(* Title: HOL/BNF_Composition.thy
Author: Dmitriy Traytel, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2012, 2013, 2014
Composition of bounded natural functors.
*)
section \<open>Composition of Bounded Natural Functors\<close>
theory BNF_Composition
imports BNF_Def
begin
lemma ssubst_mem: "\t = s; s \ X\ \ t \ X"
by simp
lemma empty_natural: "(\_. {}) \ f = image g \ (\_. {})"
by (rule ext) simp
lemma Union_natural: "Union \ image (image f) = image f \ Union"
by (rule ext) (auto simp only: comp_apply)
lemma in_Union_o_assoc: "x \ (Union \ gset \ gmap) A \ x \ (Union \ (gset \ gmap)) A"
by (unfold comp_assoc)
lemma comp_single_set_bd:
assumes fbd_Card_order: "Card_order fbd" and
fset_bd: "\x. |fset x| \o fbd" and
gset_bd: "\x. |gset x| \o gbd"
shows "|\(fset ` gset x)| \o gbd *c fbd"
apply simp
apply (rule ordLeq_transitive)
apply (rule card_of_UNION_Sigma)
apply (subst SIGMA_CSUM)
apply (rule ordLeq_transitive)
apply (rule card_of_Csum_Times')
apply (rule fbd_Card_order)
apply (rule ballI)
apply (rule fset_bd)
apply (rule ordLeq_transitive)
apply (rule cprod_mono1)
apply (rule gset_bd)
apply (rule ordIso_imp_ordLeq)
apply (rule ordIso_refl)
apply (rule Card_order_cprod)
done
lemma csum_dup: "cinfinite r \ Card_order r \ p +c p' =o r +c r \ p +c p' =o r"
apply (erule ordIso_transitive)
apply (frule csum_absorb2')
apply (erule ordLeq_refl)
by simp
lemma cprod_dup: "cinfinite r \ Card_order r \ p *c p' =o r *c r \ p *c p' =o r"
apply (erule ordIso_transitive)
apply (rule cprod_infinite)
by simp
lemma Union_image_insert: "\(f ` insert a B) = f a \ \(f ` B)"
by simp
lemma Union_image_empty: "A \ \(f ` {}) = A"
by simp
lemma image_o_collect: "collect ((\f. image g \ f) ` F) = image g \ collect F"
by (rule ext) (auto simp add: collect_def)
lemma conj_subset_def: "A \ {x. P x \ Q x} = (A \ {x. P x} \ A \ {x. Q x})"
by blast
lemma UN_image_subset: "\(f ` g x) \ X = (g x \ {x. f x \ X})"
by blast
lemma comp_set_bd_Union_o_collect: "|\(\((\f. f x) ` X))| \o hbd \ |(Union \ collect X) x| \o hbd"
by (unfold comp_apply collect_def) simp
lemma Collect_inj: "Collect P = Collect Q \ P = Q"
by blast
lemma Grp_fst_snd: "(Grp (Collect (case_prod R)) fst)\\ OO Grp (Collect (case_prod R)) snd = R"
unfolding Grp_def fun_eq_iff relcompp.simps by auto
lemma OO_Grp_cong: "A = B \ (Grp A f)\\ OO Grp A g = (Grp B f)\\ OO Grp B g"
by (rule arg_cong)
lemma vimage2p_relcompp_mono: "R OO S \ T \
vimage2p f g R OO vimage2p g h S \<le> vimage2p f h T"
unfolding vimage2p_def by auto
lemma type_copy_map_cong0: "M (g x) = N (h x) \ (f \ M \ g) x = (f \ N \ h) x"
by auto
lemma type_copy_set_bd: "(\y. |S y| \o bd) \ |(S \ Rep) x| \o bd"
by auto
lemma vimage2p_cong: "R = S \ vimage2p f g R = vimage2p f g S"
by simp
lemma Ball_comp_iff: "(\x. Ball (A x) f) \ g = (\x. Ball ((A \ g) x) f)"
unfolding o_def by auto
lemma conj_comp_iff: "(\x. P x \ Q x) \ g = (\x. (P \ g) x \ (Q \ g) x)"
unfolding o_def by auto
context
fixes Rep Abs
assumes type_copy: "type_definition Rep Abs UNIV"
begin
lemma type_copy_map_id0: "M = id \ Abs \ M \ Rep = id"
using type_definition.Rep_inverse[OF type_copy] by auto
lemma type_copy_map_comp0: "M = M1 \ M2 \ f \ M \ g = (f \ M1 \ Rep) \ (Abs \ M2 \ g)"
using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto
lemma type_copy_set_map0: "S \ M = image f \ S' \ (S \ Rep) \ (Abs \ M \ g) = image f \ (S' \ g)"
using type_definition.Abs_inverse[OF type_copy UNIV_I] by (auto simp: o_def fun_eq_iff)
lemma type_copy_wit: "x \ (S \ Rep) (Abs y) \ x \ S y"
using type_definition.Abs_inverse[OF type_copy UNIV_I] by auto
lemma type_copy_vimage2p_Grp_Rep: "vimage2p f Rep (Grp (Collect P) h) =
Grp (Collect (\<lambda>x. P (f x))) (Abs \<circ> h \<circ> f)"
unfolding vimage2p_def Grp_def fun_eq_iff
by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I]
type_definition.Rep_inverse[OF type_copy] dest: sym)
lemma type_copy_vimage2p_Grp_Abs:
"\h. vimage2p g Abs (Grp (Collect P) h) = Grp (Collect (\x. P (g x))) (Rep \ h \ g)"
unfolding vimage2p_def Grp_def fun_eq_iff
by (auto simp: type_definition.Abs_inverse[OF type_copy UNIV_I]
type_definition.Rep_inverse[OF type_copy] dest: sym)
lemma type_copy_ex_RepI: "(\b. F b) = (\b. F (Rep b))"
proof safe
fix b assume "F b"
show "\b'. F (Rep b')"
proof (rule exI)
from \<open>F b\<close> show "F (Rep (Abs b))" using type_definition.Abs_inverse[OF type_copy] by auto
qed
qed blast
lemma vimage2p_relcompp_converse:
"vimage2p f g (R\\ OO S) = (vimage2p Rep f R)\\ OO vimage2p Rep g S"
unfolding vimage2p_def relcompp.simps conversep.simps fun_eq_iff image_def
by (auto simp: type_copy_ex_RepI)
end
bnf DEADID: 'a
map: "id :: 'a \ 'a"
bd: natLeq
rel: "(=) :: 'a \ 'a \ bool"
by (auto simp add: natLeq_card_order natLeq_cinfinite)
definition id_bnf :: "'a \ 'a" where
"id_bnf \ (\x. x)"
lemma id_bnf_apply: "id_bnf x = x"
unfolding id_bnf_def by simp
bnf ID: 'a
map: "id_bnf :: ('a \ 'b) \ 'a \ 'b"
sets: "\x. {x}"
bd: natLeq
rel: "id_bnf :: ('a \ 'b \ bool) \ 'a \ 'b \ bool"
pred: "id_bnf :: ('a \ bool) \ 'a \ bool"
unfolding id_bnf_def
apply (auto simp: Grp_def fun_eq_iff relcompp.simps natLeq_card_order natLeq_cinfinite)
apply (rule ordLess_imp_ordLeq[OF finite_ordLess_infinite[OF _ natLeq_Well_order]])
apply (auto simp add: Field_card_of Field_natLeq card_of_well_order_on)[3]
done
lemma type_definition_id_bnf_UNIV: "type_definition id_bnf id_bnf UNIV"
unfolding id_bnf_def by unfold_locales auto
ML_file \<open>Tools/BNF/bnf_comp_tactics.ML\<close>
ML_file \<open>Tools/BNF/bnf_comp.ML\<close>
hide_fact
DEADID.inj_map DEADID.inj_map_strong DEADID.map_comp DEADID.map_cong DEADID.map_cong0
DEADID.map_cong_simp DEADID.map_id DEADID.map_id0 DEADID.map_ident DEADID.map_transfer
DEADID.rel_Grp DEADID.rel_compp DEADID.rel_compp_Grp DEADID.rel_conversep DEADID.rel_eq
DEADID.rel_flip DEADID.rel_map DEADID.rel_mono DEADID.rel_transfer
ID.inj_map ID.inj_map_strong ID.map_comp ID.map_cong ID.map_cong0 ID.map_cong_simp ID.map_id
ID.map_id0 ID.map_ident ID.map_transfer ID.rel_Grp ID.rel_compp ID.rel_compp_Grp ID.rel_conversep
ID.rel_eq ID.rel_flip ID.rel_map ID.rel_mono ID.rel_transfer ID.set_map ID.set_transfer
end
¤ Dauer der Verarbeitung: 0.22 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|