(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open Util
open Names
open Constr
open Declarations
open Libobject
open Environ
open Pattern
open Libnames
open Globnames
module NamedDecl = Context.Named.Declaration
type filter_function = GlobRef.t -> env -> constr -> bool
type display_function = GlobRef.t -> env -> constr -> unit
(* This option restricts the output of [SearchPattern ...],
[SearchAbout ...], etc. to the names of the symbols matching the
query, separated by a newline. This type of output is useful for
editors (like emacs), to generate a list of completion candidates
without having to parse through the types of all symbols. *)
type glob_search_about_item =
| GlobSearchSubPattern of constr_pattern
| GlobSearchString of string
module SearchBlacklist =
Goptions.MakeStringTable
(struct
let key = ["Search";"Blacklist"]
let title = "Current search blacklist : "
let member_message s b =
str "Search blacklist does " ++ (if b then mt () else str "not ") ++ str "include " ++ str s
end)
(* The functions iter_constructors and iter_declarations implement the behavior
needed for the Coq searching commands.
These functions take as first argument the procedure
that will be called to treat each entry. This procedure receives the name
of the object, the assumptions that will make it possible to print its type,
and the constr term that represent its type. *)
let iter_constructors indsp u fn env nconstr =
for i = 1 to nconstr do
let typ = Inductiveops.type_of_constructor env ((indsp, i), u) in
fn (ConstructRef (indsp, i)) env typ
done
let iter_named_context_name_type f =
List.iter (fun decl -> f (NamedDecl.get_id decl) (NamedDecl.get_type decl))
let get_current_or_goal_context ?pstate glnum =
match pstate with
| None -> let env = Global.env () in Evd.(from_env env, env)
| Some p -> Pfedit.get_goal_context p glnum
(* General search over hypothesis of a goal *)
let iter_hypothesis ?pstate glnum (fn : GlobRef.t -> env -> constr -> unit) =
let env = Global.env () in
let iter_hyp idh typ = fn (VarRef idh) env typ in
let evmap,e = get_current_or_goal_context ?pstate glnum in
let pfctxt = named_context e in
iter_named_context_name_type iter_hyp pfctxt
(* General search over declarations *)
let iter_declarations (fn : GlobRef.t -> env -> constr -> unit) =
let env = Global.env () in
let iter_obj (sp, kn) lobj = match object_tag lobj with
| "VARIABLE" ->
begin try
let decl = Global.lookup_named (basename sp) in
fn (VarRef (NamedDecl.get_id decl)) env (NamedDecl.get_type decl)
with Not_found -> (* we are in a section *) () end
| "CONSTANT" ->
let cst = Global.constant_of_delta_kn kn in
let gr = ConstRef cst in
let (typ, _) = Typeops.type_of_global_in_context (Global.env ()) gr in
fn gr env typ
| "INDUCTIVE" ->
let mind = Global.mind_of_delta_kn kn in
let mib = Global.lookup_mind mind in
let iter_packet i mip =
let ind = (mind, i) in
let u = Univ.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in
let i = (ind, u) in
let typ = Inductiveops.type_of_inductive env i in
let () = fn (IndRef ind) env typ in
let len = Array.length mip.mind_user_lc in
iter_constructors ind u fn env len
in
Array.iteri iter_packet mib.mind_packets
| _ -> ()
in
try Declaremods.iter_all_segments iter_obj
with Not_found -> ()
let generic_search ?pstate glnumopt fn =
(match glnumopt with
| None -> ()
| Some glnum -> iter_hypothesis ?pstate glnum fn);
iter_declarations fn
(** This module defines a preference on constrs in the form of a
[compare] function (preferred constr must be big for this
functions, so preferences such as small constr must use a reversed
order). This priority will be used to order search results and
propose first results which are more likely to be relevant to the
query, this is why the type [t] contains the other elements
required of a search. *)
module ConstrPriority = struct
(* The priority is memoised here. Because of the very localised use
of this module, it is not worth it making a convenient interface. *)
type t = GlobRef.t * Environ.env * Constr.t * priority
and priority = int
module ConstrSet = CSet.Make(Constr)
(** A measure of the size of a term *)
let rec size t =
Constr.fold (fun s t -> 1 + s + size t) 0 t
(** Set of the "symbols" (definitions, inductives, constructors)
which appear in a term. *)
let rec symbols acc t =
let open Constr in
match kind t with
| Const _ | Ind _ | Construct _ -> ConstrSet.add t acc
| _ -> Constr.fold symbols acc t
(** The number of distinct "symbols" (see {!symbols}) which appear
in a term. *)
let num_symbols t =
ConstrSet.(cardinal (symbols empty t))
let priority t : priority =
-(3*(num_symbols t) + size t)
let compare (_,_,_,p1) (_,_,_,p2) =
Pervasives.compare p1 p2
end
module PriorityQueue = Heap.Functional(ConstrPriority)
let rec iter_priority_queue q fn =
(* use an option to make the function tail recursive. Will be
obsoleted with Ocaml 4.02 with the [match … with | exception …]
syntax. *)
let next = begin
try Some (PriorityQueue.maximum q)
with Heap.EmptyHeap -> None
end in
match next with
| Some (gref,env,t,_) ->
fn gref env t;
iter_priority_queue (PriorityQueue.remove q) fn
| None -> ()
let prioritize_search seq fn =
let acc = ref PriorityQueue.empty in
let iter gref env t =
let p = ConstrPriority.priority t in
acc := PriorityQueue.add (gref,env,t,p) !acc
in
let () = seq iter in
iter_priority_queue !acc fn
(** Filters *)
(** This function tries to see whether the conclusion matches a pattern.
FIXME: this is quite dummy, we may find a more efficient algorithm. *)
let rec pattern_filter pat ref env sigma typ =
let typ = Termops.strip_outer_cast sigma typ in
if Constr_matching.is_matching env sigma pat typ then true
else match EConstr.kind sigma typ with
| Prod (_, _, typ)
| LetIn (_, _, _, typ) -> pattern_filter pat ref env sigma typ
| _ -> false
let rec head_filter pat ref env sigma typ =
let typ = Termops.strip_outer_cast sigma typ in
if Constr_matching.is_matching_head env sigma pat typ then true
else match EConstr.kind sigma typ with
| Prod (_, _, typ)
| LetIn (_, _, _, typ) -> head_filter pat ref env sigma typ
| _ -> false
let full_name_of_reference ref =
let (dir,id) = repr_path (Nametab.path_of_global ref) in
DirPath.to_string dir ^ "." ^ Id.to_string id
(** Whether a reference is blacklisted *)
let blacklist_filter_aux () =
let l = SearchBlacklist.elements () in
fun ref env typ ->
let name = full_name_of_reference ref in
let is_not_bl str = not (String.string_contains ~where:name ~what:str) in
List.for_all is_not_bl l
let module_filter (mods, outside) ref env typ =
let sp = Nametab.path_of_global ref in
let sl = dirpath sp in
let is_outside md = not (is_dirpath_prefix_of md sl) in
let is_inside md = is_dirpath_prefix_of md sl in
if outside then List.for_all is_outside mods
else List.is_empty mods || List.exists is_inside mods
let name_of_reference ref = Id.to_string (Nametab.basename_of_global ref)
let search_about_filter query gr env typ = match query with
| GlobSearchSubPattern pat ->
Constr_matching.is_matching_appsubterm ~closed:false env (Evd.from_env env) pat (EConstr.of_constr typ)
| GlobSearchString s ->
String.string_contains ~where:(name_of_reference gr) ~what:s
(** SearchPattern *)
let search_pattern ?pstate gopt pat mods pr_search =
let blacklist_filter = blacklist_filter_aux () in
let filter ref env typ =
module_filter mods ref env typ &&
pattern_filter pat ref env (Evd.from_env env) (* FIXME *) (EConstr.of_constr typ) &&
blacklist_filter ref env typ
in
let iter ref env typ =
if filter ref env typ then pr_search ref env typ
in
generic_search ?pstate gopt iter
(** SearchRewrite *)
let eq () = Coqlib.(lib_ref "core.eq.type")
let rewrite_pat1 pat =
PApp (PRef (eq ()), [| PMeta None; pat; PMeta None |])
let rewrite_pat2 pat =
PApp (PRef (eq ()), [| PMeta None; PMeta None; pat |])
let search_rewrite ?pstate gopt pat mods pr_search =
let pat1 = rewrite_pat1 pat in
let pat2 = rewrite_pat2 pat in
let blacklist_filter = blacklist_filter_aux () in
let filter ref env typ =
module_filter mods ref env typ &&
(pattern_filter pat1 ref env (Evd.from_env env) (* FIXME *) (EConstr.of_constr typ) ||
pattern_filter pat2 ref env (Evd.from_env env) (EConstr.of_constr typ)) &&
blacklist_filter ref env typ
in
let iter ref env typ =
if filter ref env typ then pr_search ref env typ
in
generic_search ?pstate gopt iter
(** Search *)
let search_by_head ?pstate gopt pat mods pr_search =
let blacklist_filter = blacklist_filter_aux () in
let filter ref env typ =
module_filter mods ref env typ &&
head_filter pat ref env (Evd.from_env env) (* FIXME *) (EConstr.of_constr typ) &&
blacklist_filter ref env typ
in
let iter ref env typ =
if filter ref env typ then pr_search ref env typ
in
generic_search ?pstate gopt iter
(** SearchAbout *)
let search_about ?pstate gopt items mods pr_search =
let blacklist_filter = blacklist_filter_aux () in
let filter ref env typ =
let eqb b1 b2 = if b1 then b2 else not b2 in
module_filter mods ref env typ &&
List.for_all
(fun (b,i) -> eqb b (search_about_filter i ref env typ)) items &&
blacklist_filter ref env typ
in
let iter ref env typ =
if filter ref env typ then pr_search ref env typ
in
generic_search ?pstate gopt iter
type search_constraint =
| Name_Pattern of Str.regexp
| Type_Pattern of Pattern.constr_pattern
| SubType_Pattern of Pattern.constr_pattern
| In_Module of Names.DirPath.t
| Include_Blacklist
type 'a coq_object = {
coq_object_prefix : string list;
coq_object_qualid : string list;
coq_object_object : 'a;
}
let interface_search ?pstate =
let rec extract_flags name tpe subtpe mods blacklist = function
| [] -> (name, tpe, subtpe, mods, blacklist)
| (Name_Pattern regexp, b) :: l ->
extract_flags ((regexp, b) :: name) tpe subtpe mods blacklist l
| (Type_Pattern pat, b) :: l ->
extract_flags name ((pat, b) :: tpe) subtpe mods blacklist l
| (SubType_Pattern pat, b) :: l ->
extract_flags name tpe ((pat, b) :: subtpe) mods blacklist l
| (In_Module id, b) :: l ->
extract_flags name tpe subtpe ((id, b) :: mods) blacklist l
| (Include_Blacklist, b) :: l ->
extract_flags name tpe subtpe mods b l
in
fun ?glnum flags ->
let (name, tpe, subtpe, mods, blacklist) =
extract_flags [] [] [] [] false flags
in
let blacklist_filter = blacklist_filter_aux () in
let filter_function ref env constr =
let id = Names.Id.to_string (Nametab.basename_of_global ref) in
let path = Libnames.dirpath (Nametab.path_of_global ref) in
let toggle x b = if x then b else not b in
let match_name (regexp, flag) =
toggle (Str.string_match regexp id 0) flag
in
let match_type (pat, flag) =
toggle (Constr_matching.is_matching env (Evd.from_env env) pat (EConstr.of_constr constr)) flag
in
let match_subtype (pat, flag) =
toggle
(Constr_matching.is_matching_appsubterm ~closed:false
env (Evd.from_env env) pat (EConstr.of_constr constr)) flag
in
let match_module (mdl, flag) =
toggle (Libnames.is_dirpath_prefix_of mdl path) flag
in
List.for_all match_name name &&
List.for_all match_type tpe &&
List.for_all match_subtype subtpe &&
List.for_all match_module mods &&
(blacklist || blacklist_filter ref env constr)
in
let ans = ref [] in
let print_function ref env constr =
let fullpath = DirPath.repr (Nametab.dirpath_of_global ref) in
let qualid = Nametab.shortest_qualid_of_global Id.Set.empty ref in
let (shortpath, basename) = Libnames.repr_qualid qualid in
let shortpath = DirPath.repr shortpath in
(* [shortpath] is a suffix of [fullpath] and we're looking for the missing
prefix *)
let rec prefix full short accu = match full, short with
| _, [] ->
let full = List.rev_map Id.to_string full in
(full, accu)
| _ :: full, m :: short ->
prefix full short (Id.to_string m :: accu)
| _ -> assert false
in
let (prefix, qualid) = prefix fullpath shortpath [Id.to_string basename] in
let answer = {
coq_object_prefix = prefix;
coq_object_qualid = qualid;
coq_object_object = constr;
} in
ans := answer :: !ans;
in
let iter ref env typ =
if filter_function ref env typ then print_function ref env typ
in
let () = generic_search ?pstate glnum iter in
!ans
let blacklist_filter ref env typ =
blacklist_filter_aux () ref env typ
¤ Dauer der Verarbeitung: 0.3 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|