(* Title: HOL/Library/Multiset_Order.thy
Author: Dmitriy Traytel, TU Muenchen
Author: Jasmin Blanchette, Inria, LORIA, MPII
*)
section \<open>More Theorems about the Multiset Order\<close>
theory Multiset_Order
imports Multiset
begin
subsection \<open>Alternative Characterizations\<close>
context preorder
begin
lemma order_mult: "class.order
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)
(\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
(is "class.order ?le ?less")
proof -
have irrefl: "\M :: 'a multiset. \ ?less M M"
proof
fix M :: "'a multiset"
have "trans {(x'::'a, x). x' < x}"
by (rule transI) (blast intro: less_trans)
moreover
assume "(M, M) \ mult {(x, y). x < y}"
ultimately have "\I J K. M = I + J \ M = I + K
\<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})"
by (rule mult_implies_one_step)
then obtain I J K where "M = I + J" and "M = I + K"
and "J \ {#}" and "(\k\set_mset K. \j\set_mset J. (k, j) \ {(x, y). x < y})" by blast
then have aux1: "K \ {#}" and aux2: "\k\set_mset K. \j\set_mset K. k < j" by auto
have "finite (set_mset K)" by simp
moreover note aux2
ultimately have "set_mset K = {}"
by (induct rule: finite_induct)
(simp, metis (mono_tags) insert_absorb insert_iff insert_not_empty less_irrefl less_trans)
with aux1 show False by simp
qed
have trans: "\K M N :: 'a multiset. ?less K M \ ?less M N \ ?less K N"
unfolding mult_def by (blast intro: trancl_trans)
show "class.order ?le ?less"
by standard (auto simp add: less_eq_multiset_def irrefl dest: trans)
qed
text \<open>The Dershowitz--Manna ordering:\<close>
definition less_multiset\<^sub>D\<^sub>M where
"less_multiset\<^sub>D\<^sub>M M N \
(\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))"
text \<open>The Huet--Oppen ordering:\<close>
definition less_multiset\<^sub>H\<^sub>O where
"less_multiset\<^sub>H\<^sub>O M N \ M \ N \ (\y. count N y < count M y \ (\x. y < x \ count M x < count N x))"
lemma mult_imp_less_multiset\<^sub>H\<^sub>O:
"(M, N) \ mult {(x, y). x < y} \ less_multiset\<^sub>H\<^sub>O M N"
proof (unfold mult_def, induct rule: trancl_induct)
case (base P)
then show ?case
by (auto elim!: mult1_lessE simp add: count_eq_zero_iff less_multiset\<^sub>H\<^sub>O_def split: if_splits dest!: Suc_lessD)
next
case (step N P)
from step(3) have "M \ N" and
**: "\y. count N y < count M y \ (\x>y. count M x < count N x)"
by (simp_all add: less_multiset\<^sub>H\<^sub>O_def)
from step(2) obtain M0 a K where
*: "P = add_mset a M0" "N = M0 + K" "a \# K" "\b. b \# K \ b < a"
by (blast elim: mult1_lessE)
from \<open>M \<noteq> N\<close> ** *(1,2,3) have "M \<noteq> P" by (force dest: *(4) elim!: less_asym split: if_splits )
moreover
{ assume "count P a \ count M a"
with \<open>a \<notin># K\<close> have "count N a < count M a" unfolding *(1,2)
by (auto simp add: not_in_iff)
with ** obtain z where z: "z > a" "count M z < count N z"
by blast
with * have "count N z \ count P z"
by (auto elim: less_asym intro: count_inI)
with z have "\z > a. count M z < count P z" by auto
} note count_a = this
{ fix y
assume count_y: "count P y < count M y"
have "\x>y. count M x < count P x"
proof (cases "y = a")
case True
with count_y count_a show ?thesis by auto
next
case False
show ?thesis
proof (cases "y \# K")
case True
with *(4) have "y < a" by simp
then show ?thesis by (cases "count P a \ count M a") (auto dest: count_a intro: less_trans)
next
case False
with \<open>y \<noteq> a\<close> have "count P y = count N y" unfolding *(1,2)
by (simp add: not_in_iff)
with count_y ** obtain z where z: "z > y" "count M z < count N z" by auto
show ?thesis
proof (cases "z \# K")
case True
with *(4) have "z < a" by simp
with z(1) show ?thesis
by (cases "count P a \ count M a") (auto dest!: count_a intro: less_trans)
next
case False
with \<open>a \<notin># K\<close> have "count N z \<le> count P z" unfolding *
by (auto simp add: not_in_iff)
with z show ?thesis by auto
qed
qed
qed
}
ultimately show ?case unfolding less_multiset\<^sub>H\<^sub>O_def by blast
qed
lemma less_multiset\<^sub>D\<^sub>M_imp_mult:
"less_multiset\<^sub>D\<^sub>M M N \ (M, N) \ mult {(x, y). x < y}"
proof -
assume "less_multiset\<^sub>D\<^sub>M M N"
then obtain X Y where
"X \ {#}" and "X \# N" and "M = N - X + Y" and "\k. k \# Y \ (\a. a \# X \ k < a)"
unfolding less_multiset\<^sub>D\<^sub>M_def by blast
then have "(N - X + Y, N - X + X) \ mult {(x, y). x < y}"
by (intro one_step_implies_mult) (auto simp: Bex_def trans_def)
with \<open>M = N - X + Y\<close> \<open>X \<subseteq># N\<close> show "(M, N) \<in> mult {(x, y). x < y}"
by (metis subset_mset.diff_add)
qed
lemma less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M: "less_multiset\<^sub>H\<^sub>O M N \<Longrightarrow> less_multiset\<^sub>D\<^sub>M M N"
unfolding less_multiset\<^sub>D\<^sub>M_def
proof (intro iffI exI conjI)
assume "less_multiset\<^sub>H\<^sub>O M N"
then obtain z where z: "count M z < count N z"
unfolding less_multiset\<^sub>H\<^sub>O_def by (auto simp: multiset_eq_iff nat_neq_iff)
define X where "X = N - M"
define Y where "Y = M - N"
from z show "X \ {#}" unfolding X_def by (auto simp: multiset_eq_iff not_less_eq_eq Suc_le_eq)
from z show "X \# N" unfolding X_def by auto
show "M = (N - X) + Y" unfolding X_def Y_def multiset_eq_iff count_union count_diff by force
show "\k. k \# Y \ (\a. a \# X \ k < a)"
proof (intro allI impI)
fix k
assume "k \# Y"
then have "count N k < count M k" unfolding Y_def
by (auto simp add: in_diff_count)
with \<open>less_multiset\<^sub>H\<^sub>O M N\<close> obtain a where "k < a" and "count M a < count N a"
unfolding less_multiset\<^sub>H\<^sub>O_def by blast
then show "\a. a \# X \ k < a" unfolding X_def
by (auto simp add: in_diff_count)
qed
qed
lemma mult_less_multiset\<^sub>D\<^sub>M: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>D\<^sub>M M N"
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O)
lemma mult_less_multiset\<^sub>H\<^sub>O: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O)
lemmas mult\<^sub>D\<^sub>M = mult_less_multiset\<^sub>D\<^sub>M[unfolded less_multiset\<^sub>D\<^sub>M_def]
lemmas mult\<^sub>H\<^sub>O = mult_less_multiset\<^sub>H\<^sub>O[unfolded less_multiset\<^sub>H\<^sub>O_def]
end
lemma less_multiset_less_multiset\<^sub>H\<^sub>O: "M < N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
unfolding less_multiset_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def ..
lemmas less_multiset\<^sub>D\<^sub>M = mult\<^sub>D\<^sub>M[folded less_multiset_def]
lemmas less_multiset\<^sub>H\<^sub>O = mult\<^sub>H\<^sub>O[folded less_multiset_def]
lemma subset_eq_imp_le_multiset:
shows "M \# N \ M \ N"
unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O
by (simp add: less_le_not_le subseteq_mset_def)
(* FIXME: "le" should be "less" in this and other names *)
lemma le_multiset_right_total: "M < add_mset x M"
unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O by simp
lemma less_eq_multiset_empty_left[simp]:
shows "{#} \ M"
by (simp add: subset_eq_imp_le_multiset)
lemma ex_gt_imp_less_multiset: "(\y. y \# N \ (\x. x \# M \ x < y)) \ M < N"
unfolding less_multiset\<^sub>H\<^sub>O
by (metis count_eq_zero_iff count_greater_zero_iff less_le_not_le)
lemma less_eq_multiset_empty_right[simp]: "M \ {#} \ \ M \ {#}"
by (metis less_eq_multiset_empty_left antisym)
(* FIXME: "le" should be "less" in this and other names *)
lemma le_multiset_empty_left[simp]: "M \ {#} \ {#} < M"
by (simp add: less_multiset\<^sub>H\<^sub>O)
(* FIXME: "le" should be "less" in this and other names *)
lemma le_multiset_empty_right[simp]: "\ M < {#}"
using subset_mset.le_zero_eq less_multiset\<^sub>D\<^sub>M by blast
(* FIXME: "le" should be "less" in this and other names *)
lemma union_le_diff_plus: "P \# M \ N < P \ M - P + N < M"
by (drule subset_mset.diff_add[symmetric]) (metis union_le_mono2)
instantiation multiset :: (preorder) ordered_ab_semigroup_monoid_add_imp_le
begin
lemma less_eq_multiset\<^sub>H\<^sub>O:
"M \ N \ (\y. count N y < count M y \ (\x. y < x \ count M x < count N x))"
by (auto simp: less_eq_multiset_def less_multiset\<^sub>H\<^sub>O)
instance by standard (auto simp: less_eq_multiset\<^sub>H\<^sub>O)
lemma
fixes M N :: "'a multiset"
shows
less_eq_multiset_plus_left: "N \ (M + N)" and
less_eq_multiset_plus_right: "M \ (M + N)"
by simp_all
lemma
fixes M N :: "'a multiset"
shows
le_multiset_plus_left_nonempty: "M \ {#} \ N < M + N" and
le_multiset_plus_right_nonempty: "N \ {#} \ M < M + N"
by simp_all
end
lemma all_lt_Max_imp_lt_mset: "N \ {#} \ (\a \# M. a < Max (set_mset N)) \ M < N"
by (meson Max_in[OF finite_set_mset] ex_gt_imp_less_multiset set_mset_eq_empty_iff)
lemma lt_imp_ex_count_lt: "M < N \ \y. count M y < count N y"
by (meson less_eq_multiset\<^sub>H\<^sub>O less_le_not_le)
lemma subset_imp_less_mset: "A \# B \ A < B"
by (simp add: order.not_eq_order_implies_strict subset_eq_imp_le_multiset)
lemma image_mset_strict_mono:
assumes
mono_f: "\x \ set_mset M. \y \ set_mset N. x < y \ f x < f y" and
less: "M < N"
shows "image_mset f M < image_mset f N"
proof -
obtain Y X where
y_nemp: "Y \ {#}" and y_sub_N: "Y \# N" and M_eq: "M = N - Y + X" and
ex_y: "\x. x \# X \ (\y. y \# Y \ x < y)"
using less[unfolded less_multiset\<^sub>D\<^sub>M] by blast
have x_sub_M: "X \# M"
using M_eq by simp
let ?fY = "image_mset f Y"
let ?fX = "image_mset f X"
show ?thesis
unfolding less_multiset\<^sub>D\<^sub>M
proof (intro exI conjI)
show "image_mset f M = image_mset f N - ?fY + ?fX"
using M_eq[THEN arg_cong, of "image_mset f"] y_sub_N
by (metis image_mset_Diff image_mset_union)
next
obtain y where y: "\x. x \# X \ y x \# Y \ x < y x"
using ex_y by moura
show "\fx. fx \# ?fX \ (\fy. fy \# ?fY \ fx < fy)"
proof (intro allI impI)
fix fx
assume "fx \# ?fX"
then obtain x where fx: "fx = f x" and x_in: "x \# X"
by auto
hence y_in: "y x \# Y" and y_gt: "x < y x"
using y[rule_format, OF x_in] by blast+
hence "f (y x) \# ?fY \ f x < f (y x)"
using mono_f y_sub_N x_sub_M x_in
by (metis image_eqI in_image_mset mset_subset_eqD)
thus "\fy. fy \# ?fY \ fx < fy"
unfolding fx by auto
qed
qed (auto simp: y_nemp y_sub_N image_mset_subseteq_mono)
qed
lemma image_mset_mono:
assumes
mono_f: "\x \ set_mset M. \y \ set_mset N. x < y \ f x < f y" and
less: "M \ N"
shows "image_mset f M \ image_mset f N"
by (metis eq_iff image_mset_strict_mono less less_imp_le mono_f order.not_eq_order_implies_strict)
lemma mset_lt_single_right_iff[simp]: "M < {#y#} \ (\x \# M. x < y)" for y :: "'a::linorder"
proof (rule iffI)
assume M_lt_y: "M < {#y#}"
show "\x \# M. x < y"
proof
fix x
assume x_in: "x \# M"
hence M: "M - {#x#} + {#x#} = M"
by (meson insert_DiffM2)
hence "\ {#x#} < {#y#} \ x < y"
using x_in M_lt_y
by (metis diff_single_eq_union le_multiset_empty_left less_add_same_cancel2 mset_le_trans)
also have "\ {#y#} < M"
using M_lt_y mset_le_not_sym by blast
ultimately show "x < y"
by (metis (no_types) Max_ge all_lt_Max_imp_lt_mset empty_iff finite_set_mset insertE
less_le_trans linorder_less_linear mset_le_not_sym set_mset_add_mset_insert
set_mset_eq_empty_iff x_in)
qed
next
assume y_max: "\x \# M. x < y"
show "M < {#y#}"
by (rule all_lt_Max_imp_lt_mset) (auto intro!: y_max)
qed
lemma mset_le_single_right_iff[simp]:
"M \ {#y#} \ M = {#y#} \ (\x \# M. x < y)" for y :: "'a::linorder"
by (meson less_eq_multiset_def mset_lt_single_right_iff)
subsection \<open>Simprocs\<close>
lemma mset_le_add_iff1:
"j \ (i::nat) \ (repeat_mset i u + m \ repeat_mset j u + n) = (repeat_mset (i-j) u + m \ n)"
proof -
assume "j \ i"
then have "j + (i - j) = i"
using le_add_diff_inverse by blast
then show ?thesis
by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset)
qed
lemma mset_le_add_iff2:
"i \ (j::nat) \ (repeat_mset i u + m \ repeat_mset j u + n) = (m \ repeat_mset (j-i) u + n)"
proof -
assume "i \ j"
then have "i + (j - i) = j"
using le_add_diff_inverse by blast
then show ?thesis
by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset)
qed
simproc_setup msetless_cancel
("(l::'a::preorder multiset) + m < n" | "(l::'a multiset) < m + n" |
"add_mset a m < n" | "m < add_mset a n" |
"replicate_mset p a < n" | "m < replicate_mset p a" |
"repeat_mset p m < n" | "m < repeat_mset p n") =
\<open>fn phi => Cancel_Simprocs.less_cancel\<close>
simproc_setup msetle_cancel
("(l::'a::preorder multiset) + m \ n" | "(l::'a multiset) \ m + n" |
"add_mset a m \ n" | "m \ add_mset a n" |
"replicate_mset p a \ n" | "m \ replicate_mset p a" |
"repeat_mset p m \ n" | "m \ repeat_mset p n") =
\<open>fn phi => Cancel_Simprocs.less_eq_cancel\<close>
subsection \<open>Additional facts and instantiations\<close>
lemma ex_gt_count_imp_le_multiset:
"(\y :: 'a :: order. y \# M + N \ y \ x) \ count M x < count N x \ M < N"
unfolding less_multiset\<^sub>H\<^sub>O
by (metis count_greater_zero_iff le_imp_less_or_eq less_imp_not_less not_gr_zero union_iff)
lemma mset_lt_single_iff[iff]: "{#x#} < {#y#} \ x < y"
unfolding less_multiset\<^sub>H\<^sub>O by simp
lemma mset_le_single_iff[iff]: "{#x#} \ {#y#} \ x \ y" for x y :: "'a::order"
unfolding less_eq_multiset\<^sub>H\<^sub>O by force
instance multiset :: (linorder) linordered_cancel_ab_semigroup_add
by standard (metis less_eq_multiset\<^sub>H\<^sub>O not_less_iff_gr_or_eq)
lemma less_eq_multiset_total:
fixes M N :: "'a :: linorder multiset"
shows "\ M \ N \ N \ M"
by simp
instantiation multiset :: (wellorder) wellorder
begin
lemma wf_less_multiset: "wf {(M :: 'a multiset, N). M < N}"
unfolding less_multiset_def by (auto intro: wf_mult wf)
instance by standard (metis less_multiset_def wf wf_def wf_mult)
end
instantiation multiset :: (preorder) order_bot
begin
definition bot_multiset :: "'a multiset" where "bot_multiset = {#}"
instance by standard (simp add: bot_multiset_def)
end
instance multiset :: (preorder) no_top
proof standard
fix x :: "'a multiset"
obtain a :: 'a where True by simp
have "x < x + (x + {#a#})"
by simp
then show "\y. x < y"
by blast
qed
instance multiset :: (preorder) ordered_cancel_comm_monoid_add
by standard
instantiation multiset :: (linorder) distrib_lattice
begin
definition inf_multiset :: "'a multiset \ 'a multiset \ 'a multiset" where
"inf_multiset A B = (if A < B then A else B)"
definition sup_multiset :: "'a multiset \ 'a multiset \ 'a multiset" where
"sup_multiset A B = (if B > A then B else A)"
instance
by intro_classes (auto simp: inf_multiset_def sup_multiset_def)
end
end
¤ Dauer der Verarbeitung: 0.28 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|