(* Author: Florian Haftmann, TUM
*)
section \<open>Bit operations in suitable algebraic structures\<close>
theory Bit_Operations
imports
Main
"HOL-Library.Boolean_Algebra"
begin
subsection \<open>Bit operations\<close>
class semiring_bit_operations = semiring_bit_shifts +
fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>AND\<close> 64)
and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>OR\<close> 59)
and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>XOR\<close> 59)
and mask :: \<open>nat \<Rightarrow> 'a\<close>
assumes bit_and_iff [bit_simps]: \<open>\<And>n. bit (a AND b) n \<longleftrightarrow> bit a n \<and> bit b n\<close>
and bit_or_iff [bit_simps]: \<open>\<And>n. bit (a OR b) n \<longleftrightarrow> bit a n \<or> bit b n\<close>
and bit_xor_iff [bit_simps]: \<open>\<And>n. bit (a XOR b) n \<longleftrightarrow> bit a n \<noteq> bit b n\<close>
and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close>
begin
text \<open>
We want the bitwise operations to bind slightly weaker
than \<open>+\<close> and \<open>-\<close>.
For the sake of code generation
the operations \<^const>\<open>and\<close>, \<^const>\<open>or\<close> and \<^const>\<open>xor\<close>
are specified as definitional class operations.
\<close>
sublocale "and": semilattice \<open>(AND)\<close>
by standard (auto simp add: bit_eq_iff bit_and_iff)
sublocale or: semilattice_neutr \<open>(OR)\<close> 0
by standard (auto simp add: bit_eq_iff bit_or_iff)
sublocale xor: comm_monoid \<open>(XOR)\<close> 0
by standard (auto simp add: bit_eq_iff bit_xor_iff)
lemma even_and_iff:
\<open>even (a AND b) \<longleftrightarrow> even a \<or> even b\<close>
using bit_and_iff [of a b 0] by auto
lemma even_or_iff:
\<open>even (a OR b) \<longleftrightarrow> even a \<and> even b\<close>
using bit_or_iff [of a b 0] by auto
lemma even_xor_iff:
\<open>even (a XOR b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)\<close>
using bit_xor_iff [of a b 0] by auto
lemma zero_and_eq [simp]:
"0 AND a = 0"
by (simp add: bit_eq_iff bit_and_iff)
lemma and_zero_eq [simp]:
"a AND 0 = 0"
by (simp add: bit_eq_iff bit_and_iff)
lemma one_and_eq:
"1 AND a = a mod 2"
by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff)
lemma and_one_eq:
"a AND 1 = a mod 2"
using one_and_eq [of a] by (simp add: ac_simps)
lemma one_or_eq:
"1 OR a = a + of_bool (even a)"
by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff)
lemma or_one_eq:
"a OR 1 = a + of_bool (even a)"
using one_or_eq [of a] by (simp add: ac_simps)
lemma one_xor_eq:
"1 XOR a = a + of_bool (even a) - of_bool (odd a)"
by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred elim: oddE)
lemma xor_one_eq:
"a XOR 1 = a + of_bool (even a) - of_bool (odd a)"
using one_xor_eq [of a] by (simp add: ac_simps)
lemma take_bit_and [simp]:
\<open>take_bit n (a AND b) = take_bit n a AND take_bit n b\<close>
by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff)
lemma take_bit_or [simp]:
\<open>take_bit n (a OR b) = take_bit n a OR take_bit n b\<close>
by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff)
lemma take_bit_xor [simp]:
\<open>take_bit n (a XOR b) = take_bit n a XOR take_bit n b\<close>
by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff)
lemma push_bit_and [simp]:
\<open>push_bit n (a AND b) = push_bit n a AND push_bit n b\<close>
by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_and_iff)
lemma push_bit_or [simp]:
\<open>push_bit n (a OR b) = push_bit n a OR push_bit n b\<close>
by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_or_iff)
lemma push_bit_xor [simp]:
\<open>push_bit n (a XOR b) = push_bit n a XOR push_bit n b\<close>
by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_xor_iff)
lemma drop_bit_and [simp]:
\<open>drop_bit n (a AND b) = drop_bit n a AND drop_bit n b\<close>
by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_and_iff)
lemma drop_bit_or [simp]:
\<open>drop_bit n (a OR b) = drop_bit n a OR drop_bit n b\<close>
by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_or_iff)
lemma drop_bit_xor [simp]:
\<open>drop_bit n (a XOR b) = drop_bit n a XOR drop_bit n b\<close>
by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_xor_iff)
lemma bit_mask_iff [bit_simps]:
\<open>bit (mask m) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n < m\<close>
by (simp add: mask_eq_exp_minus_1 bit_mask_iff)
lemma even_mask_iff:
\<open>even (mask n) \<longleftrightarrow> n = 0\<close>
using bit_mask_iff [of n 0] by auto
lemma mask_0 [simp]:
\<open>mask 0 = 0\<close>
by (simp add: mask_eq_exp_minus_1)
lemma mask_Suc_0 [simp]:
\<open>mask (Suc 0) = 1\<close>
by (simp add: mask_eq_exp_minus_1 add_implies_diff sym)
lemma mask_Suc_exp:
\<open>mask (Suc n) = 2 ^ n OR mask n\<close>
by (rule bit_eqI)
(auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq)
lemma mask_Suc_double:
\<open>mask (Suc n) = 1 OR 2 * mask n\<close>
proof (rule bit_eqI)
fix q
assume \<open>2 ^ q \<noteq> 0\<close>
show \<open>bit (mask (Suc n)) q \<longleftrightarrow> bit (1 OR 2 * mask n) q\<close>
by (cases q)
(simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2)
qed
lemma mask_numeral:
\<open>mask (numeral n) = 1 + 2 * mask (pred_numeral n)\<close>
by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps)
lemma take_bit_mask [simp]:
\<open>take_bit m (mask n) = mask (min m n)\<close>
by (rule bit_eqI) (simp add: bit_simps)
lemma take_bit_eq_mask:
\<open>take_bit n a = a AND mask n\<close>
by (rule bit_eqI)
(auto simp add: bit_take_bit_iff bit_and_iff bit_mask_iff)
lemma or_eq_0_iff:
\<open>a OR b = 0 \<longleftrightarrow> a = 0 \<and> b = 0\<close>
by (auto simp add: bit_eq_iff bit_or_iff)
lemma disjunctive_add:
\<open>a + b = a OR b\<close> if \<open>\<And>n. \<not> bit a n \<or> \<not> bit b n\<close>
by (rule bit_eqI) (use that in \<open>simp add: bit_disjunctive_add_iff bit_or_iff\<close>)
lemma bit_iff_and_drop_bit_eq_1:
\<open>bit a n \<longleftrightarrow> drop_bit n a AND 1 = 1\<close>
by (simp add: bit_iff_odd_drop_bit and_one_eq odd_iff_mod_2_eq_one)
lemma bit_iff_and_push_bit_not_eq_0:
\<open>bit a n \<longleftrightarrow> a AND push_bit n 1 \<noteq> 0\<close>
apply (cases \<open>2 ^ n = 0\<close>)
apply (simp_all add: push_bit_of_1 bit_eq_iff bit_and_iff bit_push_bit_iff exp_eq_0_imp_not_bit)
apply (simp_all add: bit_exp_iff)
done
end
class ring_bit_operations = semiring_bit_operations + ring_parity +
fixes not :: \<open>'a \<Rightarrow> 'a\<close> (\<open>NOT\<close>)
assumes bit_not_iff [bit_simps]: \<open>\<And>n. bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close>
assumes minus_eq_not_minus_1: \<open>- a = NOT (a - 1)\<close>
begin
text \<open>
For the sake of code generation \<^const>\<open>not\<close> is specified as
definitional class operation. Note that \<^const>\<open>not\<close> has no
sensible definition for unlimited but only positive bit strings
(type \<^typ>\<open>nat\<close>).
\<close>
lemma bits_minus_1_mod_2_eq [simp]:
\<open>(- 1) mod 2 = 1\<close>
by (simp add: mod_2_eq_odd)
lemma not_eq_complement:
\<open>NOT a = - a - 1\<close>
using minus_eq_not_minus_1 [of \<open>a + 1\<close>] by simp
lemma minus_eq_not_plus_1:
\<open>- a = NOT a + 1\<close>
using not_eq_complement [of a] by simp
lemma bit_minus_iff [bit_simps]:
\<open>bit (- a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit (a - 1) n\<close>
by (simp add: minus_eq_not_minus_1 bit_not_iff)
lemma even_not_iff [simp]:
"even (NOT a) \ odd a"
using bit_not_iff [of a 0] by auto
lemma bit_not_exp_iff [bit_simps]:
\<open>bit (NOT (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<noteq> m\<close>
by (auto simp add: bit_not_iff bit_exp_iff)
lemma bit_minus_1_iff [simp]:
\<open>bit (- 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0\<close>
by (simp add: bit_minus_iff)
lemma bit_minus_exp_iff [bit_simps]:
\<open>bit (- (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<ge> m\<close>
by (auto simp add: bit_simps simp flip: mask_eq_exp_minus_1)
lemma bit_minus_2_iff [simp]:
\<open>bit (- 2) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n > 0\<close>
by (simp add: bit_minus_iff bit_1_iff)
lemma not_one [simp]:
"NOT 1 = - 2"
by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff)
sublocale "and": semilattice_neutr \<open>(AND)\<close> \<open>- 1\<close>
by standard (rule bit_eqI, simp add: bit_and_iff)
sublocale bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
rewrites \<open>bit.xor = (XOR)\<close>
proof -
interpret bit: boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
by standard (auto simp add: bit_and_iff bit_or_iff bit_not_iff intro: bit_eqI)
show \<open>boolean_algebra (AND) (OR) NOT 0 (- 1)\<close>
by standard
show \<open>boolean_algebra.xor (AND) (OR) NOT = (XOR)\<close>
by (rule ext, rule ext, rule bit_eqI)
(auto simp add: bit.xor_def bit_and_iff bit_or_iff bit_xor_iff bit_not_iff)
qed
lemma and_eq_not_not_or:
\<open>a AND b = NOT (NOT a OR NOT b)\<close>
by simp
lemma or_eq_not_not_and:
\<open>a OR b = NOT (NOT a AND NOT b)\<close>
by simp
lemma not_add_distrib:
\<open>NOT (a + b) = NOT a - b\<close>
by (simp add: not_eq_complement algebra_simps)
lemma not_diff_distrib:
\<open>NOT (a - b) = NOT a + b\<close>
using not_add_distrib [of a \<open>- b\<close>] by simp
lemma (in ring_bit_operations) and_eq_minus_1_iff:
\<open>a AND b = - 1 \<longleftrightarrow> a = - 1 \<and> b = - 1\<close>
proof
assume \<open>a = - 1 \<and> b = - 1\<close>
then show \<open>a AND b = - 1\<close>
by simp
next
assume \<open>a AND b = - 1\<close>
have *: \<open>bit a n\<close> \<open>bit b n\<close> if \<open>2 ^ n \<noteq> 0\<close> for n
proof -
from \<open>a AND b = - 1\<close>
have \<open>bit (a AND b) n = bit (- 1) n\<close>
by (simp add: bit_eq_iff)
then show \<open>bit a n\<close> \<open>bit b n\<close>
using that by (simp_all add: bit_and_iff)
qed
have \<open>a = - 1\<close>
by (rule bit_eqI) (simp add: *)
moreover have \<open>b = - 1\<close>
by (rule bit_eqI) (simp add: *)
ultimately show \<open>a = - 1 \<and> b = - 1\<close>
by simp
qed
lemma disjunctive_diff:
\<open>a - b = a AND NOT b\<close> if \<open>\<And>n. bit b n \<Longrightarrow> bit a n\<close>
proof -
have \<open>NOT a + b = NOT a OR b\<close>
by (rule disjunctive_add) (auto simp add: bit_not_iff dest: that)
then have \<open>NOT (NOT a + b) = NOT (NOT a OR b)\<close>
by simp
then show ?thesis
by (simp add: not_add_distrib)
qed
lemma push_bit_minus:
\<open>push_bit n (- a) = - push_bit n a\<close>
by (simp add: push_bit_eq_mult)
lemma take_bit_not_take_bit:
\<open>take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\<close>
by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff)
lemma take_bit_not_iff:
"take_bit n (NOT a) = take_bit n (NOT b) \ take_bit n a = take_bit n b"
apply (simp add: bit_eq_iff)
apply (simp add: bit_not_iff bit_take_bit_iff bit_exp_iff)
apply (use exp_eq_0_imp_not_bit in blast)
done
lemma take_bit_not_eq_mask_diff:
\<open>take_bit n (NOT a) = mask n - take_bit n a\<close>
proof -
have \<open>take_bit n (NOT a) = take_bit n (NOT (take_bit n a))\<close>
by (simp add: take_bit_not_take_bit)
also have \<open>\<dots> = mask n AND NOT (take_bit n a)\<close>
by (simp add: take_bit_eq_mask ac_simps)
also have \<open>\<dots> = mask n - take_bit n a\<close>
by (subst disjunctive_diff)
(auto simp add: bit_take_bit_iff bit_mask_iff exp_eq_0_imp_not_bit)
finally show ?thesis
by simp
qed
lemma mask_eq_take_bit_minus_one:
\<open>mask n = take_bit n (- 1)\<close>
by (simp add: bit_eq_iff bit_mask_iff bit_take_bit_iff conj_commute)
lemma take_bit_minus_one_eq_mask:
\<open>take_bit n (- 1) = mask n\<close>
by (simp add: mask_eq_take_bit_minus_one)
lemma minus_exp_eq_not_mask:
\<open>- (2 ^ n) = NOT (mask n)\<close>
by (rule bit_eqI) (simp add: bit_minus_iff bit_not_iff flip: mask_eq_exp_minus_1)
lemma push_bit_minus_one_eq_not_mask:
\<open>push_bit n (- 1) = NOT (mask n)\<close>
by (simp add: push_bit_eq_mult minus_exp_eq_not_mask)
lemma take_bit_not_mask_eq_0:
\<open>take_bit m (NOT (mask n)) = 0\<close> if \<open>n \<ge> m\<close>
by (rule bit_eqI) (use that in \<open>simp add: bit_take_bit_iff bit_not_iff bit_mask_iff\<close>)
lemma take_bit_mask [simp]:
\<open>take_bit m (mask n) = mask (min m n)\<close>
by (simp add: mask_eq_take_bit_minus_one)
definition set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
where \<open>set_bit n a = a OR push_bit n 1\<close>
definition unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
where \<open>unset_bit n a = a AND NOT (push_bit n 1)\<close>
definition flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
where \<open>flip_bit n a = a XOR push_bit n 1\<close>
lemma bit_set_bit_iff [bit_simps]:
\<open>bit (set_bit m a) n \<longleftrightarrow> bit a n \<or> (m = n \<and> 2 ^ n \<noteq> 0)\<close>
by (auto simp add: set_bit_def push_bit_of_1 bit_or_iff bit_exp_iff)
lemma even_set_bit_iff:
\<open>even (set_bit m a) \<longleftrightarrow> even a \<and> m \<noteq> 0\<close>
using bit_set_bit_iff [of m a 0] by auto
lemma bit_unset_bit_iff [bit_simps]:
\<open>bit (unset_bit m a) n \<longleftrightarrow> bit a n \<and> m \<noteq> n\<close>
by (auto simp add: unset_bit_def push_bit_of_1 bit_and_iff bit_not_iff bit_exp_iff exp_eq_0_imp_not_bit)
lemma even_unset_bit_iff:
\<open>even (unset_bit m a) \<longleftrightarrow> even a \<or> m = 0\<close>
using bit_unset_bit_iff [of m a 0] by auto
lemma bit_flip_bit_iff [bit_simps]:
\<open>bit (flip_bit m a) n \<longleftrightarrow> (m = n \<longleftrightarrow> \<not> bit a n) \<and> 2 ^ n \<noteq> 0\<close>
by (auto simp add: flip_bit_def push_bit_of_1 bit_xor_iff bit_exp_iff exp_eq_0_imp_not_bit)
lemma even_flip_bit_iff:
\<open>even (flip_bit m a) \<longleftrightarrow> \<not> (even a \<longleftrightarrow> m = 0)\<close>
using bit_flip_bit_iff [of m a 0] by auto
lemma set_bit_0 [simp]:
\<open>set_bit 0 a = 1 + 2 * (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
then show \<open>bit (set_bit 0 a) m = bit (1 + 2 * (a div 2)) m\<close>
by (simp add: bit_set_bit_iff bit_double_iff even_bit_succ_iff)
(cases m, simp_all add: bit_Suc)
qed
lemma set_bit_Suc:
\<open>set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
show \<open>bit (set_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * set_bit n (a div 2)) m\<close>
proof (cases m)
case 0
then show ?thesis
by (simp add: even_set_bit_iff)
next
case (Suc m)
with * have \<open>2 ^ m \<noteq> 0\<close>
using mult_2 by auto
show ?thesis
by (cases a rule: parity_cases)
(simp_all add: bit_set_bit_iff bit_double_iff even_bit_succ_iff *,
simp_all add: Suc \<open>2 ^ m \<noteq> 0\<close> bit_Suc)
qed
qed
lemma unset_bit_0 [simp]:
\<open>unset_bit 0 a = 2 * (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
then show \<open>bit (unset_bit 0 a) m = bit (2 * (a div 2)) m\<close>
by (simp add: bit_unset_bit_iff bit_double_iff)
(cases m, simp_all add: bit_Suc)
qed
lemma unset_bit_Suc:
\<open>unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
then show \<open>bit (unset_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * unset_bit n (a div 2)) m\<close>
proof (cases m)
case 0
then show ?thesis
by (simp add: even_unset_bit_iff)
next
case (Suc m)
show ?thesis
by (cases a rule: parity_cases)
(simp_all add: bit_unset_bit_iff bit_double_iff even_bit_succ_iff *,
simp_all add: Suc bit_Suc)
qed
qed
lemma flip_bit_0 [simp]:
\<open>flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
then show \<open>bit (flip_bit 0 a) m = bit (of_bool (even a) + 2 * (a div 2)) m\<close>
by (simp add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff)
(cases m, simp_all add: bit_Suc)
qed
lemma flip_bit_Suc:
\<open>flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
show \<open>bit (flip_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * flip_bit n (a div 2)) m\<close>
proof (cases m)
case 0
then show ?thesis
by (simp add: even_flip_bit_iff)
next
case (Suc m)
with * have \<open>2 ^ m \<noteq> 0\<close>
using mult_2 by auto
show ?thesis
by (cases a rule: parity_cases)
(simp_all add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff,
simp_all add: Suc \<open>2 ^ m \<noteq> 0\<close> bit_Suc)
qed
qed
lemma flip_bit_eq_if:
\<open>flip_bit n a = (if bit a n then unset_bit else set_bit) n a\<close>
by (rule bit_eqI) (auto simp add: bit_set_bit_iff bit_unset_bit_iff bit_flip_bit_iff)
lemma take_bit_set_bit_eq:
\<open>take_bit n (set_bit m a) = (if n \<le> m then take_bit n a else set_bit m (take_bit n a))\<close>
by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_set_bit_iff)
lemma take_bit_unset_bit_eq:
\<open>take_bit n (unset_bit m a) = (if n \<le> m then take_bit n a else unset_bit m (take_bit n a))\<close>
by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_unset_bit_iff)
lemma take_bit_flip_bit_eq:
\<open>take_bit n (flip_bit m a) = (if n \<le> m then take_bit n a else flip_bit m (take_bit n a))\<close>
by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_flip_bit_iff)
end
subsection \<open>Instance \<^typ>\<open>int\<close>\<close>
lemma int_bit_bound:
fixes k :: int
obtains n where \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k n\<close>
and \<open>n > 0 \<Longrightarrow> bit k (n - 1) \<noteq> bit k n\<close>
proof -
obtain q where *: \<open>\<And>m. q \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k q\<close>
proof (cases \<open>k \<ge> 0\<close>)
case True
moreover from power_gt_expt [of 2 \<open>nat k\<close>]
have \<open>k < 2 ^ nat k\<close> by simp
ultimately have *: \<open>k div 2 ^ nat k = 0\<close>
by simp
show thesis
proof (rule that [of \<open>nat k\<close>])
fix m
assume \<open>nat k \<le> m\<close>
then show \<open>bit k m \<longleftrightarrow> bit k (nat k)\<close>
by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq dest!: le_Suc_ex)
qed
next
case False
moreover from power_gt_expt [of 2 \<open>nat (- k)\<close>]
have \<open>- k \<le> 2 ^ nat (- k)\<close>
by simp
ultimately have \<open>- k div - (2 ^ nat (- k)) = - 1\<close>
by (subst div_pos_neg_trivial) simp_all
then have *: \<open>k div 2 ^ nat (- k) = - 1\<close>
by simp
show thesis
proof (rule that [of \<open>nat (- k)\<close>])
fix m
assume \<open>nat (- k) \<le> m\<close>
then show \<open>bit k m \<longleftrightarrow> bit k (nat (- k))\<close>
by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq minus_1_div_exp_eq_int dest!: le_Suc_ex)
qed
qed
show thesis
proof (cases \<open>\<forall>m. bit k m \<longleftrightarrow> bit k q\<close>)
case True
then have \<open>bit k 0 \<longleftrightarrow> bit k q\<close>
by blast
with True that [of 0] show thesis
by simp
next
case False
then obtain r where **: \<open>bit k r \<noteq> bit k q\<close>
by blast
have \<open>r < q\<close>
by (rule ccontr) (use * [of r] ** in simp)
define N where \<open>N = {n. n < q \<and> bit k n \<noteq> bit k q}\<close>
moreover have \<open>finite N\<close> \<open>r \<in> N\<close>
using ** N_def \<open>r < q\<close> by auto
moreover define n where \<open>n = Suc (Max N)\<close>
ultimately have \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k n\<close>
apply auto
apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \<open>finite N\<close> all_not_in_conv mem_Collect_eq not_le)
apply (metis "*" Max_ge Suc_n_not_le_n \<open>finite N\<close> linorder_not_less mem_Collect_eq)
apply (metis "*" Max_ge Suc_n_not_le_n \<open>finite N\<close> linorder_not_less mem_Collect_eq)
apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \<open>finite N\<close> all_not_in_conv mem_Collect_eq not_le)
done
have \<open>bit k (Max N) \<noteq> bit k n\<close>
by (metis (mono_tags, lifting) "*" Max_in N_def \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m = bit k n\<close> \<open>finite N\<close> \<open>r \<in> N\<close> empty_iff le_cases mem_Collect_eq)
show thesis apply (rule that [of n])
using \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m = bit k n\<close> apply blast
using \<open>bit k (Max N) \<noteq> bit k n\<close> n_def by auto
qed
qed
instantiation int :: ring_bit_operations
begin
definition not_int :: \<open>int \<Rightarrow> int\<close>
where \<open>not_int k = - k - 1\<close>
lemma not_int_rec:
"NOT k = of_bool (even k) + 2 * NOT (k div 2)" for k :: int
by (auto simp add: not_int_def elim: oddE)
lemma even_not_iff_int:
\<open>even (NOT k) \<longleftrightarrow> odd k\<close> for k :: int
by (simp add: not_int_def)
lemma not_int_div_2:
\<open>NOT k div 2 = NOT (k div 2)\<close> for k :: int
by (simp add: not_int_def)
lemma bit_not_int_iff [bit_simps]:
\<open>bit (NOT k) n \<longleftrightarrow> \<not> bit k n\<close>
for k :: int
by (simp add: bit_not_int_iff' not_int_def)
function and_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>(k::int) AND l = (if k \<in> {0, - 1} \<and> l \<in> {0, - 1}
then - of_bool (odd k \<and> odd l)
else of_bool (odd k \<and> odd l) + 2 * ((k div 2) AND (l div 2)))\<close>
by auto
termination
by (relation \<open>measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))\<close>) auto
declare and_int.simps [simp del]
lemma and_int_rec:
\<open>k AND l = of_bool (odd k \<and> odd l) + 2 * ((k div 2) AND (l div 2))\<close>
for k l :: int
proof (cases \<open>k \<in> {0, - 1} \<and> l \<in> {0, - 1}\<close>)
case True
then show ?thesis
by auto (simp_all add: and_int.simps)
next
case False
then show ?thesis
by (auto simp add: ac_simps and_int.simps [of k l])
qed
lemma bit_and_int_iff:
\<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close> for k l :: int
proof (induction n arbitrary: k l)
case 0
then show ?case
by (simp add: and_int_rec [of k l])
next
case (Suc n)
then show ?case
by (simp add: and_int_rec [of k l] bit_Suc)
qed
lemma even_and_iff_int:
\<open>even (k AND l) \<longleftrightarrow> even k \<or> even l\<close> for k l :: int
using bit_and_int_iff [of k l 0] by auto
definition or_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>k OR l = NOT (NOT k AND NOT l)\<close> for k l :: int
lemma or_int_rec:
\<open>k OR l = of_bool (odd k \<or> odd l) + 2 * ((k div 2) OR (l div 2))\<close>
for k l :: int
using and_int_rec [of \<open>NOT k\<close> \<open>NOT l\<close>]
by (simp add: or_int_def even_not_iff_int not_int_div_2)
(simp add: not_int_def)
lemma bit_or_int_iff:
\<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close> for k l :: int
by (simp add: or_int_def bit_not_int_iff bit_and_int_iff)
definition xor_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>k XOR l = k AND NOT l OR NOT k AND l\<close> for k l :: int
lemma xor_int_rec:
\<open>k XOR l = of_bool (odd k \<noteq> odd l) + 2 * ((k div 2) XOR (l div 2))\<close>
for k l :: int
by (simp add: xor_int_def or_int_rec [of \<open>k AND NOT l\<close> \<open>NOT k AND l\<close>] even_and_iff_int even_not_iff_int)
(simp add: and_int_rec [of \<open>NOT k\<close> \<open>l\<close>] and_int_rec [of \<open>k\<close> \<open>NOT l\<close>] not_int_div_2)
lemma bit_xor_int_iff:
\<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close> for k l :: int
by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff)
definition mask_int :: \<open>nat \<Rightarrow> int\<close>
where \<open>mask n = (2 :: int) ^ n - 1\<close>
instance proof
fix k l :: int and n :: nat
show \<open>- k = NOT (k - 1)\<close>
by (simp add: not_int_def)
show \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close>
by (fact bit_and_int_iff)
show \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close>
by (fact bit_or_int_iff)
show \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close>
by (fact bit_xor_int_iff)
qed (simp_all add: bit_not_int_iff mask_int_def)
end
lemma mask_half_int:
\<open>mask n div 2 = (mask (n - 1) :: int)\<close>
by (cases n) (simp_all add: mask_eq_exp_minus_1 algebra_simps)
lemma mask_nonnegative_int [simp]:
\<open>mask n \<ge> (0::int)\<close>
by (simp add: mask_eq_exp_minus_1)
lemma not_mask_negative_int [simp]:
\<open>\<not> mask n < (0::int)\<close>
by (simp add: not_less)
lemma not_nonnegative_int_iff [simp]:
\<open>NOT k \<ge> 0 \<longleftrightarrow> k < 0\<close> for k :: int
by (simp add: not_int_def)
lemma not_negative_int_iff [simp]:
\<open>NOT k < 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
by (subst Not_eq_iff [symmetric]) (simp add: not_less not_le)
lemma and_nonnegative_int_iff [simp]:
\<open>k AND l \<ge> 0 \<longleftrightarrow> k \<ge> 0 \<or> l \<ge> 0\<close> for k l :: int
proof (induction k arbitrary: l rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even k)
then show ?case
using and_int_rec [of \<open>k * 2\<close> l] by (simp add: pos_imp_zdiv_nonneg_iff)
next
case (odd k)
from odd have \<open>0 \<le> k AND l div 2 \<longleftrightarrow> 0 \<le> k \<or> 0 \<le> l div 2\<close>
by simp
then have \<open>0 \<le> (1 + k * 2) div 2 AND l div 2 \<longleftrightarrow> 0 \<le> (1 + k * 2) div 2\<or> 0 \<le> l div 2\<close>
by simp
with and_int_rec [of \<open>1 + k * 2\<close> l]
show ?case
by auto
qed
lemma and_negative_int_iff [simp]:
\<open>k AND l < 0 \<longleftrightarrow> k < 0 \<and> l < 0\<close> for k l :: int
by (subst Not_eq_iff [symmetric]) (simp add: not_less)
lemma and_less_eq:
\<open>k AND l \<le> k\<close> if \<open>l < 0\<close> for k l :: int
using that proof (induction k arbitrary: l rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even k)
from even.IH [of \<open>l div 2\<close>] even.hyps even.prems
show ?case
by (simp add: and_int_rec [of _ l])
next
case (odd k)
from odd.IH [of \<open>l div 2\<close>] odd.hyps odd.prems
show ?case
by (simp add: and_int_rec [of _ l])
qed
lemma or_nonnegative_int_iff [simp]:
\<open>k OR l \<ge> 0 \<longleftrightarrow> k \<ge> 0 \<and> l \<ge> 0\<close> for k l :: int
by (simp only: or_eq_not_not_and not_nonnegative_int_iff) simp
lemma or_negative_int_iff [simp]:
\<open>k OR l < 0 \<longleftrightarrow> k < 0 \<or> l < 0\<close> for k l :: int
by (subst Not_eq_iff [symmetric]) (simp add: not_less)
lemma or_greater_eq:
\<open>k OR l \<ge> k\<close> if \<open>l \<ge> 0\<close> for k l :: int
using that proof (induction k arbitrary: l rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even k)
from even.IH [of \<open>l div 2\<close>] even.hyps even.prems
show ?case
by (simp add: or_int_rec [of _ l])
next
case (odd k)
from odd.IH [of \<open>l div 2\<close>] odd.hyps odd.prems
show ?case
by (simp add: or_int_rec [of _ l])
qed
lemma xor_nonnegative_int_iff [simp]:
\<open>k XOR l \<ge> 0 \<longleftrightarrow> (k \<ge> 0 \<longleftrightarrow> l \<ge> 0)\<close> for k l :: int
by (simp only: bit.xor_def or_nonnegative_int_iff) auto
lemma xor_negative_int_iff [simp]:
\<open>k XOR l < 0 \<longleftrightarrow> (k < 0) \<noteq> (l < 0)\<close> for k l :: int
by (subst Not_eq_iff [symmetric]) (auto simp add: not_less)
lemma OR_upper: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ x" "x < 2 ^ n" "y < 2 ^ n"
shows "x OR y < 2 ^ n"
using assms proof (induction x arbitrary: y n rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even x)
from even.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] even.prems even.hyps
show ?case
by (cases n) (auto simp add: or_int_rec [of \<open>_ * 2\<close>] elim: oddE)
next
case (odd x)
from odd.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] odd.prems odd.hyps
show ?case
by (cases n) (auto simp add: or_int_rec [of \<open>1 + _ * 2\<close>], linarith)
qed
lemma XOR_upper: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ x" "x < 2 ^ n" "y < 2 ^ n"
shows "x XOR y < 2 ^ n"
using assms proof (induction x arbitrary: y n rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even x)
from even.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] even.prems even.hyps
show ?case
by (cases n) (auto simp add: xor_int_rec [of \<open>_ * 2\<close>] elim: oddE)
next
case (odd x)
from odd.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] odd.prems odd.hyps
show ?case
by (cases n) (auto simp add: xor_int_rec [of \<open>1 + _ * 2\<close>])
qed
lemma AND_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ x"
shows "0 \ x AND y"
using assms by simp
lemma OR_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ x" "0 \ y"
shows "0 \ x OR y"
using assms by simp
lemma XOR_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ x" "0 \ y"
shows "0 \ x XOR y"
using assms by simp
lemma AND_upper1 [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ x"
shows "x AND y \ x"
using assms by (induction x arbitrary: y rule: int_bit_induct)
(simp_all add: and_int_rec [of \<open>_ * 2\<close>] and_int_rec [of \<open>1 + _ * 2\<close>] add_increasing)
lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] \<^marker>\contributor \Stefan Berghofer\\
lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
lemma AND_upper2 [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
fixes x y :: int
assumes "0 \ y"
shows "x AND y \ y"
using assms AND_upper1 [of y x] by (simp add: ac_simps)
lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] \<^marker>\contributor \Stefan Berghofer\\
lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
lemma plus_and_or: \<open>(x AND y) + (x OR y) = x + y\<close> for x y :: int
proof (induction x arbitrary: y rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even x)
from even.IH [of \<open>y div 2\<close>]
show ?case
by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE)
next
case (odd x)
from odd.IH [of \<open>y div 2\<close>]
show ?case
by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE)
qed
lemma set_bit_nonnegative_int_iff [simp]:
\<open>set_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
by (simp add: set_bit_def)
lemma set_bit_negative_int_iff [simp]:
\<open>set_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
by (simp add: set_bit_def)
lemma unset_bit_nonnegative_int_iff [simp]:
\<open>unset_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
by (simp add: unset_bit_def)
lemma unset_bit_negative_int_iff [simp]:
\<open>unset_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
by (simp add: unset_bit_def)
lemma flip_bit_nonnegative_int_iff [simp]:
\<open>flip_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
by (simp add: flip_bit_def)
lemma flip_bit_negative_int_iff [simp]:
\<open>flip_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
by (simp add: flip_bit_def)
lemma set_bit_greater_eq:
\<open>set_bit n k \<ge> k\<close> for k :: int
by (simp add: set_bit_def or_greater_eq)
lemma unset_bit_less_eq:
\<open>unset_bit n k \<le> k\<close> for k :: int
by (simp add: unset_bit_def and_less_eq)
lemma set_bit_eq:
\<open>set_bit n k = k + of_bool (\<not> bit k n) * 2 ^ n\<close> for k :: int
proof (rule bit_eqI)
fix m
show \<open>bit (set_bit n k) m \<longleftrightarrow> bit (k + of_bool (\<not> bit k n) * 2 ^ n) m\<close>
proof (cases \<open>m = n\<close>)
case True
then show ?thesis
apply (simp add: bit_set_bit_iff)
apply (simp add: bit_iff_odd div_plus_div_distrib_dvd_right)
done
next
case False
then show ?thesis
apply (clarsimp simp add: bit_set_bit_iff)
apply (subst disjunctive_add)
apply (clarsimp simp add: bit_exp_iff)
apply (clarsimp simp add: bit_or_iff bit_exp_iff)
done
qed
qed
lemma unset_bit_eq:
\<open>unset_bit n k = k - of_bool (bit k n) * 2 ^ n\<close> for k :: int
proof (rule bit_eqI)
fix m
show \<open>bit (unset_bit n k) m \<longleftrightarrow> bit (k - of_bool (bit k n) * 2 ^ n) m\<close>
proof (cases \<open>m = n\<close>)
case True
then show ?thesis
apply (simp add: bit_unset_bit_iff)
apply (simp add: bit_iff_odd)
using div_plus_div_distrib_dvd_right [of \<open>2 ^ n\<close> \<open>- (2 ^ n)\<close> k]
apply (simp add: dvd_neg_div)
done
next
case False
then show ?thesis
apply (clarsimp simp add: bit_unset_bit_iff)
apply (subst disjunctive_diff)
apply (clarsimp simp add: bit_exp_iff)
apply (clarsimp simp add: bit_and_iff bit_not_iff bit_exp_iff)
done
qed
qed
lemma take_bit_eq_mask_iff:
\<open>take_bit n k = mask n \<longleftrightarrow> take_bit n (k + 1) = 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
for k :: int
proof
assume ?P
then have \<open>take_bit n (take_bit n k + take_bit n 1) = 0\<close>
by (simp add: mask_eq_exp_minus_1)
then show ?Q
by (simp only: take_bit_add)
next
assume ?Q
then have \<open>take_bit n (k + 1) - 1 = - 1\<close>
by simp
then have \<open>take_bit n (take_bit n (k + 1) - 1) = take_bit n (- 1)\<close>
by simp
moreover have \<open>take_bit n (take_bit n (k + 1) - 1) = take_bit n k\<close>
by (simp add: take_bit_eq_mod mod_simps)
ultimately show ?P
by (simp add: take_bit_minus_one_eq_mask)
qed
lemma take_bit_eq_mask_iff_exp_dvd:
\<open>take_bit n k = mask n \<longleftrightarrow> 2 ^ n dvd k + 1\<close>
for k :: int
by (simp add: take_bit_eq_mask_iff flip: take_bit_eq_0_iff)
context ring_bit_operations
begin
lemma even_of_int_iff:
\<open>even (of_int k) \<longleftrightarrow> even k\<close>
by (induction k rule: int_bit_induct) simp_all
lemma bit_of_int_iff [bit_simps]:
\<open>bit (of_int k) n \<longleftrightarrow> (2::'a) ^ n \<noteq> 0 \<and> bit k n\<close>
proof (cases \<open>(2::'a) ^ n = 0\<close>)
case True
then show ?thesis
by (simp add: exp_eq_0_imp_not_bit)
next
case False
then have \<open>bit (of_int k) n \<longleftrightarrow> bit k n\<close>
proof (induction k arbitrary: n rule: int_bit_induct)
case zero
then show ?case
by simp
next
case minus
then show ?case
by simp
next
case (even k)
then show ?case
using bit_double_iff [of \<open>of_int k\<close> n] Parity.bit_double_iff [of k n]
by (cases n) (auto simp add: ac_simps dest: mult_not_zero)
next
case (odd k)
then show ?case
using bit_double_iff [of \<open>of_int k\<close> n]
by (cases n) (auto simp add: ac_simps bit_double_iff even_bit_succ_iff Parity.bit_Suc dest: mult_not_zero)
qed
with False show ?thesis
by simp
qed
lemma push_bit_of_int:
\<open>push_bit n (of_int k) = of_int (push_bit n k)\<close>
by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult)
lemma of_int_push_bit:
\<open>of_int (push_bit n k) = push_bit n (of_int k)\<close>
by (simp add: push_bit_eq_mult semiring_bit_shifts_class.push_bit_eq_mult)
lemma take_bit_of_int:
\<open>take_bit n (of_int k) = of_int (take_bit n k)\<close>
by (rule bit_eqI) (simp add: bit_take_bit_iff Parity.bit_take_bit_iff bit_of_int_iff)
lemma of_int_take_bit:
\<open>of_int (take_bit n k) = take_bit n (of_int k)\<close>
by (rule bit_eqI) (simp add: bit_take_bit_iff Parity.bit_take_bit_iff bit_of_int_iff)
lemma of_int_not_eq:
\<open>of_int (NOT k) = NOT (of_int k)\<close>
by (rule bit_eqI) (simp add: bit_not_iff Bit_Operations.bit_not_iff bit_of_int_iff)
lemma of_int_and_eq:
\<open>of_int (k AND l) = of_int k AND of_int l\<close>
by (rule bit_eqI) (simp add: bit_of_int_iff bit_and_iff Bit_Operations.bit_and_iff)
lemma of_int_or_eq:
\<open>of_int (k OR l) = of_int k OR of_int l\<close>
by (rule bit_eqI) (simp add: bit_of_int_iff bit_or_iff Bit_Operations.bit_or_iff)
lemma of_int_xor_eq:
\<open>of_int (k XOR l) = of_int k XOR of_int l\<close>
by (rule bit_eqI) (simp add: bit_of_int_iff bit_xor_iff Bit_Operations.bit_xor_iff)
lemma of_int_mask_eq:
\<open>of_int (mask n) = mask n\<close>
by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_int_or_eq)
end
text \<open>FIXME: The rule sets below are very large (24 rules for each
operator). Is there a simpler way to do this?\<close>
context
begin
private lemma eqI:
\<open>k = l\<close>
if num: \<open>\<And>n. bit k (numeral n) \<longleftrightarrow> bit l (numeral n)\<close>
and even: \<open>even k \<longleftrightarrow> even l\<close>
for k l :: int
proof (rule bit_eqI)
fix n
show \<open>bit k n \<longleftrightarrow> bit l n\<close>
proof (cases n)
case 0
with even show ?thesis
by simp
next
case (Suc n)
with num [of \<open>num_of_nat (Suc n)\<close>] show ?thesis
by (simp only: numeral_num_of_nat)
qed
qed
lemma int_and_numerals [simp]:
"numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)"
"numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND numeral y)"
"numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND numeral y)"
"numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND numeral y)"
"numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)"
"numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (numeral x AND - numeral (y + Num.One))"
"numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (numeral x AND - numeral y)"
"numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x AND - numeral (y + Num.One))"
"- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND numeral y)"
"- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND numeral y)"
"- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND numeral y)"
"- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND numeral y)"
"- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x AND - numeral y)"
"- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (2 :: int) * (- numeral x AND - numeral (y + Num.One))"
"- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (2 :: int) * (- numeral (x + Num.One) AND - numeral y)"
"- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) AND - numeral (y + Num.One))"
"(1::int) AND numeral (Num.Bit0 y) = 0"
"(1::int) AND numeral (Num.Bit1 y) = 1"
"(1::int) AND - numeral (Num.Bit0 y) = 0"
"(1::int) AND - numeral (Num.Bit1 y) = 1"
"numeral (Num.Bit0 x) AND (1::int) = 0"
"numeral (Num.Bit1 x) AND (1::int) = 1"
"- numeral (Num.Bit0 x) AND (1::int) = 0"
"- numeral (Num.Bit1 x) AND (1::int) = 1"
by (auto simp add: bit_and_iff bit_minus_iff even_and_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq intro: eqI)
lemma int_or_numerals [simp]:
"numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR numeral y)"
"numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)"
"numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR numeral y)"
"numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR numeral y)"
"numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x OR - numeral y)"
"numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))"
"numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x OR - numeral y)"
"numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x OR - numeral (y + Num.One))"
"- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR numeral y)"
"- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR numeral y)"
"- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)"
"- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR numeral y)"
"- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x OR - numeral y)"
"- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x OR - numeral (y + Num.One))"
"- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral y)"
"- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral (x + Num.One) OR - numeral (y + Num.One))"
"(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
"(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)"
"(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
"(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)"
"numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)"
"numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)"
"- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)"
"- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)"
by (auto simp add: bit_or_iff bit_minus_iff even_or_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq sub_BitM_One_eq intro: eqI)
lemma int_xor_numerals [simp]:
"numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR numeral y)"
"numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR numeral y)"
"numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR numeral y)"
"numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR numeral y)"
"numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (numeral x XOR - numeral y)"
"numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (numeral x XOR - numeral (y + Num.One))"
"numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (numeral x XOR - numeral y)"
"numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (numeral x XOR - numeral (y + Num.One))"
"- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR numeral y)"
"- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR numeral y)"
"- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR numeral y)"
"- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR numeral y)"
"- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (2 :: int) * (- numeral x XOR - numeral y)"
"- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = 1 + (2 :: int) * (- numeral x XOR - numeral (y + Num.One))"
"- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = 1 + (2 :: int) * (- numeral (x + Num.One) XOR - numeral y)"
"- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (2 :: int) * (- numeral (x + Num.One) XOR - numeral (y + Num.One))"
"(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)"
"(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)"
"(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)"
"(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))"
"numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)"
"numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)"
"- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)"
"- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))"
by (auto simp add: bit_xor_iff bit_minus_iff even_xor_iff bit_double_iff even_bit_succ_iff add_One sub_inc_One_eq sub_BitM_One_eq intro: eqI)
end
subsection \<open>Bit concatenation\<close>
definition concat_bit :: \<open>nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int\<close>
where \<open>concat_bit n k l = take_bit n k OR push_bit n l\<close>
lemma bit_concat_bit_iff [bit_simps]:
\<open>bit (concat_bit m k l) n \<longleftrightarrow> n < m \<and> bit k n \<or> m \<le> n \<and> bit l (n - m)\<close>
by (simp add: concat_bit_def bit_or_iff bit_and_iff bit_take_bit_iff bit_push_bit_iff ac_simps)
lemma concat_bit_eq:
\<open>concat_bit n k l = take_bit n k + push_bit n l\<close>
by (simp add: concat_bit_def take_bit_eq_mask
bit_and_iff bit_mask_iff bit_push_bit_iff disjunctive_add)
lemma concat_bit_0 [simp]:
\<open>concat_bit 0 k l = l\<close>
by (simp add: concat_bit_def)
lemma concat_bit_Suc:
\<open>concat_bit (Suc n) k l = k mod 2 + 2 * concat_bit n (k div 2) l\<close>
by (simp add: concat_bit_eq take_bit_Suc push_bit_double)
lemma concat_bit_of_zero_1 [simp]:
\<open>concat_bit n 0 l = push_bit n l\<close>
by (simp add: concat_bit_def)
lemma concat_bit_of_zero_2 [simp]:
\<open>concat_bit n k 0 = take_bit n k\<close>
by (simp add: concat_bit_def take_bit_eq_mask)
lemma concat_bit_nonnegative_iff [simp]:
\<open>concat_bit n k l \<ge> 0 \<longleftrightarrow> l \<ge> 0\<close>
by (simp add: concat_bit_def)
lemma concat_bit_negative_iff [simp]:
\<open>concat_bit n k l < 0 \<longleftrightarrow> l < 0\<close>
by (simp add: concat_bit_def)
lemma concat_bit_assoc:
\<open>concat_bit n k (concat_bit m l r) = concat_bit (m + n) (concat_bit n k l) r\<close>
by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps)
lemma concat_bit_assoc_sym:
\<open>concat_bit m (concat_bit n k l) r = concat_bit (min m n) k (concat_bit (m - n) l r)\<close>
by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps min_def)
lemma concat_bit_eq_iff:
\<open>concat_bit n k l = concat_bit n r s
\<longleftrightarrow> take_bit n k = take_bit n r \<and> l = s\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
proof
assume ?Q
then show ?P
by (simp add: concat_bit_def)
next
assume ?P
then have *: \<open>bit (concat_bit n k l) m = bit (concat_bit n r s) m\<close> for m
by (simp add: bit_eq_iff)
have \<open>take_bit n k = take_bit n r\<close>
proof (rule bit_eqI)
fix m
from * [of m]
show \<open>bit (take_bit n k) m \<longleftrightarrow> bit (take_bit n r) m\<close>
by (auto simp add: bit_take_bit_iff bit_concat_bit_iff)
qed
moreover have \<open>push_bit n l = push_bit n s\<close>
proof (rule bit_eqI)
fix m
from * [of m]
show \<open>bit (push_bit n l) m \<longleftrightarrow> bit (push_bit n s) m\<close>
by (auto simp add: bit_push_bit_iff bit_concat_bit_iff)
qed
then have \<open>l = s\<close>
by (simp add: push_bit_eq_mult)
ultimately show ?Q
by (simp add: concat_bit_def)
qed
lemma take_bit_concat_bit_eq:
\<open>take_bit m (concat_bit n k l) = concat_bit (min m n) k (take_bit (m - n) l)\<close>
by (rule bit_eqI)
(auto simp add: bit_take_bit_iff bit_concat_bit_iff min_def)
lemma concat_bit_take_bit_eq:
\<open>concat_bit n (take_bit n b) = concat_bit n b\<close>
by (simp add: concat_bit_def [abs_def])
subsection \<open>Taking bits with sign propagation\<close>
context ring_bit_operations
begin
definition signed_take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
where \<open>signed_take_bit n a = take_bit n a OR (of_bool (bit a n) * NOT (mask n))\<close>
lemma signed_take_bit_eq_if_positive:
\<open>signed_take_bit n a = take_bit n a\<close> if \<open>\<not> bit a n\<close>
using that by (simp add: signed_take_bit_def)
lemma signed_take_bit_eq_if_negative:
\<open>signed_take_bit n a = take_bit n a OR NOT (mask n)\<close> if \<open>bit a n\<close>
using that by (simp add: signed_take_bit_def)
lemma even_signed_take_bit_iff:
\<open>even (signed_take_bit m a) \<longleftrightarrow> even a\<close>
by (auto simp add: signed_take_bit_def even_or_iff even_mask_iff bit_double_iff)
lemma bit_signed_take_bit_iff [bit_simps]:
\<open>bit (signed_take_bit m a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> bit a (min m n)\<close>
by (simp add: signed_take_bit_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff min_def not_le)
(use exp_eq_0_imp_not_bit in blast)
lemma signed_take_bit_0 [simp]:
\<open>signed_take_bit 0 a = - (a mod 2)\<close>
by (simp add: signed_take_bit_def odd_iff_mod_2_eq_one)
lemma signed_take_bit_Suc:
\<open>signed_take_bit (Suc n) a = a mod 2 + 2 * signed_take_bit n (a div 2)\<close>
proof (rule bit_eqI)
fix m
assume *: \<open>2 ^ m \<noteq> 0\<close>
show \<open>bit (signed_take_bit (Suc n) a) m \<longleftrightarrow>
bit (a mod 2 + 2 * signed_take_bit n (a div 2)) m\<close>
proof (cases m)
case 0
then show ?thesis
by (simp add: even_signed_take_bit_iff)
next
case (Suc m)
with * have \<open>2 ^ m \<noteq> 0\<close>
by (metis mult_not_zero power_Suc)
with Suc show ?thesis
by (simp add: bit_signed_take_bit_iff mod2_eq_if bit_double_iff even_bit_succ_iff
ac_simps flip: bit_Suc)
qed
qed
lemma signed_take_bit_of_0 [simp]:
\<open>signed_take_bit n 0 = 0\<close>
by (simp add: signed_take_bit_def)
lemma signed_take_bit_of_minus_1 [simp]:
\<open>signed_take_bit n (- 1) = - 1\<close>
by (simp add: signed_take_bit_def take_bit_minus_one_eq_mask mask_eq_exp_minus_1)
lemma signed_take_bit_Suc_1 [simp]:
\<open>signed_take_bit (Suc n) 1 = 1\<close>
by (simp add: signed_take_bit_Suc)
lemma signed_take_bit_rec:
\<open>signed_take_bit n a = (if n = 0 then - (a mod 2) else a mod 2 + 2 * signed_take_bit (n - 1) (a div 2))\<close>
by (cases n) (simp_all add: signed_take_bit_Suc)
lemma signed_take_bit_eq_iff_take_bit_eq:
\<open>signed_take_bit n a = signed_take_bit n b \<longleftrightarrow> take_bit (Suc n) a = take_bit (Suc n) b\<close>
proof -
have \<open>bit (signed_take_bit n a) = bit (signed_take_bit n b) \<longleftrightarrow> bit (take_bit (Suc n) a) = bit (take_bit (Suc n) b)\<close>
by (simp add: fun_eq_iff bit_signed_take_bit_iff bit_take_bit_iff not_le less_Suc_eq_le min_def)
(use exp_eq_0_imp_not_bit in fastforce)
then show ?thesis
by (simp add: bit_eq_iff fun_eq_iff)
qed
lemma signed_take_bit_signed_take_bit [simp]:
\<open>signed_take_bit m (signed_take_bit n a) = signed_take_bit (min m n) a\<close>
proof (rule bit_eqI)
fix q
show \<open>bit (signed_take_bit m (signed_take_bit n a)) q \<longleftrightarrow>
bit (signed_take_bit (min m n) a) q\<close>
by (simp add: bit_signed_take_bit_iff min_def bit_or_iff bit_not_iff bit_mask_iff bit_take_bit_iff)
(use le_Suc_ex exp_add_not_zero_imp in blast)
qed
lemma signed_take_bit_take_bit:
\<open>signed_take_bit m (take_bit n a) = (if n \<le> m then take_bit n else signed_take_bit m) a\<close>
by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff)
lemma take_bit_signed_take_bit:
\<open>take_bit m (signed_take_bit n a) = take_bit m a\<close> if \<open>m \<le> Suc n\<close>
using that by (rule le_SucE; intro bit_eqI)
(auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def less_Suc_eq)
end
text \<open>Modulus centered around 0\<close>
lemma signed_take_bit_eq_concat_bit:
\<open>signed_take_bit n k = concat_bit n k (- of_bool (bit k n))\<close>
by (simp add: concat_bit_def signed_take_bit_def push_bit_minus_one_eq_not_mask)
lemma signed_take_bit_add:
\<open>signed_take_bit n (signed_take_bit n k + signed_take_bit n l) = signed_take_bit n (k + l)\<close>
for k l :: int
proof -
have \<open>take_bit (Suc n)
(take_bit (Suc n) (signed_take_bit n k) +
take_bit (Suc n) (signed_take_bit n l)) =
take_bit (Suc n) (k + l)\<close>
by (simp add: take_bit_signed_take_bit take_bit_add)
then show ?thesis
by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_add)
qed
lemma signed_take_bit_diff:
\<open>signed_take_bit n (signed_take_bit n k - signed_take_bit n l) = signed_take_bit n (k - l)\<close>
for k l :: int
proof -
have \<open>take_bit (Suc n)
(take_bit (Suc n) (signed_take_bit n k) -
take_bit (Suc n) (signed_take_bit n l)) =
take_bit (Suc n) (k - l)\<close>
by (simp add: take_bit_signed_take_bit take_bit_diff)
then show ?thesis
by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_diff)
qed
lemma signed_take_bit_minus:
\<open>signed_take_bit n (- signed_take_bit n k) = signed_take_bit n (- k)\<close>
for k :: int
proof -
have \<open>take_bit (Suc n)
(- take_bit (Suc n) (signed_take_bit n k)) =
take_bit (Suc n) (- k)\<close>
by (simp add: take_bit_signed_take_bit take_bit_minus)
then show ?thesis
by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_minus)
qed
lemma signed_take_bit_mult:
\<open>signed_take_bit n (signed_take_bit n k * signed_take_bit n l) = signed_take_bit n (k * l)\<close>
for k l :: int
proof -
have \<open>take_bit (Suc n)
(take_bit (Suc n) (signed_take_bit n k) *
take_bit (Suc n) (signed_take_bit n l)) =
take_bit (Suc n) (k * l)\<close>
by (simp add: take_bit_signed_take_bit take_bit_mult)
then show ?thesis
by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_mult)
qed
lemma signed_take_bit_eq_take_bit_minus:
\<open>signed_take_bit n k = take_bit (Suc n) k - 2 ^ Suc n * of_bool (bit k n)\<close>
for k :: int
proof (cases \<open>bit k n\<close>)
case True
have \<open>signed_take_bit n k = take_bit (Suc n) k OR NOT (mask (Suc n))\<close>
by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff less_Suc_eq True)
then have \<open>signed_take_bit n k = take_bit (Suc n) k + NOT (mask (Suc n))\<close>
by (simp add: disjunctive_add bit_take_bit_iff bit_not_iff bit_mask_iff)
with True show ?thesis
by (simp flip: minus_exp_eq_not_mask)
next
case False
show ?thesis
by (rule bit_eqI) (simp add: False bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq)
qed
lemma signed_take_bit_eq_take_bit_shift:
\<open>signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n\<close>
for k :: int
proof -
have *: \<open>take_bit n k OR 2 ^ n = take_bit n k + 2 ^ n\<close>
by (simp add: disjunctive_add bit_exp_iff bit_take_bit_iff)
have \<open>take_bit n k - 2 ^ n = take_bit n k + NOT (mask n)\<close>
by (simp add: minus_exp_eq_not_mask)
also have \<open>\<dots> = take_bit n k OR NOT (mask n)\<close>
by (rule disjunctive_add)
(simp add: bit_exp_iff bit_take_bit_iff bit_not_iff bit_mask_iff)
finally have **: \<open>take_bit n k - 2 ^ n = take_bit n k OR NOT (mask n)\<close> .
have \<open>take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (take_bit (Suc n) k + take_bit (Suc n) (2 ^ n))\<close>
by (simp only: take_bit_add)
also have \<open>take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\<close>
by (simp add: take_bit_Suc_from_most)
finally have \<open>take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (2 ^ (n + of_bool (bit k n)) + take_bit n k)\<close>
by (simp add: ac_simps)
also have \<open>2 ^ (n + of_bool (bit k n)) + take_bit n k = 2 ^ (n + of_bool (bit k n)) OR take_bit n k\<close>
by (rule disjunctive_add)
(auto simp add: disjunctive_add bit_take_bit_iff bit_double_iff bit_exp_iff)
finally show ?thesis
using * ** by (simp add: signed_take_bit_def concat_bit_Suc min_def ac_simps)
qed
lemma signed_take_bit_nonnegative_iff [simp]:
\<open>0 \<le> signed_take_bit n k \<longleftrightarrow> \<not> bit k n\<close>
for k :: int
by (simp add: signed_take_bit_def not_less concat_bit_def)
lemma signed_take_bit_negative_iff [simp]:
\<open>signed_take_bit n k < 0 \<longleftrightarrow> bit k n\<close>
for k :: int
by (simp add: signed_take_bit_def not_less concat_bit_def)
lemma signed_take_bit_int_eq_self_iff:
\<open>signed_take_bit n k = k \<longleftrightarrow> - (2 ^ n) \<le> k \<and> k < 2 ^ n\<close>
for k :: int
by (auto simp add: signed_take_bit_eq_take_bit_shift take_bit_int_eq_self_iff algebra_simps)
lemma signed_take_bit_int_eq_self:
\<open>signed_take_bit n k = k\<close> if \<open>- (2 ^ n) \<le> k\<close> \<open>k < 2 ^ n\<close>
for k :: int
using that by (simp add: signed_take_bit_int_eq_self_iff)
lemma signed_take_bit_int_less_eq_self_iff:
\<open>signed_take_bit n k \<le> k \<longleftrightarrow> - (2 ^ n) \<le> k\<close>
for k :: int
by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_eq_self_iff algebra_simps)
linarith
lemma signed_take_bit_int_less_self_iff:
\<open>signed_take_bit n k < k \<longleftrightarrow> 2 ^ n \<le> k\<close>
for k :: int
by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_self_iff algebra_simps)
lemma signed_take_bit_int_greater_self_iff:
\<open>k < signed_take_bit n k \<longleftrightarrow> k < - (2 ^ n)\<close>
for k :: int
by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_self_iff algebra_simps)
linarith
lemma signed_take_bit_int_greater_eq_self_iff:
\<open>k \<le> signed_take_bit n k \<longleftrightarrow> k < 2 ^ n\<close>
for k :: int
by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_eq_self_iff algebra_simps)
lemma signed_take_bit_int_greater_eq:
\<open>k + 2 ^ Suc n \<le> signed_take_bit n k\<close> if \<open>k < - (2 ^ n)\<close>
for k :: int
using that take_bit_int_greater_eq [of \<open>k + 2 ^ n\<close> \<open>Suc n\<close>]
by (simp add: signed_take_bit_eq_take_bit_shift)
lemma signed_take_bit_int_less_eq:
\<open>signed_take_bit n k \<le> k - 2 ^ Suc n\<close> if \<open>k \<ge> 2 ^ n\<close>
for k :: int
using that take_bit_int_less_eq [of \<open>Suc n\<close> \<open>k + 2 ^ n\<close>]
by (simp add: signed_take_bit_eq_take_bit_shift)
lemma signed_take_bit_Suc_bit0 [simp]:
\<open>signed_take_bit (Suc n) (numeral (Num.Bit0 k)) = signed_take_bit n (numeral k) * (2 :: int)\<close>
by (simp add: signed_take_bit_Suc)
lemma signed_take_bit_Suc_bit1 [simp]:
\<open>signed_take_bit (Suc n) (numeral (Num.Bit1 k)) = signed_take_bit n (numeral k) * 2 + (1 :: int)\<close>
by (simp add: signed_take_bit_Suc)
lemma signed_take_bit_Suc_minus_bit0 [simp]:
\<open>signed_take_bit (Suc n) (- numeral (Num.Bit0 k)) = signed_take_bit n (- numeral k) * (2 :: int)\<close>
by (simp add: signed_take_bit_Suc)
lemma signed_take_bit_Suc_minus_bit1 [simp]:
\<open>signed_take_bit (Suc n) (- numeral (Num.Bit1 k)) = signed_take_bit n (- numeral k - 1) * 2 + (1 :: int)\<close>
by (simp add: signed_take_bit_Suc)
lemma signed_take_bit_numeral_bit0 [simp]:
\<open>signed_take_bit (numeral l) (numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (numeral k) * (2 :: int)\<close>
by (simp add: signed_take_bit_rec)
lemma signed_take_bit_numeral_bit1 [simp]:
\<open>signed_take_bit (numeral l) (numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (numeral k) * 2 + (1 :: int)\<close>
by (simp add: signed_take_bit_rec)
lemma signed_take_bit_numeral_minus_bit0 [simp]:
\<open>signed_take_bit (numeral l) (- numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (- numeral k) * (2 :: int)\<close>
by (simp add: signed_take_bit_rec)
lemma signed_take_bit_numeral_minus_bit1 [simp]:
\<open>signed_take_bit (numeral l) (- numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (- numeral k - 1) * 2 + (1 :: int)\<close>
by (simp add: signed_take_bit_rec)
lemma signed_take_bit_code [code]:
\<open>signed_take_bit n a =
(let l = take_bit (Suc n) a
in if bit l n then l + push_bit (Suc n) (- 1) else l)\<close>
proof -
have *: \<open>take_bit (Suc n) a + push_bit n (- 2) =
take_bit (Suc n) a OR NOT (mask (Suc n))\<close>
by (auto simp add: bit_take_bit_iff bit_push_bit_iff bit_not_iff bit_mask_iff disjunctive_add
simp flip: push_bit_minus_one_eq_not_mask)
show ?thesis
by (rule bit_eqI)
(auto simp add: Let_def * bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq bit_not_iff bit_mask_iff bit_or_iff)
qed
lemma not_minus_numeral_inc_eq:
\<open>NOT (- numeral (Num.inc n)) = (numeral n :: int)\<close>
by (simp add: not_int_def sub_inc_One_eq)
subsection \<open>Instance \<^typ>\<open>nat\<close>\<close>
instantiation nat :: semiring_bit_operations
begin
definition and_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>m AND n = nat (int m AND int n)\<close> for m n :: nat
definition or_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>m OR n = nat (int m OR int n)\<close> for m n :: nat
definition xor_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
where \<open>m XOR n = nat (int m XOR int n)\<close> for m n :: nat
definition mask_nat :: \<open>nat \<Rightarrow> nat\<close>
where \<open>mask n = (2 :: nat) ^ n - 1\<close>
instance proof
fix m n q :: nat
show \<open>bit (m AND n) q \<longleftrightarrow> bit m q \<and> bit n q\<close>
by (simp add: and_nat_def bit_simps)
show \<open>bit (m OR n) q \<longleftrightarrow> bit m q \<or> bit n q\<close>
by (simp add: or_nat_def bit_simps)
show \<open>bit (m XOR n) q \<longleftrightarrow> bit m q \<noteq> bit n q\<close>
by (simp add: xor_nat_def bit_simps)
qed (simp add: mask_nat_def)
end
lemma and_nat_rec:
\<open>m AND n = of_bool (odd m \<and> odd n) + 2 * ((m div 2) AND (n div 2))\<close> for m n :: nat
by (simp add: and_nat_def and_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)
lemma or_nat_rec:
\<open>m OR n = of_bool (odd m \<or> odd n) + 2 * ((m div 2) OR (n div 2))\<close> for m n :: nat
by (simp add: or_nat_def or_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)
lemma xor_nat_rec:
\<open>m XOR n = of_bool (odd m \<noteq> odd n) + 2 * ((m div 2) XOR (n div 2))\<close> for m n :: nat
by (simp add: xor_nat_def xor_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)
lemma Suc_0_and_eq [simp]:
\<open>Suc 0 AND n = n mod 2\<close>
using one_and_eq [of n] by simp
lemma and_Suc_0_eq [simp]:
\<open>n AND Suc 0 = n mod 2\<close>
using and_one_eq [of n] by simp
lemma Suc_0_or_eq:
\<open>Suc 0 OR n = n + of_bool (even n)\<close>
using one_or_eq [of n] by simp
lemma or_Suc_0_eq:
\<open>n OR Suc 0 = n + of_bool (even n)\<close>
using or_one_eq [of n] by simp
lemma Suc_0_xor_eq:
\<open>Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\<close>
using one_xor_eq [of n] by simp
lemma xor_Suc_0_eq:
\<open>n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\<close>
using xor_one_eq [of n] by simp
context semiring_bit_operations
begin
lemma of_nat_and_eq:
\<open>of_nat (m AND n) = of_nat m AND of_nat n\<close>
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.62 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|