(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
open Num
open Sos
open Sos_types
open Sos_lib
module Mc = Micromega
module C2Ml = Mutils.CoqToCaml
type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
let flags = [Open_append;Open_binary;Open_creat]
let chan = open_out_gen flags 0o666 "trace"
module M =
struct
open Mc
let rec expr_to_term = function
| PEc z -> Const (C2Ml.q_to_num z)
| PEX v -> Var ("x"^(string_of_int (C2Ml.index v)))
| PEmul(p1,p2) ->
let p1 = expr_to_term p1 in
let p2 = expr_to_term p2 in
let res = Mul(p1,p2) in res
| PEadd(p1,p2) -> Add(expr_to_term p1, expr_to_term p2)
| PEsub(p1,p2) -> Sub(expr_to_term p1, expr_to_term p2)
| PEpow(p,n) -> Pow(expr_to_term p , C2Ml.n n)
| PEopp p -> Opp (expr_to_term p)
end
open M
let partition_expr l =
let rec f i = function
| [] -> ([],[],[])
| (e,k)::l ->
let (eq,ge,neq) = f (i+1) l in
match k with
| Mc.Equal -> ((e,i)::eq,ge,neq)
| Mc.NonStrict -> (eq,(e,Axiom_le i)::ge,neq)
| Mc.Strict -> (* e > 0 == e >= 0 /\ e <> 0 *)
(eq, (e,Axiom_lt i)::ge,(e,Axiom_lt i)::neq)
| Mc.NonEqual -> (eq,ge,(e,Axiom_eq i)::neq)
(* Not quite sure -- Coq interface has changed *)
in f 0 l
let rec sets_of_list l =
match l with
| [] -> [[]]
| e::l -> let s = sets_of_list l in
s@(List.map (fun s0 -> e::s0) s)
(* The exploration is probably not complete - for simple cases, it works... *)
let real_nonlinear_prover d l =
let l = List.map (fun (e,op) -> (Mc.denorm e,op)) l in
try
let (eq,ge,neq) = partition_expr l in
let rec elim_const = function
[] -> []
| (x,y)::l -> let p = poly_of_term (expr_to_term x) in
if poly_isconst p
then elim_const l
else (p,y)::(elim_const l) in
let eq = elim_const eq in
let peq = List.map fst eq in
let pge = List.map
(fun (e,psatz) -> poly_of_term (expr_to_term e),psatz) ge in
let monoids = List.map (fun m -> (List.fold_right (fun (p,kd) y ->
let p = poly_of_term (expr_to_term p) in
match kd with
| Axiom_lt i -> poly_mul p y
| Axiom_eq i -> poly_mul (poly_pow p 2) y
| _ -> failwith "monoids") m (poly_const (Int 1)) , List.map snd m))
(sets_of_list neq) in
let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d ->
tryfind (fun m -> let (ci,cc) =
real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in
(ci,cc,snd m)) monoids) 0 in
let proofs_ideal = List.map2 (fun q i -> Eqmul(term_of_poly q,Axiom_eq i))
cert_ideal (List.map snd eq) in
let proofs_cone = List.map term_of_sos cert_cone in
let proof_ne =
let (neq , lt) = List.partition
(function Axiom_eq _ -> true | _ -> false ) monoid in
let sq = match
(List.map (function Axiom_eq i -> i | _ -> failwith "error") neq)
with
| [] -> Rational_lt (Int 1)
| l -> Monoid l in
List.fold_right (fun x y -> Product(x,y)) lt sq in
let proof = end_itlist
(fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
S (Some proof)
with
| Sos_lib.TooDeep -> S None
| any -> F (Printexc.to_string any)
(* This is somewhat buggy, over Z, strict inequality vanish... *)
let pure_sos l =
let l = List.map (fun (e,o) -> Mc.denorm e, o) l in
(* If there is no strict inequality,
I should nonetheless be able to try something - over Z > is equivalent to -1 >= *)
try
let l = List.combine l (CList.interval 0 (List.length l -1)) in
let (lt,i) = try (List.find (fun (x,_) -> Pervasives.(=) (snd x) Mc.Strict) l)
with Not_found -> List.hd l in
let plt = poly_neg (poly_of_term (expr_to_term (fst lt))) in
let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *)
let pos = Product (Rational_lt n,
List.fold_right (fun (c,p) rst -> Sum (Product (Rational_lt c, Square
(term_of_poly p)), rst))
polys (Rational_lt (Int 0))) in
let proof = Sum(Axiom_lt i, pos) in
(* let s,proof' = scale_certificate proof in
let cert = snd (cert_of_pos proof') in *)
S (Some proof)
with
(* | Sos.CsdpNotFound -> F "Sos.CsdpNotFound" *)
| any -> (* May be that could be refined *) S None
let run_prover prover pb =
match prover with
| "real_nonlinear_prover", Some d -> real_nonlinear_prover d pb
| "pure_sos", None -> pure_sos pb
| prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1)
let main () =
try
let (prover,poly) = (input_value stdin : provername * micromega_polys) in
let cert = run_prover prover poly in
(* Printf.fprintf chan "%a -> %a" print_list_term poly output_csdp_certificate cert ;
close_out chan ; *)
output_value stdout (cert:csdp_certificate);
flush stdout ;
Marshal.to_channel chan (cert:csdp_certificate) [] ;
flush chan ;
exit 0
with any -> (Printf.fprintf chan "error %s" (Printexc.to_string any) ; exit 1)
;;
let _ = main () in ()
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
¤ Dauer der Verarbeitung: 0.17 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|