                                      m->method_type(),
                                      m->name(),
                                      CHECK_(methodHandle()));
  methodHandle newm (THREAD, newm_oop);

  // Create a shallow copy of Method part, but be careful to preserve the new ConstMethod*
  ConstMethod* newcm = newm->constMethod();
  int new_const_method_size = newm->constMethod()->size();

  // This works because the source and target are both Methods. Some compilers
  // (e.g., clang) complain that the target vtable pointer will be stomped,
  // so cast away newm()'s and m()'s Methodness.
  memcpy((void*)newm(), (void*)m(), sizeof(Method));

  // Create shallow copy of ConstMethod.
  memcpy(newcm, m->constMethod(), sizeof(ConstMethod));

  // Reset correct method/const method, method size, and parameter info
  newm->set_constMethod(newcm);
  newm->constMethod()->set_code_size(new_code_length);
  newm->constMethod()->set_constMethod_size(new_const_method_size);
  assert(newm->code_size() == new_code_length, "check");
  assert(newm->method_parameters_length() == method_parameters_len, "check");
  assert(newm->checked_exceptions_length() == checked_exceptions_len, "check");
  assert(newm->exception_table_length() == exception_table_len, "check");
  assert(newm->localvariable_table_length() == localvariable_len, "check");
  // Copy new byte codes
  memcpy(newm->code_base(), new_code, new_code_length);
  // Copy line number table
  if (new_compressed_linenumber_size > 0) {
    memcpy(newm->compressed_linenumber_table(),
           new_compressed_linenumber_table,
           new_compressed_linenumber_size);
  }
  // Copy method_parameters
  if (method_parameters_len > 0) {
    memcpy(newm->method_parameters_start(),
           m->method_parameters_start(),
           method_parameters_len * sizeof(MethodParametersElement));
  }
  // Copy checked_exceptions
  if (checked_exceptions_len > 0) {
    memcpy(newm->checked_exceptions_start(),
           m->checked_exceptions_start(),
           checked_exceptions_len * sizeof(CheckedExceptionElement));
  }
  // Copy exception table
  if (exception_table_len > 0) {
    memcpy(newm->exception_table_start(),
           m->exception_table_start(),
           exception_table_len * sizeof(ExceptionTableElement));
  }
  // Copy local variable number table
  if (localvariable_len > 0) {
    memcpy(newm->localvariable_table_start(),
           m->localvariable_table_start(),
           localvariable_len * sizeof(LocalVariableTableElement));
  }
  // Copy stackmap table
  if (m->has_stackmap_table()) {
    int code_attribute_length = m->stackmap_data()->length();
    Array<u1>* stackmap_data =
      MetadataFactory::new_array<u1>(loader_data, code_attribute_length, 0, CHECK_(methodHandle()));
    memcpy((void*)stackmap_data->adr_at(0),
           (void*)m->stackmap_data()->adr_at(0), code_attribute_length);
    newm->set_stackmap_data(stackmap_data);
  }

  // copy annotations over to new method
  newcm->copy_annotations_from(loader_data, cm, CHECK_(methodHandle()));
  return newm;
}

vmSymbolID Method::klass_id_for_intrinsics(const Klass* holder) {
  // if loader is not the default loader (i.e., != NULL), we can't know the intrinsics
  // because we are not loading from core libraries
  // exception: the AES intrinsics come from lib/ext/sunjce_provider.jar
  // which does not use the class default class loader so we check for its loader here
  const InstanceKlass* ik = InstanceKlass::cast(holder);
  if ((ik->class_loader() != NULL) && !SystemDictionary::is_platform_class_loader(ik->class_loader())) {
    return vmSymbolID::NO_SID;   // regardless of name, no intrinsics here
  }

  // see if the klass name is well-known:
  Symbol* klass_name = ik->name();
  vmSymbolID id = vmSymbols::find_sid(klass_name);
  if (id != vmSymbolID::NO_SID && vmIntrinsics::class_has_intrinsics(id)) {
    return id;
  } else {
    return vmSymbolID::NO_SID;
  }
}

void Method::init_intrinsic_id(vmSymbolID klass_id) {
  assert(_intrinsic_id == static_cast<int>(vmIntrinsics::_none), "do this just once");
  const uintptr_t max_id_uint = right_n_bits((int)(sizeof(_intrinsic_id) * BitsPerByte));
  assert((uintptr_t)vmIntrinsics::ID_LIMIT <= max_id_uint, "else fix size");
  assert(intrinsic_id_size_in_bytes() == sizeof(_intrinsic_id), "");

  // the klass name is well-known:
  assert(klass_id == klass_id_for_intrinsics(method_holder()), "must be");
  assert(klass_id != vmSymbolID::NO_SID, "caller responsibility");

  // ditto for method and signature:
  vmSymbolID name_id = vmSymbols::find_sid(name());
  if (klass_id != VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle)
      && klass_id != VM_SYMBOL_ENUM_NAME(java_lang_invoke_VarHandle)
      && name_id == vmSymbolID::NO_SID) {
    return;
  }
  vmSymbolID sig_id = vmSymbols::find_sid(signature());
  if (klass_id != VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle)
      && klass_id != VM_SYMBOL_ENUM_NAME(java_lang_invoke_VarHandle)
      && sig_id == vmSymbolID::NO_SID) {
    return;
  }
  jshort flags = access_flags().as_short();

  vmIntrinsics::ID id = vmIntrinsics::find_id(klass_id, name_id, sig_id, flags);
  if (id != vmIntrinsics::_none) {
    set_intrinsic_id(id);
    if (id == vmIntrinsics::_Class_cast) {
      // Even if the intrinsic is rejected, we want to inline this simple method.
      set_force_inline(true);
    }
    return;
  }

  // A few slightly irregular cases:
  switch (klass_id) {
  // Signature-polymorphic methods: MethodHandle.invoke*, InvokeDynamic.*., VarHandle
  case VM_SYMBOL_ENUM_NAME(java_lang_invoke_MethodHandle):
  case VM_SYMBOL_ENUM_NAME(java_lang_invoke_VarHandle):
    if (!is_native())  break;
    id = MethodHandles::signature_polymorphic_name_id(method_holder(), name());
    if (is_static() != MethodHandles::is_signature_polymorphic_static(id))
      id = vmIntrinsics::_none;
    break;

  default:
    break;
  }

  if (id != vmIntrinsics::_none) {
    // Set up its iid.  It is an alias method.
    set_intrinsic_id(id);
    return;
  }
}

bool Method::load_signature_classes(const methodHandle& m, TRAPS) {
  if (!THREAD->can_call_java()) {
    // There is nothing useful this routine can do from within the Compile thread.
    // Hopefully, the signature contains only well-known classes.
    // We could scan for this and return true/false, but the caller won't care.
    return false;
  }
  bool sig_is_loaded = true;
  ResourceMark rm(THREAD);
  for (ResolvingSignatureStream ss(m()); !ss.is_done(); ss.next()) {
    if (ss.is_reference()) {
      // load everything, including arrays "[Lfoo;"
      Klass* klass = ss.as_klass(SignatureStream::ReturnNull, THREAD);
      // We are loading classes eagerly. If a ClassNotFoundException or
      // a LinkageError was generated, be sure to ignore it.
      if (HAS_PENDING_EXCEPTION) {
        if (PENDING_EXCEPTION->is_a(vmClasses::ClassNotFoundException_klass()) ||
            PENDING_EXCEPTION->is_a(vmClasses::LinkageError_klass())) {
          CLEAR_PENDING_EXCEPTION;
        } else {
          return false;
        }
      }
      if( klass == NULL) { sig_is_loaded = false; }
    }
  }
  return sig_is_loaded;
}

// Exposed so field engineers can debug VM
void Method::print_short_name(outputStream* st) const {
  ResourceMark rm;
#ifdef PRODUCT
  st->print(" %s::", method_holder()->external_name());
#else
  st->print(" %s::", method_holder()->internal_name());
#endif
  name()->print_symbol_on(st);
  if (WizardMode) signature()->print_symbol_on(st);
  else if (MethodHandles::is_signature_polymorphic(intrinsic_id()))
    MethodHandles::print_as_basic_type_signature_on(st, signature());
}

// Comparer for sorting an object array containing
// Method*s.
static int method_comparator(Method* a, Method* b) {
  return a->name()->fast_compare(b->name());
}

// This is only done during class loading, so it is OK to assume method_idnum matches the methods() array
// default_methods also uses this without the ordering for fast find_method
void Method::sort_methods(Array<Method*>* methods, bool set_idnums, method_comparator_func func) {
  int length = methods->length();
  if (length > 1) {
    if (func == NULL) {
      func = method_comparator;
    }
    {
      NoSafepointVerifier nsv;
      QuickSort::sort(methods->data(), length, func, /*idempotent=*/false);
    }
    // Reset method ordering
    if (set_idnums) {
      for (int i = 0; i < length; i++) {
        Method* m = methods->at(i);
        m->set_method_idnum(i);
        m->set_orig_method_idnum(i);
      }
    }
  }
}

//-----------------------------------------------------------------------------------
// Non-product code unless JVM/TI needs it

#if !defined(PRODUCT) || INCLUDE_JVMTI
class SignatureTypePrinter : public SignatureTypeNames {
 private:
  outputStream* _st;
  bool _use_separator;

  void type_name(const char* name) {
    if (_use_separator) _st->print(", ");
    _st->print("%s", name);
    _use_separator = true;
  }

 public:
  SignatureTypePrinter(Symbol* signature, outputStream* st) : SignatureTypeNames(signature) {
    _st = st;
    _use_separator = false;
  }

  void print_parameters()              { _use_separator = false; do_parameters_on(this); }
  void print_returntype()              { _use_separator = false; do_type(return_type()); }
};


void Method::print_name(outputStream* st) const {
  Thread *thread = Thread::current();
  ResourceMark rm(thread);
--> --------------------

--> maximum size reached

--> --------------------

¤ Dauer der Verarbeitung: 0.130 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff