products/sources/formale sprachen/Coq/theories/Numbers/Integer/Abstract image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: ZDivEucl.v   Sprache: Coq

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import ZAxioms ZMulOrder ZSgnAbs NZDiv.

(** * Euclidean Division for integers, Euclid convention

    We use here the "usual" formulation of the Euclid Theorem
    [forall a b, b<>0 -> exists r q, a = b*q+r /\ 0 <= r < |b| ]

    The outcome of the modulo function is hence always positive.
    This corresponds to convention "E" in the following paper:

    R. Boute, "The Euclidean definition of the functions div and mod",
    ACM Transactions on Programming Languages and Systems,
    Vol. 14, No.2, pp. 127-144, April 1992.

    See files [ZDivTrunc] and [ZDivFloor] for others conventions.

    We simply extend NZDiv with a bound for modulo that holds
    regardless of the sign of a and b. This new specification
    subsume mod_bound_pos, which nonetheless stays there for
    subtyping. Note also that ZAxiomSig now already contain
    a div and a modulo (that follow the Floor convention).
    We just ignore them here.
*)


Module Type EuclidSpec (Import A : ZAxiomsSig')(Import B : DivMod A).
 Axiom mod_always_pos : forall a b, b ~= 0 -> 0 <= B.modulo a b < abs b.
End EuclidSpec.

Module Type ZEuclid (Z:ZAxiomsSig) := NZDiv.NZDiv Z <+ EuclidSpec Z.

Module ZEuclidProp
 (Import A : ZAxiomsSig')
 (Import B : ZMulOrderProp A)
 (Import C : ZSgnAbsProp A B)
 (Import D : ZEuclid A).

 (** We put notations in a scope, to avoid warnings about
     redefinitions of notations *)

 Declare Scope euclid.
 Infix "/" := D.div : euclid.
 Infix "mod" := D.modulo : euclid.
 Local Open Scope euclid.

 Module Import Private_NZDiv := Nop <+ NZDivProp A D B.

(** Another formulation of the main equation *)

Lemma mod_eq :
 forall a b, b~=0 -> a mod b == a - b*(a/b).
Proof.
intros.
rewrite <- add_move_l.
symmetrynow apply div_mod.
Qed.

Ltac pos_or_neg a :=
 let LT := fresh "LT" in
 let LE := fresh "LE" in
 destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT].

(** Uniqueness theorems *)

Theorem div_mod_unique : forall b q1 q2 r1 r2 : t,
  0<=r1<abs b -> 0<=r2<abs b ->
  b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof.
intros b q1 q2 r1 r2 Hr1 Hr2 EQ.
pos_or_neg b.
rewrite abs_eq in * by trivial.
apply div_mod_unique with b; trivial.
rewrite abs_neq' in * by auto using lt_le_incl.
rewrite eq_sym_iff. apply div_mod_unique with (-b); trivial.
rewrite 2 mul_opp_l.
rewrite add_move_l, sub_opp_r.
rewrite <-add_assoc.
symmetryrewrite add_move_l, sub_opp_r.
now rewrite (add_comm r2), (add_comm r1).
Qed.

Theorem div_unique:
 forall a b q r, 0<=r<abs b -> a == b*q + r -> q == a/b.
Proof.
intros a b q r Hr EQ.
assert (Hb : b~=0).
 pos_or_neg b.
 rewrite abs_eq in Hr; intuition; order.
 rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order.
destruct (div_mod_unique b q (a/b) r (a mod b)); trivial.
now apply mod_always_pos.
now rewrite <- div_mod.
Qed.

Theorem mod_unique:
 forall a b q r, 0<=r<abs b -> a == b*q + r -> r == a mod b.
Proof.
intros a b q r Hr EQ.
assert (Hb : b~=0).
 pos_or_neg b.
 rewrite abs_eq in Hr; intuition; order.
 rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order.
destruct (div_mod_unique b q (a/b) r (a mod b)); trivial.
now apply mod_always_pos.
now rewrite <- div_mod.
Qed.

(** Sign rules *)

Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b).
Proof.
introssymmetry.
apply div_unique with (a mod b).
rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.

Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b.
Proof.
introssymmetry.
apply mod_unique with (-(a/b)).
rewrite abs_opp; now apply mod_always_pos.
rewrite mul_opp_opp; now apply div_mod.
Qed.

Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
 (-a)/b == -(a/b).
Proof.
intros a b Hb Hab. symmetry.
apply div_unique with (-(a mod b)).
rewrite Hab, opp_0. split; [order|].
pos_or_neg b; [rewrite abs_eq | rewrite abs_neq']; order.
now rewrite mul_opp_r, <-opp_add_distr, <-div_mod.
Qed.

Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
 (-a)/b == -(a/b)-sgn b.
Proof.
intros a b Hb Hab. symmetry.
apply div_unique with (abs b -(a mod b)).
rewrite lt_sub_lt_add_l.
rewrite <- le_add_le_sub_l. nzsimpl.
rewrite <- (add_0_l (abs b)) at 2.
rewrite <- add_lt_mono_r.
destruct (mod_always_pos a b); intuition order.
rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r.
rewrite sgn_abs.
rewrite add_shuffle2, add_opp_diag_l; nzsimpl.
rewrite <-opp_add_distr, <-div_mod; order.
Qed.

Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 ->
 (-a) mod b == 0.
Proof.
intros a b Hb Hab. symmetry.
apply mod_unique with (-(a/b)).
split; [order|now rewrite abs_pos].
now rewrite <-opp_0, <-Hab, mul_opp_r, <-opp_add_distr, <-div_mod.
Qed.

Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 ->
 (-a) mod b == abs b - (a mod b).
Proof.
intros a b Hb Hab. symmetry.
apply mod_unique with (-(a/b)-sgn b).
rewrite lt_sub_lt_add_l.
rewrite <- le_add_le_sub_l. nzsimpl.
rewrite <- (add_0_l (abs b)) at 2.
rewrite <- add_lt_mono_r.
destruct (mod_always_pos a b); intuition order.
rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r.
rewrite sgn_abs.
rewrite add_shuffle2, add_opp_diag_l; nzsimpl.
rewrite <-opp_add_distr, <-div_mod; order.
Qed.

Lemma div_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
 (-a)/(-b) == a/b.
Proof.
introsnow rewrite div_opp_r, div_opp_l_z, opp_involutive.
Qed.

Lemma div_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
 (-a)/(-b) == a/b + sgn(b).
Proof.
introsrewrite div_opp_r, div_opp_l_nz by trivial.
now rewrite opp_sub_distr, opp_involutive.
Qed.

Lemma mod_opp_opp_z : forall a b, b~=0 -> a mod b == 0 ->
 (-a) mod (-b) == 0.
Proof.
introsnow rewrite mod_opp_r, mod_opp_l_z.
Qed.

Lemma mod_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 ->
 (-a) mod (-b) == abs b - a mod b.
Proof.
introsnow rewrite mod_opp_r, mod_opp_l_nz.
Qed.

(** A division by itself returns 1 *)

Lemma div_same : forall a, a~=0 -> a/a == 1.
Proof.
introssymmetryapply div_unique with 0.
split; [order|now rewrite abs_pos].
now nzsimpl.
Qed.

Lemma mod_same : forall a, a~=0 -> a mod a == 0.
Proof.
intros.
rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag.
Qed.

(** A division of a small number by a bigger one yields zero. *)

Theorem div_small: forall a b, 0<=a<b -> a/b == 0.
Proofexact div_small. Qed.

(** Same situation, in term of modulo: *)

Theorem mod_small: forall a b, 0<=a<b -> a mod b == a.
Proofexact mod_small. Qed.

(** * Basic values of divisions and modulo. *)

Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
Proof.
intros. pos_or_neg a. apply div_0_l; order.
apply opp_inj. rewrite <- div_opp_r, opp_0 by trivialnow apply div_0_l.
Qed.

Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
Proof.
introsrewrite mod_eq, div_0_l; now nzsimpl.
Qed.

Lemma div_1_r: forall a, a/1 == a.
Proof.
introssymmetryapply div_unique with 0.
assert (H:=lt_0_1); rewrite abs_pos; intuition; order.
now nzsimpl.
Qed.

Lemma mod_1_r: forall a, a mod 1 == 0.
Proof.
introsrewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag.
apply neq_sym, lt_neq; apply lt_0_1.
Qed.

Lemma div_1_l: forall a, 1<a -> 1/a == 0.
Proofexact div_1_l. Qed.

Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
Proofexact mod_1_l. Qed.

Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
Proof.
introssymmetryapply div_unique with 0.
split; [order|now rewrite abs_pos].
nzsimpl; apply mul_comm.
Qed.

Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
Proof.
introsrewrite mod_eq, div_mul by trivialrewrite mul_comm; apply sub_diag.
Qed.

Theorem div_unique_exact a b q: b~=0 -> a == b*q -> q == a/b.
Proof.
 intros Hb H. rewrite H, mul_comm. symmetrynow apply div_mul.
Qed.

(** * Order results about mod and div *)

(** A modulo cannot grow beyond its starting point. *)

Theorem mod_le: forall a b, 0<=a -> b~=0 -> a mod b <= a.
Proof.
intros. pos_or_neg b. apply mod_le; order.
rewrite <- mod_opp_r by trivialapply mod_le; order.
Qed.

Theorem div_pos : forall a b, 0<=a -> 0<b -> 0<= a/b.
Proofexact div_pos. Qed.

Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
Proofexact div_str_pos. Qed.

Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a<abs b).
Proof.
intros a b Hb.
split.
intros EQ.
rewrite (div_mod a b Hb), EQ; nzsimpl.
now apply mod_always_pos.
intros. pos_or_neg b.
apply div_small.
now rewrite <- (abs_eq b).
apply opp_inj; rewrite opp_0, <- div_opp_r by trivial.
apply div_small.
rewrite <- (abs_neq' b) by order. trivial.
Qed.

Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> 0<=a<abs b).
Proof.
intros.
rewrite <- div_small_iff, mod_eq by trivial.
rewrite sub_move_r, <- (add_0_r a) at 1. rewrite add_cancel_l.
rewrite eq_sym_iff, eq_mul_0. tauto.
Qed.

(** As soon as the divisor is strictly greater than 1,
    the division is strictly decreasing. *)


Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
Proofexact div_lt. Qed.

(** [le] is compatible with a positive division. *)

Lemma div_le_mono : forall a b c, 0<c -> a<=b -> a/c <= b/c.
Proof.
intros a b c Hc Hab.
rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ];
 [|rewrite EQ; order].
rewrite <- lt_succ_r.
rewrite (mul_lt_mono_pos_l c) by order.
nzsimpl.
rewrite (add_lt_mono_r _ _ (a mod c)).
rewrite <- div_mod by order.
apply lt_le_trans with b; trivial.
rewrite (div_mod b c) at 1 by order.
rewrite <- add_assoc, <- add_le_mono_l.
apply le_trans with (c+0).
nzsimpl; destruct (mod_always_pos b c); try order.
rewrite abs_eq in *; order.
rewrite <- add_le_mono_l. destruct (mod_always_pos a c); order.
Qed.

(** In this convention, [div] performs Rounding-Toward-Bottom
    when divisor is positive, and Rounding-Toward-Top otherwise.

    Since we cannot speak of rational values here, we express this
    fact by multiplying back by [b], and this leads to a nice
    unique statement.
*)


Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a.
Proof.
intros.
rewrite (div_mod a b) at 2; trivial.
rewrite <- (add_0_r (b*(a/b))) at 1.
rewrite <- add_le_mono_l.
now destruct (mod_always_pos a b).
Qed.

(** Giving a reversed bound is slightly more complex *)

Lemma mul_succ_div_gt: forall a b, 0<b -> a < b*(S (a/b)).
Proof.
intros.
nzsimpl.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
destruct (mod_always_pos a b). order.
rewrite abs_eq in *; order.
Qed.

Lemma mul_pred_div_gt: forall a b, b<0 -> a < b*(P (a/b)).
Proof.
intros a b Hb.
rewrite mul_pred_r, <- add_opp_r.
rewrite (div_mod a b) at 1; try order.
rewrite <- add_lt_mono_l.
destruct (mod_always_pos a b). order.
rewrite <- opp_pos_neg in Hb. rewrite abs_neq' in *; order.
Qed.

(** NB: The three previous properties could be used as
    specifications for [div]. *)


(** Inequality [mul_div_le] is exact iff the modulo is zero. *)

Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
Proof.
intros.
rewrite (div_mod a b) at 1; try order.
rewrite <- (add_0_r (b*(a/b))) at 2.
apply add_cancel_l.
Qed.

(** Some additional inequalities about div. *)

Theorem div_lt_upper_bound:
  forall a b q, 0<b -> a < b*q -> a/b < q.
Proof.
intros.
rewrite (mul_lt_mono_pos_l b) by trivial.
apply le_lt_trans with a; trivial.
apply mul_div_le; order.
Qed.

Theorem div_le_upper_bound:
  forall a b q, 0<b -> a <= b*q -> a/b <= q.
Proof.
intros.
rewrite <- (div_mul q b) by order.
apply div_le_mono; trivialnow rewrite mul_comm.
Qed.

Theorem div_le_lower_bound:
  forall a b q, 0<b -> b*q <= a -> q <= a/b.
Proof.
intros.
rewrite <- (div_mul q b) by order.
apply div_le_mono; trivialnow rewrite mul_comm.
Qed.

(** A division respects opposite monotonicity for the divisor *)

Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> p/r <= p/q.
Proofexact div_le_compat_l. Qed.

(** * Relations between usual operations and mod and div *)

Lemma mod_add : forall a b c, c~=0 ->
 (a + b * c) mod c == a mod c.
Proof.
intros.
symmetry.
apply mod_unique with (a/c+b); trivial.
now apply mod_always_pos.
rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
now rewrite mul_comm.
Qed.

Lemma div_add : forall a b c, c~=0 ->
 (a + b * c) / c == a / c + b.
Proof.
intros.
apply (mul_cancel_l _ _ c); try order.
apply (add_cancel_r _ _ ((a+b*c) mod c)).
rewrite <- div_mod, mod_add by order.
rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order.
now rewrite mul_comm.
Qed.

Lemma div_add_l: forall a b c, b~=0 ->
 (a * b + c) / b == a + c / b.
Proof.
 intros a b c. rewrite (add_comm _ c), (add_comm a).
 now apply div_add.
Qed.

(** Cancellations. *)

(** With the current convention, the following isn't always true
    when [c<0]: [-3*-1 / -2*-1 = 3/2 = 1] while [-3/-2 = 2] *)


Lemma div_mul_cancel_r : forall a b c, b~=0 -> 0<c ->
 (a*c)/(b*c) == a/b.
Proof.
intros.
symmetry.
apply div_unique with ((a mod b)*c).
(* ineqs *)
rewrite abs_mul, (abs_eq c) by order.
rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial.
now apply mod_always_pos.
(* equation *)
rewrite (div_mod a b) at 1 by order.
rewrite mul_add_distr_r.
rewrite add_cancel_r.
rewrite <- 2 mul_assoc. now rewrite (mul_comm c).
Qed.

Lemma div_mul_cancel_l : forall a b c, b~=0 -> 0<c ->
 (c*a)/(c*b) == a/b.
Proof.
introsrewrite !(mul_comm c); now apply div_mul_cancel_r.
Qed.

Lemma mul_mod_distr_l: forall a b c, b~=0 -> 0<c ->
  (c*a) mod (c*b) == c * (a mod b).
Proof.
intros.
rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))).
rewrite <- div_mod.
rewrite div_mul_cancel_l by trivial.
rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
apply div_mod; order.
rewrite <- neq_mul_0; intuition; order.
Qed.

Lemma mul_mod_distr_r: forall a b c, b~=0 -> 0<c ->
  (a*c) mod (b*c) == (a mod b) * c.
Proof.
 introsrewrite !(mul_comm _ c); now rewrite mul_mod_distr_l.
Qed.


(** Operations modulo. *)

Theorem mod_mod: forall a n, n~=0 ->
 (a mod n) mod n == a mod n.
Proof.
introsrewrite mod_small_iff by trivial.
now apply mod_always_pos.
Qed.

Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
 ((a mod n)*b) mod n == (a*b) mod n.
Proof.
 intros a b n Hn. symmetry.
 rewrite (div_mod a n) at 1 by order.
 rewrite add_comm, (mul_comm n), (mul_comm _ b).
 rewrite mul_add_distr_l, mul_assoc.
 rewrite mod_add by trivial.
 now rewrite mul_comm.
Qed.

Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
 (a*(b mod n)) mod n == (a*b) mod n.
Proof.
 introsrewrite !(mul_comm a). now apply mul_mod_idemp_l.
Qed.

Theorem mul_mod: forall a b n, n~=0 ->
 (a * b) mod n == ((a mod n) * (b mod n)) mod n.
Proof.
 introsnow rewrite mul_mod_idemp_l, mul_mod_idemp_r.
Qed.

Lemma add_mod_idemp_l : forall a b n, n~=0 ->
 ((a mod n)+b) mod n == (a+b) mod n.
Proof.
 intros a b n Hn. symmetry.
 rewrite (div_mod a n) at 1 by order.
 rewrite <- add_assoc, add_comm, mul_comm.
 now rewrite mod_add.
Qed.

Lemma add_mod_idemp_r : forall a b n, n~=0 ->
 (a+(b mod n)) mod n == (a+b) mod n.
Proof.
 introsrewrite !(add_comm a). now apply add_mod_idemp_l.
Qed.

Theorem add_mod: forall a b n, n~=0 ->
 (a+b) mod n == (a mod n + b mod n) mod n.
Proof.
 introsnow rewrite add_mod_idemp_l, add_mod_idemp_r.
Qed.

(** With the current convention, the following result isn't always
    true with a negative intermediate divisor. For instance
    [ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ] and
    [ 3/(-2)/2 = -1 <> 0 = 3 / (-2*2) ]. *)


Lemma div_div : forall a b c, 0<b -> c~=0 ->
 (a/b)/c == a/(b*c).
Proof.
 intros a b c Hb Hc.
 apply div_unique with (b*((a/b) mod c) + a mod b).
 (* begin 0<= ... <abs(b*c) *)
 rewrite abs_mul.
 destruct (mod_always_pos (a/b) c), (mod_always_pos a b); try order.
 split.
 apply add_nonneg_nonneg; trivial.
 apply mul_nonneg_nonneg; order.
 apply lt_le_trans with (b*((a/b) mod c) + abs b).
 now rewrite <- add_lt_mono_l.
 rewrite (abs_eq b) by order.
 now rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l.
 (* end 0<= ... < abs(b*c) *)
 rewrite (div_mod a b) at 1 by order.
 rewrite add_assoc, add_cancel_r.
 rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order.
 apply div_mod; order.
Qed.

(** Similarly, the following result doesn't always hold when [b<0].
    For instance [3 mod (-2*-2)) = 3] while
    [3 mod (-2) + (-2)*((3/-2) mod -2) = -1]. *)


Lemma mod_mul_r : forall a b c, 0<b -> c~=0 ->
 a mod (b*c) == a mod b + b*((a/b) mod c).
Proof.
 intros a b c Hb Hc.
 apply add_cancel_l with (b*c*(a/(b*c))).
 rewrite <- div_mod by (apply neq_mul_0; split; order).
 rewrite <- div_div by trivial.
 rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l.
 rewrite <- div_mod by order.
 apply div_mod; order.
Qed.

Lemma mod_div: forall a b, b~=0 ->
 a mod b / b == 0.
Proof.
 intros a b Hb.
 rewrite div_small_iff by assumption.
 auto using mod_always_pos.
Qed.

(** A last inequality: *)

Theorem div_mul_le:
 forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b.
Proofexact div_mul_le. Qed.

(** mod is related to divisibility *)

Lemma mod_divides : forall a b, b~=0 ->
 (a mod b == 0 <-> (b|a)).
Proof.
intros a b Hb. split.
intros Hab. exists (a/b). rewrite mul_comm.
 rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
intros (c,Hc). rewrite Hc. now apply mod_mul.
Qed.

End ZEuclidProp.

¤ Dauer der Verarbeitung: 0.31 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff