/*
* Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/machnode.hpp"
#include "opto/movenode.hpp"
#include "opto/mulnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
// Portions of code courtesy of Clifford Click
// Classic Add functionality. This covers all the usual 'add' behaviors for
// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
// all inherited from this class. The various identity values are supplied
// by virtual functions.
//=============================================================================
//------------------------------hash-------------------------------------------
// Hash function over AddNodes. Needs to be commutative; i.e., I swap
// (commute) inputs to AddNodes willy-nilly so the hash function must return
// the same value in the presence of edge swapping.
uint AddNode::hash() const {
return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
}
//------------------------------Identity---------------------------------------
// If either input is a constant 0, return the other input.
Node* AddNode::Identity(PhaseGVN* phase) {
const Type *zero = add_id(); // The additive identity
if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
return this;
}
//------------------------------commute----------------------------------------
// Commute operands to move loads and constants to the right.
static bool commute(PhaseGVN* phase, Node* add) {
Node *in1 = add->in(1);
Node *in2 = add->in(2);
// convert "max(a,b) + min(a,b)" into "a+b".
if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode())
|| (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) {
Node *in11 = in1->in(1);
Node *in12 = in1->in(2);
Node *in21 = in2->in(1);
Node *in22 = in2->in(2);
if ((in11 == in21 && in12 == in22) ||
(in11 == in22 && in12 == in21)) {
add->set_req_X(1, in11, phase);
add->set_req_X(2, in12, phase);
return true;
}
}
bool con_left = phase->type(in1)->singleton();
bool con_right = phase->type(in2)->singleton();
// Convert "1+x" into "x+1".
// Right is a constant; leave it
if( con_right ) return false;
// Left is a constant; move it right.
if( con_left ) {
add->swap_edges(1, 2);
return true;
}
// Convert "Load+x" into "x+Load".
// Now check for loads
if (in2->is_Load()) {
if (!in1->is_Load()) {
// already x+Load to return
return false;
}
// both are loads, so fall through to sort inputs by idx
} else if( in1->is_Load() ) {
// Left is a Load and Right is not; move it right.
add->swap_edges(1, 2);
return true;
}
PhiNode *phi;
// Check for tight loop increments: Loop-phi of Add of loop-phi
if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add)
return false;
if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) {
add->swap_edges(1, 2);
return true;
}
// Otherwise, sort inputs (commutativity) to help value numbering.
if( in1->_idx > in2->_idx ) {
add->swap_edges(1, 2);
return true;
}
return false;
}
//------------------------------Idealize---------------------------------------
// If we get here, we assume we are associative!
Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const Type *t1 = phase->type(in(1));
const Type *t2 = phase->type(in(2));
bool con_left = t1->singleton();
bool con_right = t2->singleton();
// Check for commutative operation desired
if (commute(phase, this)) return this;
AddNode *progress = NULL; // Progress flag
// Convert "(x+1)+2" into "x+(1+2)". If the right input is a
// constant, and the left input is an add of a constant, flatten the
// expression tree.
Node *add1 = in(1);
Node *add2 = in(2);
int add1_op = add1->Opcode();
int this_op = Opcode();
if (con_right && t2 != Type::TOP && // Right input is a constant?
add1_op == this_op) { // Left input is an Add?
// Type of left _in right input
const Type *t12 = phase->type(add1->in(2));
if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
// Check for rare case of closed data cycle which can happen inside
// unreachable loops. In these cases the computation is undefined.
#ifdef ASSERT
Node *add11 = add1->in(1);
int add11_op = add11->Opcode();
if ((add1 == add1->in(1))
|| (add11_op == this_op && add11->in(1) == add1)) {
assert(false, "dead loop in AddNode::Ideal");
}
#endif
// The Add of the flattened expression
Node *x1 = add1->in(1);
Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12));
set_req_X(2, x2, phase);
set_req_X(1, x1, phase);
progress = this; // Made progress
add1 = in(1);
add1_op = add1->Opcode();
}
}
// Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
if (add1_op == this_op && !con_right) {
Node *a12 = add1->in(2);
const Type *t12 = phase->type( a12 );
if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
!(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) {
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
add2 = add1->clone();
add2->set_req(2, in(2));
add2 = phase->transform(add2);
set_req_X(1, add2, phase);
set_req_X(2, a12, phase);
progress = this;
add2 = a12;
}
}
// Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
int add2_op = add2->Opcode();
if (add2_op == this_op && !con_left) {
Node *a22 = add2->in(2);
const Type *t22 = phase->type( a22 );
if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
!(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) {
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
Node *addx = add2->clone();
addx->set_req(1, in(1));
addx->set_req(2, add2->in(1));
addx = phase->transform(addx);
set_req_X(1, addx, phase);
set_req_X(2, a22, phase);
progress = this;
}
}
return progress;
}
//------------------------------Value-----------------------------------------
// An add node sums it's two _in. If one input is an RSD, we must mixin
// the other input's symbols.
const Type* AddNode::Value(PhaseGVN* phase) const {
// Either input is TOP ==> the result is TOP
const Type *t1 = phase->type( in(1) );
const Type *t2 = phase->type( in(2) );
if( t1 == Type::TOP ) return Type::TOP;
if( t2 == Type::TOP ) return Type::TOP;
// Either input is BOTTOM ==> the result is the local BOTTOM
const Type *bot = bottom_type();
if( (t1 == bot) || (t2 == bot) ||
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
return bot;
// Check for an addition involving the additive identity
const Type *tadd = add_of_identity( t1, t2 );
if( tadd ) return tadd;
return add_ring(t1,t2); // Local flavor of type addition
}
//------------------------------add_identity-----------------------------------
// Check for addition of the identity
const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
const Type *zero = add_id(); // The additive identity
if( t1->higher_equal( zero ) ) return t2;
if( t2->higher_equal( zero ) ) return t1;
return NULL;
}
AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) {
switch (bt) {
case T_INT:
return new AddINode(in1, in2);
case T_LONG:
return new AddLNode(in1, in2);
default:
fatal("Not implemented for %s", type2name(bt));
}
return NULL;
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) {
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Fold (con1-x)+con2 into (con1+con2)-x
if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) {
// Swap edges to try optimizations below
in1 = in2;
in2 = in(1);
op1 = op2;
op2 = in2->Opcode();
}
if (op1 == Op_Sub(bt)) {
const Type* t_sub1 = phase->type(in1->in(1));
const Type* t_2 = phase->type(in2 );
if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) {
return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt);
}
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
if (op2 == Op_Sub(bt)) {
// Check for dead cycle: d = (a-b)+(c-d)
assert( in1->in(2) != this && in2->in(2) != this,
"dead loop in AddINode::Ideal" );
Node* sub = SubNode::make(NULL, NULL, bt);
sub->init_req(1, phase->transform(AddNode::make(in1->in(1), in2->in(1), bt)));
sub->init_req(2, phase->transform(AddNode::make(in1->in(2), in2->in(2), bt)));
return sub;
}
// Convert "(a-b)+(b+c)" into "(a+c)"
if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal");
return AddNode::make(in1->in(1), in2->in(2), bt);
}
// Convert "(a-b)+(c+b)" into "(a+c)"
if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) {
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal");
return AddNode::make(in1->in(1), in2->in(1), bt);
}
}
// Convert (con - y) + x into "(x - y) + con"
if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt)
&& in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) {
return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt);
}
// Convert x + (con - y) into "(x - y) + con"
if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt)
&& in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) {
return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt);
}
// Associative
if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) {
Node* add_in1 = NULL;
Node* add_in2 = NULL;
Node* mul_in = NULL;
if (in1->in(1) == in2->in(1)) {
// Convert "a*b+a*c into a*(b+c)
add_in1 = in1->in(2);
add_in2 = in2->in(2);
mul_in = in1->in(1);
} else if (in1->in(2) == in2->in(1)) {
// Convert a*b+b*c into b*(a+c)
add_in1 = in1->in(1);
add_in2 = in2->in(2);
mul_in = in1->in(2);
} else if (in1->in(2) == in2->in(2)) {
// Convert a*c+b*c into (a+b)*c
add_in1 = in1->in(1);
add_in2 = in2->in(1);
mul_in = in1->in(2);
} else if (in1->in(1) == in2->in(2)) {
// Convert a*b+c*a into a*(b+c)
add_in1 = in1->in(2);
add_in2 = in2->in(1);
mul_in = in1->in(1);
}
if (mul_in != NULL) {
Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt));
return MulNode::make(mul_in, add, bt);
}
}
// Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift)
if (Matcher::match_rule_supported(Op_RotateRight) &&
((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) &&
in1->in(1) != NULL && in1->in(1) == in2->in(1)) {
Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2);
Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2);
if (rshift != NULL && lshift != NULL) {
const TypeInt* rshift_t = phase->type(rshift)->isa_int();
const TypeInt* lshift_t = phase->type(lshift)->isa_int();
int bits = bt == T_INT ? 32 : 64;
int mask = bt == T_INT ? 0x1F : 0x3F;
if (lshift_t != NULL && lshift_t->is_con() &&
rshift_t != NULL && rshift_t->is_con() &&
((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) {
return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt));
}
}
}
return AddNode::Ideal(phase, can_reshape);
}
Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
// Helps with array allocation math constant folding
// See 4790063:
// Unrestricted transformation is unsafe for some runtime values of 'x'
// ( x == 0, z == 1, y == -1 ) fails
// ( x == -5, z == 1, y == 1 ) fails
// Transform works for small z and small negative y when the addition
// (x + (y << z)) does not cross zero.
// Implement support for negative y and (x >= -(y << z))
// Have not observed cases where type information exists to support
// positive y and (x <= -(y << z))
if (op1 == Op_URShiftI && op2 == Op_ConI &&
in1->in(2)->Opcode() == Op_ConI) {
jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
jint y = phase->type(in2)->is_int()->get_con();
if (z < 5 && -5 < y && y < 0) {
const Type* t_in11 = phase->type(in1->in(1));
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) {
Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z)));
return new URShiftINode(a, in1->in(2));
}
}
}
return AddNode::IdealIL(phase, can_reshape, T_INT);
}
//------------------------------Identity---------------------------------------
// Fold (x-y)+y OR y+(x-y) into x
Node* AddINode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) {
return in(1)->in(1);
} else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) {
return in(2)->in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs. Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
int lo = java_add(r0->_lo, r1->_lo);
int hi = java_add(r0->_hi, r1->_hi);
if( !(r0->is_con() && r1->is_con()) ) {
// Not both constants, compute approximate result
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
lo = min_jint; hi = max_jint; // Underflow on the low side
}
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
lo = min_jint; hi = max_jint; // Overflow on the high side
}
if( lo > hi ) { // Handle overflow
lo = min_jint; hi = max_jint;
}
} else {
// both constants, compute precise result using 'lo' and 'hi'
// Semantics define overflow and underflow for integer addition
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
}
return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
return AddNode::IdealIL(phase, can_reshape, T_LONG);
}
//------------------------------Identity---------------------------------------
// Fold (x-y)+y OR y+(x-y) into x
Node* AddLNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) {
return in(1)->in(1);
} else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) {
return in(2)->in(1);
}
return AddNode::Identity(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs. Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
jlong lo = java_add(r0->_lo, r1->_lo);
jlong hi = java_add(r0->_hi, r1->_hi);
if( !(r0->is_con() && r1->is_con()) ) {
// Not both constants, compute approximate result
if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
lo =min_jlong; hi = max_jlong; // Underflow on the low side
}
if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
lo = min_jlong; hi = max_jlong; // Overflow on the high side
}
if( lo > hi ) { // Handle overflow
lo = min_jlong; hi = max_jlong;
}
} else {
// both constants, compute precise result using 'lo' and 'hi'
// Semantics define overflow and underflow for integer addition
// as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
}
return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
// x ADD 0 should return x unless 'x' is a -zero
//
// const Type *zero = add_id(); // The additive identity
// jfloat f1 = t1->getf();
// jfloat f2 = t2->getf();
//
// if( t1->higher_equal( zero ) ) return t2;
// if( t2->higher_equal( zero ) ) return t1;
return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
// We must be adding 2 float constants.
return TypeF::make( t0->getf() + t1->getf() );
}
//------------------------------Ideal------------------------------------------
Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Floating point additions are not associative because of boundary conditions (infinity)
return commute(phase, this) ? this : NULL;
}
//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
// x ADD 0 should return x unless 'x' is a -zero
//
// const Type *zero = add_id(); // The additive identity
// jfloat f1 = t1->getf();
// jfloat f2 = t2->getf();
//
// if( t1->higher_equal( zero ) ) return t2;
// if( t2->higher_equal( zero ) ) return t1;
return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
// We must be adding 2 double constants.
return TypeD::make( t0->getd() + t1->getd() );
}
//------------------------------Ideal------------------------------------------
Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Floating point additions are not associative because of boundary conditions (infinity)
return commute(phase, this) ? this : NULL;
}
//=============================================================================
//------------------------------Identity---------------------------------------
// If one input is a constant 0, return the other input.
Node* AddPNode::Identity(PhaseGVN* phase) {
return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
}
//------------------------------Idealize---------------------------------------
Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Bail out if dead inputs
if( phase->type( in(Address) ) == Type::TOP ) return NULL;
// If the left input is an add of a constant, flatten the expression tree.
const Node *n = in(Address);
if (n->is_AddP() && n->in(Base) == in(Base)) {
const AddPNode *addp = n->as_AddP(); // Left input is an AddP
assert( !addp->in(Address)->is_AddP() ||
addp->in(Address)->as_AddP() != addp,
"dead loop in AddPNode::Ideal" );
// Type of left input's right input
const Type *t = phase->type( addp->in(Offset) );
if( t == Type::TOP ) return NULL;
const TypeX *t12 = t->is_intptr_t();
if( t12->is_con() ) { // Left input is an add of a constant?
// If the right input is a constant, combine constants
const Type *temp_t2 = phase->type( in(Offset) );
if( temp_t2 == Type::TOP ) return NULL;
const TypeX *t2 = temp_t2->is_intptr_t();
Node* address;
Node* offset;
if( t2->is_con() ) {
// The Add of the flattened expression
address = addp->in(Address);
offset = phase->MakeConX(t2->get_con() + t12->get_con());
} else {
// Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset)));
offset = addp->in(Offset);
}
set_req_X(Address, address, phase);
set_req_X(Offset, offset, phase);
return this;
}
}
// Raw pointers?
if( in(Base)->bottom_type() == Type::TOP ) {
// If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
Node* offset = in(Offset);
return new CastX2PNode(offset);
}
}
// If the right is an add of a constant, push the offset down.
// Convert: (ptr + (offset+con)) into (ptr+offset)+con.
// The idea is to merge array_base+scaled_index groups together,
// and only have different constant offsets from the same base.
const Node *add = in(Offset);
if( add->Opcode() == Op_AddX && add->in(1) != add ) {
const Type *t22 = phase->type( add->in(2) );
if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1))));
set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed
return this; // Made progress
}
}
return NULL; // No progress
}
//------------------------------bottom_type------------------------------------
// Bottom-type is the pointer-type with unknown offset.
const Type *AddPNode::bottom_type() const {
if (in(Address) == NULL) return TypePtr::BOTTOM;
const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
if( !tp ) return Type::TOP; // TOP input means TOP output
assert( in(Offset)->Opcode() != Op_ConP, "" );
const Type *t = in(Offset)->bottom_type();
if( t == Type::TOP )
return tp->add_offset(Type::OffsetTop);
const TypeX *tx = t->is_intptr_t();
intptr_t txoffset = Type::OffsetBot;
if (tx->is_con()) { // Left input is an add of a constant?
txoffset = tx->get_con();
}
return tp->add_offset(txoffset);
}
//------------------------------Value------------------------------------------
const Type* AddPNode::Value(PhaseGVN* phase) const {
// Either input is TOP ==> the result is TOP
const Type *t1 = phase->type( in(Address) );
const Type *t2 = phase->type( in(Offset) );
if( t1 == Type::TOP ) return Type::TOP;
if( t2 == Type::TOP ) return Type::TOP;
// Left input is a pointer
const TypePtr *p1 = t1->isa_ptr();
// Right input is an int
const TypeX *p2 = t2->is_intptr_t();
// Add 'em
intptr_t p2offset = Type::OffsetBot;
if (p2->is_con()) { // Left input is an add of a constant?
p2offset = p2->get_con();
}
return p1->add_offset(p2offset);
}
//------------------------Ideal_base_and_offset--------------------------------
// Split an oop pointer into a base and offset.
// (The offset might be Type::OffsetBot in the case of an array.)
// Return the base, or NULL if failure.
Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
// second return value:
intptr_t& offset) {
if (ptr->is_AddP()) {
Node* base = ptr->in(AddPNode::Base);
Node* addr = ptr->in(AddPNode::Address);
Node* offs = ptr->in(AddPNode::Offset);
if (base == addr || base->is_top()) {
offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
if (offset != Type::OffsetBot) {
return addr;
}
}
}
offset = Type::OffsetBot;
return NULL;
}
//------------------------------unpack_offsets----------------------------------
// Collect the AddP offset values into the elements array, giving up
// if there are more than length.
int AddPNode::unpack_offsets(Node* elements[], int length) {
int count = 0;
Node* addr = this;
Node* base = addr->in(AddPNode::Base);
while (addr->is_AddP()) {
if (addr->in(AddPNode::Base) != base) {
// give up
return -1;
}
elements[count++] = addr->in(AddPNode::Offset);
if (count == length) {
// give up
return -1;
}
addr = addr->in(AddPNode::Address);
}
if (addr != base) {
return -1;
}
return count;
}
//------------------------------match_edge-------------------------------------
// Do we Match on this edge index or not? Do not match base pointer edge
uint AddPNode::match_edge(uint idx) const {
return idx > Base;
}
//=============================================================================
//------------------------------Identity---------------------------------------
Node* OrINode::Identity(PhaseGVN* phase) {
// x | x => x
if (in(1) == in(2)) {
return in(1);
}
return AddNode::Identity(phase);
}
// Find shift value for Integer or Long OR.
Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) {
// val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift
const TypeInt* lshift_t = phase->type(lshift)->isa_int();
const TypeInt* rshift_t = phase->type(rshift)->isa_int();
if (lshift_t != NULL && lshift_t->is_con() &&
rshift_t != NULL && rshift_t->is_con() &&
((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) {
return phase->intcon(lshift_t->get_con() & mask);
}
// val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift
if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){
const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int();
if (shift_t != NULL && shift_t->is_con() &&
(shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) {
return lshift;
}
}
return NULL;
}
Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) {
int lopcode = in(1)->Opcode();
int ropcode = in(2)->Opcode();
if (Matcher::match_rule_supported(Op_RotateLeft) &&
lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) {
Node* lshift = in(1)->in(2);
Node* rshift = in(2)->in(2);
Node* shift = rotate_shift(phase, lshift, rshift, 0x1F);
if (shift != NULL) {
return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT);
}
return NULL;
}
if (Matcher::match_rule_supported(Op_RotateRight) &&
lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) {
Node* rshift = in(1)->in(2);
Node* lshift = in(2)->in(2);
Node* shift = rotate_shift(phase, rshift, lshift, 0x1F);
if (shift != NULL) {
return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT);
}
}
return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// If both args are bool, can figure out better types
if ( r0 == TypeInt::BOOL ) {
if ( r1 == TypeInt::ONE) {
return TypeInt::ONE;
} else if ( r1 == TypeInt::BOOL ) {
return TypeInt::BOOL;
}
} else if ( r0 == TypeInt::ONE ) {
if ( r1 == TypeInt::BOOL ) {
return TypeInt::ONE;
}
}
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeInt::INT; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeInt::make( r0->get_con() | r1->get_con() );
}
//=============================================================================
//------------------------------Identity---------------------------------------
Node* OrLNode::Identity(PhaseGVN* phase) {
// x | x => x
if (in(1) == in(2)) {
return in(1);
}
return AddNode::Identity(phase);
}
Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
int lopcode = in(1)->Opcode();
int ropcode = in(2)->Opcode();
if (Matcher::match_rule_supported(Op_RotateLeft) &&
lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) {
Node* lshift = in(1)->in(2);
Node* rshift = in(2)->in(2);
Node* shift = rotate_shift(phase, lshift, rshift, 0x3F);
if (shift != NULL) {
return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG);
}
return NULL;
}
if (Matcher::match_rule_supported(Op_RotateRight) &&
lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) {
Node* rshift = in(1)->in(2);
Node* lshift = in(2)->in(2);
Node* shift = rotate_shift(phase, rshift, lshift, 0x3F);
if (shift != NULL) {
return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG);
}
}
return NULL;
}
//------------------------------add_ring---------------------------------------
const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeLong::LONG; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeLong::make( r0->get_con() | r1->get_con() );
}
//---------------------------Helper -------------------------------------------
/* Decide if the given node is used only in arithmetic expressions(add or sub).
*/
static bool is_used_in_only_arithmetic(Node* n, BasicType bt) {
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* u = n->fast_out(i);
if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) {
return false;
}
}
return true;
}
//=============================================================================
//------------------------------Idealize---------------------------------------
Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
// Convert ~x into -1-x when ~x is used in an arithmetic expression
// or x itself is an expression.
if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS
if (phase->is_IterGVN()) {
if (is_used_in_only_arithmetic(this, T_INT)
// LHS is arithmetic
|| (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) {
return new SubINode(in2, in1);
}
} else {
// graph could be incomplete in GVN so we postpone to IGVN
phase->record_for_igvn(this);
}
}
return AddNode::Ideal(phase, can_reshape);
}
const Type* XorINode::Value(PhaseGVN* phase) const {
Node* in1 = in(1);
Node* in2 = in(2);
const Type* t1 = phase->type(in1);
const Type* t2 = phase->type(in2);
if (t1 == Type::TOP || t2 == Type::TOP) {
return Type::TOP;
}
// x ^ x ==> 0
if (in1->eqv_uncast(in2)) {
return add_id();
}
// result of xor can only have bits sets where any of the
// inputs have bits set. lo can always become 0.
const TypeInt* t1i = t1->is_int();
const TypeInt* t2i = t2->is_int();
if ((t1i->_lo >= 0) &&
(t1i->_hi > 0) &&
(t2i->_lo >= 0) &&
(t2i->_hi > 0)) {
// hi - set all bits below the highest bit. Using round_down to avoid overflow.
const TypeInt* t1x = TypeInt::make(0, round_down_power_of_2(t1i->_hi) + (round_down_power_of_2(t1i->_hi) - 1), t1i->_widen);
const TypeInt* t2x = TypeInt::make(0, round_down_power_of_2(t2i->_hi) + (round_down_power_of_2(t2i->_hi) - 1), t2i->_widen);
return t1x->meet(t2x);
}
return AddNode::Value(phase);
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Complementing a boolean?
if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
|| r1 == TypeInt::BOOL))
return TypeInt::BOOL;
if( !r0->is_con() || !r1->is_con() ) // Not constants
return TypeInt::INT; // Any integer, but still no symbols.
// Otherwise just XOR them bits.
return TypeInt::make( r0->get_con() ^ r1->get_con() );
}
//=============================================================================
//------------------------------add_ring---------------------------------------
const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeLong *r0 = t0->is_long(); // Handy access
const TypeLong *r1 = t1->is_long();
// If either input is not a constant, just return all integers.
if( !r0->is_con() || !r1->is_con() )
return TypeLong::LONG; // Any integer, but still no symbols.
// Otherwise just OR them bits.
return TypeLong::make( r0->get_con() ^ r1->get_con() );
}
Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* in1 = in(1);
Node* in2 = in(2);
// Convert ~x into -1-x when ~x is used in an arithmetic expression
// or x itself is an arithmetic expression.
if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS
if (phase->is_IterGVN()) {
if (is_used_in_only_arithmetic(this, T_LONG)
// LHS is arithmetic
|| (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) {
return new SubLNode(in2, in1);
}
} else {
// graph could be incomplete in GVN so we postpone to IGVN
phase->record_for_igvn(this);
}
}
return AddNode::Ideal(phase, can_reshape);
}
const Type* XorLNode::Value(PhaseGVN* phase) const {
Node* in1 = in(1);
Node* in2 = in(2);
const Type* t1 = phase->type(in1);
const Type* t2 = phase->type(in2);
if (t1 == Type::TOP || t2 == Type::TOP) {
return Type::TOP;
}
// x ^ x ==> 0
if (in1->eqv_uncast(in2)) {
return add_id();
}
// result of xor can only have bits sets where any of the
// inputs have bits set. lo can always become 0.
const TypeLong* t1l = t1->is_long();
const TypeLong* t2l = t2->is_long();
if ((t1l->_lo >= 0) &&
(t1l->_hi > 0) &&
(t2l->_lo >= 0) &&
(t2l->_hi > 0)) {
// hi - set all bits below the highest bit. Using round_down to avoid overflow.
const TypeLong* t1x = TypeLong::make(0, round_down_power_of_2(t1l->_hi) + (round_down_power_of_2(t1l->_hi) - 1), t1l->_widen);
const TypeLong* t2x = TypeLong::make(0, round_down_power_of_2(t2l->_hi) + (round_down_power_of_2(t2l->_hi) - 1), t2l->_widen);
return t1x->meet(t2x);
}
return AddNode::Value(phase);
}
Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) {
bool is_int = gvn.type(a)->isa_int();
assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
assert(is_int == (gvn.type(b)->isa_int() != NULL), "inconsistent inputs");
BasicType bt = is_int ? T_INT: T_LONG;
Node* hook = NULL;
if (gvn.is_IterGVN()) {
// Make sure a and b are not destroyed
hook = new Node(2);
hook->init_req(0, a);
hook->init_req(1, b);
}
Node* res = NULL;
if (is_int && !is_unsigned) {
if (is_max) {
res = gvn.transform(new MaxINode(a, b));
assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match");
} else {
Node* res = gvn.transform(new MinINode(a, b));
assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match");
}
} else {
Node* cmp = NULL;
if (is_max) {
cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned));
} else {
cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned));
}
Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
res = gvn.transform(CMoveNode::make(NULL, bol, a, b, t));
}
if (hook != NULL) {
hook->destruct(&gvn);
}
return res;
}
Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) {
bool is_int = gvn.type(a)->isa_int();
assert(is_int || gvn.type(a)->isa_long(), "int or long inputs");
assert(is_int == (gvn.type(b)->isa_int() != NULL), "inconsistent inputs");
BasicType bt = is_int ? T_INT: T_LONG;
Node* zero = gvn.integercon(0, bt);
Node* hook = NULL;
if (gvn.is_IterGVN()) {
// Make sure a and b are not destroyed
hook = new Node(2);
hook->init_req(0, a);
hook->init_req(1, b);
}
Node* cmp = NULL;
if (is_max) {
cmp = gvn.transform(CmpNode::make(a, b, bt, false));
} else {
cmp = gvn.transform(CmpNode::make(b, a, bt, false));
}
Node* sub = gvn.transform(SubNode::make(a, b, bt));
Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt));
Node* res = gvn.transform(CMoveNode::make(NULL, bol, sub, zero, t));
if (hook != NULL) {
hook->destruct(&gvn);
}
return res;
}
//=============================================================================
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Otherwise just MAX them bits.
return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}
// Check if addition of an integer with type 't' and a constant 'c' can overflow
static bool can_overflow(const TypeInt* t, jint c) {
jint t_lo = t->_lo;
jint t_hi = t->_hi;
return ((c < 0 && (java_add(t_lo, c) > t_lo)) ||
(c > 0 && (java_add(t_hi, c) < t_hi)));
}
// Ideal transformations for MaxINode
Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) {
// Force a right-spline graph
Node* l = in(1);
Node* r = in(2);
// Transform MaxI1(MaxI2(a, b), c) into MaxI1(a, MaxI2(b, c))
// to force a right-spline graph for the rest of MaxINode::Ideal().
if (l->Opcode() == Op_MaxI) {
assert(l != l->in(1), "dead loop in MaxINode::Ideal");
r = phase->transform(new MaxINode(l->in(2), r));
l = l->in(1);
set_req_X(1, l, phase);
set_req_X(2, r, phase);
return this;
}
// Get left input & constant
Node* x = l;
jint x_off = 0;
if (x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
x->in(2)->is_Con()) {
const Type* t = x->in(2)->bottom_type();
if (t == Type::TOP) return NULL; // No progress
x_off = t->is_int()->get_con();
x = x->in(1);
}
// Scan a right-spline-tree for MAXs
Node* y = r;
jint y_off = 0;
// Check final part of MAX tree
if (y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
y->in(2)->is_Con()) {
const Type* t = y->in(2)->bottom_type();
if (t == Type::TOP) return NULL; // No progress
y_off = t->is_int()->get_con();
y = y->in(1);
}
if (x->_idx > y->_idx && r->Opcode() != Op_MaxI) {
swap_edges(1, 2);
return this;
}
const TypeInt* tx = phase->type(x)->isa_int();
if (r->Opcode() == Op_MaxI) {
assert(r != r->in(2), "dead loop in MaxINode::Ideal");
y = r->in(1);
// Check final part of MAX tree
if (y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
y->in(2)->is_Con()) {
const Type* t = y->in(2)->bottom_type();
if (t == Type::TOP) return NULL; // No progress
y_off = t->is_int()->get_con();
y = y->in(1);
}
if (x->_idx > y->_idx)
return new MaxINode(r->in(1), phase->transform(new MaxINode(l, r->in(2))));
// Transform MAX2(x + c0, MAX2(x + c1, z)) into MAX2(x + MAX2(c0, c1), z)
// if x == y and the additions can't overflow.
if (x == y && tx != NULL &&
!can_overflow(tx, x_off) &&
!can_overflow(tx, y_off)) {
return new MaxINode(phase->transform(new AddINode(x, phase->intcon(MAX2(x_off, y_off)))), r->in(2));
}
} else {
// Transform MAX2(x + c0, y + c1) into x + MAX2(c0, c1)
// if x == y and the additions can't overflow.
if (x == y && tx != NULL &&
!can_overflow(tx, x_off) &&
!can_overflow(tx, y_off)) {
return new AddINode(x, phase->intcon(MAX2(x_off, y_off)));
}
}
return NULL;
}
//=============================================================================
//------------------------------Idealize---------------------------------------
// MINs show up in range-check loop limit calculations. Look for
// "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node *progress = NULL;
// Force a right-spline graph
Node *l = in(1);
Node *r = in(2);
// Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
// to force a right-spline graph for the rest of MinINode::Ideal().
if( l->Opcode() == Op_MinI ) {
assert( l != l->in(1), "dead loop in MinINode::Ideal" );
r = phase->transform(new MinINode(l->in(2),r));
l = l->in(1);
set_req_X(1, l, phase);
set_req_X(2, r, phase);
return this;
}
// Get left input & constant
Node *x = l;
jint x_off = 0;
if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
x->in(2)->is_Con() ) {
const Type *t = x->in(2)->bottom_type();
if( t == Type::TOP ) return NULL; // No progress
x_off = t->is_int()->get_con();
x = x->in(1);
}
// Scan a right-spline-tree for MINs
Node *y = r;
jint y_off = 0;
// Check final part of MIN tree
if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
y->in(2)->is_Con() ) {
const Type *t = y->in(2)->bottom_type();
if( t == Type::TOP ) return NULL; // No progress
y_off = t->is_int()->get_con();
y = y->in(1);
}
if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
swap_edges(1, 2);
return this;
}
const TypeInt* tx = phase->type(x)->isa_int();
if( r->Opcode() == Op_MinI ) {
assert( r != r->in(2), "dead loop in MinINode::Ideal" );
y = r->in(1);
// Check final part of MIN tree
if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
y->in(2)->is_Con() ) {
const Type *t = y->in(2)->bottom_type();
if( t == Type::TOP ) return NULL; // No progress
y_off = t->is_int()->get_con();
y = y->in(1);
}
if( x->_idx > y->_idx )
return new MinINode(r->in(1),phase->transform(new MinINode(l,r->in(2))));
// Transform MIN2(x + c0, MIN2(x + c1, z)) into MIN2(x + MIN2(c0, c1), z)
// if x == y and the additions can't overflow.
if (x == y && tx != NULL &&
!can_overflow(tx, x_off) &&
!can_overflow(tx, y_off)) {
return new MinINode(phase->transform(new AddINode(x, phase->intcon(MIN2(x_off, y_off)))), r->in(2));
}
} else {
// Transform MIN2(x + c0, y + c1) into x + MIN2(c0, c1)
// if x == y and the additions can't overflow.
if (x == y && tx != NULL &&
!can_overflow(tx, x_off) &&
!can_overflow(tx, y_off)) {
return new AddINode(x,phase->intcon(MIN2(x_off,y_off)));
}
}
return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeInt *r0 = t0->is_int(); // Handy access
const TypeInt *r1 = t1->is_int();
// Otherwise just MIN them bits.
return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}
//------------------------------add_ring---------------------------------------
const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeF *r0 = t0->is_float_constant();
const TypeF *r1 = t1->is_float_constant();
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
float f0 = r0->getf();
float f1 = r1->getf();
if (f0 != 0.0f || f1 != 0.0f) {
return f0 < f1 ? r0 : r1;
}
// handle min of 0.0, -0.0 case.
return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeD *r0 = t0->is_double_constant();
const TypeD *r1 = t1->is_double_constant();
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
double d0 = r0->getd();
double d1 = r1->getd();
if (d0 != 0.0 || d1 != 0.0) {
return d0 < d1 ? r0 : r1;
}
// handle min of 0.0, -0.0 case.
return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeF *r0 = t0->is_float_constant();
const TypeF *r1 = t1->is_float_constant();
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
float f0 = r0->getf();
float f1 = r1->getf();
if (f0 != 0.0f || f1 != 0.0f) {
return f0 > f1 ? r0 : r1;
}
// handle max of 0.0,-0.0 case.
return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1;
}
//------------------------------add_ring---------------------------------------
const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const {
const TypeD *r0 = t0->is_double_constant();
const TypeD *r1 = t1->is_double_constant();
if (r0->is_nan()) {
return r0;
}
if (r1->is_nan()) {
return r1;
}
double d0 = r0->getd();
double d1 = r1->getd();
if (d0 != 0.0 || d1 != 0.0) {
return d0 > d1 ? r0 : r1;
}
// handle max of 0.0, -0.0 case.
return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1;
}
¤ Dauer der Verarbeitung: 0.130 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|