(* Title: CTT/ex/Elimination.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Some examples taken from P. Martin-L\"of, Intuitionistic type theory
(Bibliopolis, 1984).
*)
section "Examples with elimination rules"
theory Elimination
imports "../CTT"
begin
text "This finds the functions fst and snd!"
schematic_goal [folded basic_defs]: "A type \ ?a : (A \ A) \ A"
apply pc
done
schematic_goal [folded basic_defs]: "A type \ ?a : (A \ A) \ A"
apply pc
back
done
text "Double negation of the Excluded Middle"
schematic_goal "A type \ ?a : ((A + (A\F)) \ F) \ F"
apply intr
apply (rule ProdE)
apply assumption
apply pc
done
schematic_goal "\A type; B type\ \ ?a : (A \ B) \ (B \ A)"
apply pc
done
(*The sequent version (ITT) could produce an interesting alternative
by backtracking. No longer.*)
text "Binary sums and products"
schematic_goal "\A type; B type; C type\ \ ?a : (A + B \ C) \ (A \ C) \ (B \ C)"
apply pc
done
(*A distributive law*)
schematic_goal "\A type; B type; C type\ \ ?a : A \ (B + C) \ (A \ B + A \ C)"
apply pc
done
(*more general version, same proof*)
schematic_goal
assumes "A type"
and "\x. x:A \ B(x) type"
and "\x. x:A \ C(x) type"
shows "?a : (\x:A. B(x) + C(x)) \ (\x:A. B(x)) + (\x:A. C(x))"
apply (pc assms)
done
text "Construction of the currying functional"
schematic_goal "\A type; B type; C type\ \ ?a : (A \ B \ C) \ (A \ (B \ C))"
apply pc
done
(*more general goal with same proof*)
schematic_goal
assumes "A type"
and "\x. x:A \ B(x) type"
and "\z. z: (\x:A. B(x)) \ C(z) type"
shows "?a : \f: (\z : (\x:A . B(x)) . C(z)).
(\<Prod>x:A . \<Prod>y:B(x) . C(<x,y>))"
apply (pc assms)
done
text "Martin-Löf (1984), page 48: axiom of sum-elimination (uncurry)"
schematic_goal "\A type; B type; C type\ \ ?a : (A \ (B \ C)) \ (A \ B \ C)"
apply pc
done
(*more general goal with same proof*)
schematic_goal
assumes "A type"
and "\x. x:A \ B(x) type"
and "\z. z: (\x:A . B(x)) \ C(z) type"
shows "?a : (\x:A . \y:B(x) . C())
\<longrightarrow> (\<Prod>z : (\<Sum>x:A . B(x)) . C(z))"
apply (pc assms)
done
text "Function application"
schematic_goal "\A type; B type\ \ ?a : ((A \ B) \ A) \ B"
apply pc
done
text "Basic test of quantifier reasoning"
schematic_goal
assumes "A type"
and "B type"
and "\x y. \x:A; y:B\ \ C(x,y) type"
shows
"?a : (\y:B . \x:A . C(x,y))
\<longrightarrow> (\<Prod>x:A . \<Sum>y:B . C(x,y))"
apply (pc assms)
done
text "Martin-Löf (1984) pages 36-7: the combinator S"
schematic_goal
assumes "A type"
and "\x. x:A \ B(x) type"
and "\x y. \x:A; y:B(x)\ \ C(x,y) type"
shows "?a : (\x:A. \y:B(x). C(x,y))
\<longrightarrow> (\<Prod>f: (\<Prod>x:A. B(x)). \<Prod>x:A. C(x, f`x))"
apply (pc assms)
done
text "Martin-Löf (1984) page 58: the axiom of disjunction elimination"
schematic_goal
assumes "A type"
and "B type"
and "\z. z: A+B \ C(z) type"
shows "?a : (\x:A. C(inl(x))) \ (\y:B. C(inr(y)))
\<longrightarrow> (\<Prod>z: A+B. C(z))"
apply (pc assms)
done
(*towards AXIOM OF CHOICE*)
schematic_goal [folded basic_defs]:
"\A type; B type; C type\ \ ?a : (A \ B \ C) \ (A \ B) \ (A \ C)"
apply pc
done
(*Martin-Löf (1984) page 50*)
text "AXIOM OF CHOICE! Delicate use of elimination rules"
schematic_goal
assumes "A type"
and "\x. x:A \ B(x) type"
and "\x y. \x:A; y:B(x)\ \ C(x,y) type"
shows "?a : (\x:A. \y:B(x). C(x,y)) \ (\f: (\x:A. B(x)). \x:A. C(x, f`x))"
apply (intr assms)
prefer 2 apply add_mp
prefer 2 apply add_mp
apply (erule SumE_fst)
apply (rule replace_type)
apply (rule subst_eqtyparg)
apply (rule comp_rls)
apply (rule_tac [4] SumE_snd)
apply (typechk SumE_fst assms)
done
text "Axiom of choice. Proof without fst, snd. Harder still!"
schematic_goal [folded basic_defs]:
assumes "A type"
and "\x. x:A \ B(x) type"
and "\x y. \x:A; y:B(x)\ \ C(x,y) type"
shows "?a : (\x:A. \y:B(x). C(x,y)) \ (\f: (\x:A. B(x)). \x:A. C(x, f`x))"
apply (intr assms)
(*Must not use add_mp as subst_prodE hides the construction.*)
apply (rule ProdE [THEN SumE])
apply assumption
apply assumption
apply assumption
apply (rule replace_type)
apply (rule subst_eqtyparg)
apply (rule comp_rls)
apply (erule_tac [4] ProdE [THEN SumE])
apply (typechk assms)
apply (rule replace_type)
apply (rule subst_eqtyparg)
apply (rule comp_rls)
apply (typechk assms)
apply assumption
done
text "Example of sequent-style deduction"
(*When splitting z:A \<times> B, the assumption C(z) is affected; ?a becomes
\<^bold>\<lambda>u. split(u,\<lambda>v w.split(v,\<lambda>x y.\<^bold> \<lambda>z. <x,<y,z>>) ` w) *)
schematic_goal
assumes "A type"
and "B type"
and "\z. z:A \ B \ C(z) type"
shows "?a : (\z:A \ B. C(z)) \ (\u:A. \v:B. C())"
apply (rule intr_rls)
apply (tactic \<open>biresolve_tac \<^context> safe_brls 2\<close>)
(*Now must convert assumption C(z) into antecedent C(<kd,ke>) *)
apply (rule_tac [2] a = "y" in ProdE)
apply (typechk assms)
apply (rule SumE, assumption)
apply intr
defer 1
apply assumption+
apply (typechk assms)
done
end
¤ Dauer der Verarbeitung: 0.15 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|