products/sources/formale Sprachen/Coq/clib image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: segmenttree.ml   Sprache: SML

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** This module is a very simple implementation of "segment trees".

    A segment tree of type ['a t] represents a mapping from a union of
    disjoint segments to some values of type 'a. 
*)


(** Misc. functions. *)
let list_iteri f l =
  let rec loop i = function
    | [] -> ()
    | x :: xs -> f i x; loop (i + 1) xs
  in
    loop 0 l

let log2 x = log x /. log 2.

let log2n x = int_of_float (ceil (log2 (float_of_int x))) 

(** We focus on integers but this module can be generalized. *)
type elt = int

(** A value of type [domain] is interpreted differently given its position 
    in the tree. On internal nodes, a domain represents the set of 
    integers which are _not_ in the set of keys handled by the tree. On 
    leaves, a domain represents the st of integers which are in the set of 
    keys. *)

type domain =
  | Interval of elt * elt
  (** On internal nodes, a domain [Interval (a, b)] represents
      the interval [a + 1; b - 1]. On leaves, it represents [a; b].
      We always have [a] <= [b]. *)

  | Universe
  (** On internal node or root, a domain [Universe] represents all
      the integers. When the tree is not a trivial root,
      [Universe] has no interpretation on leaves. (The lookup
      function should never reach the leaves.) *)


(** We use an array to store the almost complete tree. This array
    contains at least one element. *)

type 'a t = (domain * 'option) array

(** The root is the first item of the array. *)

(** Standard layout for left child. *)
let left_child i = 2 * i + 1

(** Standard layout for right child. *)
let right_child i = 2 * i + 2

(** Extract the annotation of a node, be it internal or a leaf. *)
let value_of i t = match t.(i) with (_, Some x) -> x | _ -> raise Not_found

(** Initialize the array to store [n] leaves. *)
let create n init = 
  Array.make (1 lsl (log2n n + 1) - 1) init

(** Make a complete interval tree from a list of disjoint segments. 
    Precondition : the segments must be sorted. *)

let make segments = 
  let nsegments = List.length segments in
  let tree = create nsegments (Universe, None) in 
  let leaves_offset = (1 lsl (log2n nsegments)) - 1 in

    (* The algorithm proceeds in two steps using an intermediate tree
       to store minimum and maximum of each subtree as annotation of
       the node. *)


    (* We start from leaves: the last level of the tree is initialized
       with the given segments... *)

    list_iteri
      (fun i ((start, stop), value) ->
  let k = leaves_offset + i in
  let i = Interval (start, stop) in
    tree.(k) <- (i, Some i))
      segments;
    (* ... the remaining leaves are initialized with neutral information. *)
    for k = leaves_offset + nsegments to Array.length tree -1 do 
      tree.(k) <- (Universe, Some Universe)
    done;
    
    (* We traverse the tree bottom-up and compute the interval and
       annotation associated to each node from the annotations of its
       children. *)

    for k = leaves_offset - 1 downto 0 do
      let node, annotation = 
 match value_of (left_child k) tree, value_of (right_child k) tree with
   | Interval (left_min, left_max), Interval (right_min, right_max) ->
       (Interval (left_max, right_min), Interval (left_min, right_max))
   | Interval (min, max), Universe -> 
       (Interval (max, max), Interval (min, max))
   | Universe, Universe -> Universe, Universe
   | Universe, _ -> assert false
      in
 tree.(k) <- (node, Some annotation)
    done;

    (* Finally, annotation are replaced with the image related to each leaf. *)
    let final_tree = 
      Array.mapi (fun i (segment, value) -> (segment, None)) tree
    in
      list_iteri 
 (fun i ((start, stop), value) -> 
    final_tree.(leaves_offset + i) 
    <- (Interval (start, stop), Some value))
 segments;      
      final_tree

(** [lookup k t] looks for an image for key [k] in the interval tree [t]. 
    Raise [Not_found] if it fails. *)

let lookup k t = 
  let i = ref 0 in 
    while (snd t.(!i) = None) do
      match fst t.(!i) with
 | Interval (start, stop) -> 
     if k <= start then i := left_child !i
     else if k >= stop then i:= right_child !i 
     else raise Not_found
 | Universe -> raise Not_found
    done;
    match fst t.(!i) with
      | Interval (start, stop) -> 
   if k >= start && k <= stop then
     match snd t.(!i) with 
       | Some v -> v
       | None -> assert false
   else 
     raise Not_found
      | Universe -> assert false
      


¤ Dauer der Verarbeitung: 0.17 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff