products/sources/formale sprachen/Isabelle/HOL/Complex_Analysis image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Schachbrett.cob   Sprache: Cobol

Original von: Isabelle©

section \<open>The Great Picard Theorem and its Applications\<close>

text\<open>Ported from HOL Light (cauchy.ml) by L C Paulson, 2017\<close>

theory Great_Picard
  imports Conformal_Mappings
begin
  
subsection\<open>Schottky's theorem\<close>

lemma Schottky_lemma0:
  assumes holf: "f holomorphic_on S" and cons: "contractible S" and "a \ S"
      and f: "\z. z \ S \ f z \ 1 \ f z \ -1"
  obtains g where "g holomorphic_on S"
                  "norm(g a) \ 1 + norm(f a) / 3"
                  "\z. z \ S \ f z = cos(of_real pi * g z)"
proof -
  obtain g where holg: "g holomorphic_on S" and g: "norm(g a) \ pi + norm(f a)"
             and f_eq_cos: "\z. z \ S \ f z = cos(g z)"
    using contractible_imp_holomorphic_arccos_bounded [OF assms]
    by blast
  show ?thesis
  proof
    show "(\z. g z / pi) holomorphic_on S"
      by (auto intro: holomorphic_intros holg)
    have "3 \ pi"
      using pi_approx by force
    have "3 * norm(g a) \ 3 * (pi + norm(f a))"
      using g by auto
    also have "... \ pi * 3 + pi * cmod (f a)"
      using \<open>3 \<le> pi\<close> by (simp add: mult_right_mono algebra_simps)
    finally show "cmod (g a / complex_of_real pi) \ 1 + cmod (f a) / 3"
      by (simp add: field_simps norm_divide)
    show "\z. z \ S \ f z = cos (complex_of_real pi * (g z / complex_of_real pi))"
      by (simp add: f_eq_cos)
  qed
qed


lemma Schottky_lemma1:
  fixes n::nat
  assumes "0 < n"
  shows "0 < n + sqrt(real n ^ 2 - 1)"
proof -
  have "0 < n * n"
    by (simp add: assms)
  then show ?thesis
    by (metis add.commute add.right_neutral add_pos_nonneg assms diff_ge_0_iff_ge nat_less_real_le of_nat_0 of_nat_0_less_iff of_nat_power power2_eq_square real_sqrt_ge_0_iff)
qed


lemma Schottky_lemma2:
  fixes x::real
  assumes "0 \ x"
  obtains n where "0 < n" "\x - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\ < 1/2"
proof -
  obtain n0::nat where "0 < n0" "ln(n0 + sqrt(real n0 ^ 2 - 1)) / pi \ x"
  proof
    show "ln(real 1 + sqrt(real 1 ^ 2 - 1))/pi \ x"
      by (auto simp: assms)
  qed auto
  moreover
  obtain M::nat where "\n. \0 < n; ln(n + sqrt(real n ^ 2 - 1)) / pi \ x\ \ n \ M"
  proof
    fix n::nat
    assume "0 < n" "ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi \ x"
    then have "ln (n + sqrt ((real n)\<^sup>2 - 1)) \ x * pi"
      by (simp add: field_split_simps)
    then have *: "exp (ln (n + sqrt ((real n)\<^sup>2 - 1))) \ exp (x * pi)"
      by blast
    have 0: "0 \ sqrt ((real n)\<^sup>2 - 1)"
      using \<open>0 < n\<close> by auto
    have "n + sqrt ((real n)\<^sup>2 - 1) = exp (ln (n + sqrt ((real n)\<^sup>2 - 1)))"
      by (simp add: Suc_leI \<open>0 < n\<close> add_pos_nonneg real_of_nat_ge_one_iff)
    also have "... \ exp (x * pi)"
      using "*" by blast
    finally have "real n \ exp (x * pi)"
      using 0 by linarith
    then show "n \ nat (ceiling (exp(x * pi)))"
      by linarith
  qed
  ultimately obtain n where
     "0 < n" and le_x: "ln(n + sqrt(real n ^ 2 - 1)) / pi \ x"
             and le_n: "\k. \0 < k; ln(k + sqrt(real k ^ 2 - 1)) / pi \ x\ \ k \ n"
    using bounded_Max_nat [of "\n. 0 ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi \ x"] by metis
  define a where "a \ ln(n + sqrt(real n ^ 2 - 1)) / pi"
  define b where "b \ ln (1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / pi"
  have le_xa: "a \ x"
   and le_na: "\k. \0 < k; ln(k + sqrt(real k ^ 2 - 1)) / pi \ x\ \ k \ n"
    using le_x le_n by (auto simp: a_def)
  moreover have "x < b"
    using le_n [of "Suc n"by (force simp: b_def)
  moreover have "b - a < 1"
  proof -
    have "ln (1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) - ln (real n + sqrt ((real n)\<^sup>2 - 1)) =
         ln ((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1)))"
      by (simp add: \<open>0 < n\<close> Schottky_lemma1 add_pos_nonneg ln_div [symmetric])
    also have "... \ 3"
    proof (cases "n = 1")
      case True
      have "sqrt 3 \ 2"
        by (simp add: real_le_lsqrt)
      then have "(2 + sqrt 3) \ 4"
        by simp
      also have "... \ exp 3"
        using exp_ge_add_one_self [of "3::real"by simp
      finally have "ln (2 + sqrt 3) \ 3"
        by (metis add_nonneg_nonneg add_pos_nonneg dbl_def dbl_inc_def dbl_inc_simps(3)
            dbl_simps(3) exp_gt_zero ln_exp ln_le_cancel_iff real_sqrt_ge_0_iff zero_le_one zero_less_one)
      then show ?thesis
        by (simp add: True)
    next
      case False with \<open>0 < n\<close> have "1 < n" "2 \<le> n"
        by linarith+
      then have 1: "1 \ real n * real n"
        by (metis less_imp_le_nat one_le_power power2_eq_square real_of_nat_ge_one_iff)
      have *: "4 + (m+2) * 2 \ (m+2) * ((m+2) * 3)" for m::nat
        by simp
      have "4 + n * 2 \ n * (n * 3)"
        using * [of "n-2"]  \<open>2 \<le> n\<close>
        by (metis le_add_diff_inverse2)
      then have **: "4 + real n * 2 \ real n * (real n * 3)"
        by (metis (mono_tags, hide_lams) of_nat_le_iff of_nat_add of_nat_mult of_nat_numeral)
      have "sqrt ((1 + real n)\<^sup>2 - 1) \ 2 * sqrt ((real n)\<^sup>2 - 1)"
        by (auto simp: real_le_lsqrt power2_eq_square algebra_simps 1 **)
      then
      have "((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1))) \ 2"
        using Schottky_lemma1 \<open>0 < n\<close>  by (simp add: field_split_simps)
      then have "ln ((1 + real n + sqrt ((1 + real n)\<^sup>2 - 1)) / (real n + sqrt ((real n)\<^sup>2 - 1))) \ ln 2"
        using Schottky_lemma1 [of n] \<open>0 < n\<close> 
        by (simp add: field_split_simps add_pos_nonneg)
      also have "... \ 3"
        using ln_add_one_self_le_self [of 1] by auto
      finally show ?thesis .
    qed
    also have "... < pi"
      using pi_approx by simp
    finally show ?thesis
      by (simp add: a_def b_def field_split_simps)
  qed
  ultimately have "\x - a\ < 1/2 \ \x - b\ < 1/2"
    by (auto simp: abs_if)
  then show thesis
  proof
    assume "\x - a\ < 1/2"
    then show ?thesis
      by (rule_tac n=n in that) (auto simp: a_def \<open>0 < n\<close>)
  next
    assume "\x - b\ < 1/2"
    then show ?thesis
      by (rule_tac n="Suc n" in that) (auto simp: b_def \<open>0 < n\<close>)
  qed
qed


lemma Schottky_lemma3:
  fixes z::complex
  assumes "z \ (\m \ Ints. \n \ {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)})
             \<union> (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})"
  shows "cos(pi * cos(pi * z)) = 1 \ cos(pi * cos(pi * z)) = -1"
proof -
  have sqrt2 [simp]: "complex_of_real (sqrt x) * complex_of_real (sqrt x) = x" if "x \ 0" for x::real
    by (metis abs_of_nonneg of_real_mult real_sqrt_mult_self that)
  define plusi where "plusi (e::complex) \ e + inverse e" for e
  have 1: "\k. plusi (exp (\ * (of_int m * complex_of_real pi) - ln (real n + sqrt ((real n)\<^sup>2 - 1)))) = of_int k * 2"
           (is "\k. ?\ k")
         if "n > 0" for m n
  proof -
    have eeq: "e \ 0 \ plusi e = n \ (inverse e) ^ 2 = n/e - 1" for n e::complex
      by (auto simp: plusi_def field_simps power2_eq_square)
    have [simp]: "1 \ real n * real n"
      using nat_0_less_mult_iff nat_less_real_le that by force
    consider "odd m" | "even m"
      by blast
    then have "\k. ?\ k"
    proof cases
      case 1
      then have "?\ (- n)"
        using Schottky_lemma1 [OF that]
        by (simp add: eeq) (simp add: power2_eq_square exp_diff exp_Euler exp_of_real algebra_simps sin_int_times_real cos_int_times_real)
      then show ?thesis ..
    next
      case 2
      then have "?\ n"
        using Schottky_lemma1 [OF that]
        by (simp add: eeq) (simp add: power2_eq_square exp_diff exp_Euler exp_of_real algebra_simps)
      then show ?thesis ..
    qed
    then show ?thesis by blast
  qed
  have 2: "\k. plusi (exp (\ * (of_int m * complex_of_real pi) +
                      (ln (real n + sqrt ((real n)\<^sup>2 - 1))))) = of_int k * 2"
           (is "\k. ?\ k")
            if "n > 0" for m n
  proof -
    have eeq: "e \ 0 \ plusi e = n \ e^2 - n*e + 1 = 0" for n e::complex
      by (auto simp: plusi_def field_simps power2_eq_square)
    have [simp]: "1 \ real n * real n"
      by (metis One_nat_def add.commute nat_less_real_le of_nat_1 of_nat_Suc one_le_power power2_eq_square that)
    consider "odd m" | "even m"
      by blast
    then have "\k. ?\ k"
    proof cases
      case 1
      then have "?\ (- n)"
        using Schottky_lemma1 [OF that]
        by (simp add: eeq) (simp add: power2_eq_square exp_add exp_Euler exp_of_real algebra_simps sin_int_times_real cos_int_times_real)
      then show ?thesis ..
    next
      case 2
      then have "?\ n"
        using Schottky_lemma1 [OF that]
        by (simp add: eeq) (simp add: power2_eq_square exp_add exp_Euler exp_of_real algebra_simps)
      then show ?thesis ..
    qed
    then show ?thesis by blast
  qed
  have "\x. cos (complex_of_real pi * z) = of_int x"
    using assms
    apply (auto simp: Ints_def cos_exp_eq exp_minus Complex_eq simp flip: plusi_def)
     apply (auto simp: algebra_simps dest: 1 2)
    done
  then have "sin(pi * cos(pi * z)) ^ 2 = 0"
    by (simp add: Complex_Transcendental.sin_eq_0)
  then have "1 - cos(pi * cos(pi * z)) ^ 2 = 0"
    by (simp add: sin_squared_eq)
  then show ?thesis
    using power2_eq_1_iff by auto
qed


theorem Schottky:
  assumes holf: "f holomorphic_on cball 0 1"
      and nof0: "norm(f 0) \ r"
      and not01: "\z. z \ cball 0 1 \ \(f z = 0 \ f z = 1)"
      and "0 < t" "t < 1" "norm z \ t"
    shows "norm(f z) \ exp(pi * exp(pi * (2 + 2 * r + 12 * t / (1 - t))))"
proof -
  obtain h where holf: "h holomorphic_on cball 0 1"
             and nh0: "norm (h 0) \ 1 + norm(2 * f 0 - 1) / 3"
             and h:   "\z. z \ cball 0 1 \ 2 * f z - 1 = cos(of_real pi * h z)"
  proof (rule Schottky_lemma0 [of "\z. 2 * f z - 1" "cball 0 1" 0])
    show "(\z. 2 * f z - 1) holomorphic_on cball 0 1"
      by (intro holomorphic_intros holf)
    show "contractible (cball (0::complex) 1)"
      by (auto simp: convex_imp_contractible)
    show "\z. z \ cball 0 1 \ 2 * f z - 1 \ 1 \ 2 * f z - 1 \ - 1"
      using not01 by force
  qed auto
  obtain g where holg: "g holomorphic_on cball 0 1"
             and ng0:  "norm(g 0) \ 1 + norm(h 0) / 3"
             and g:    "\z. z \ cball 0 1 \ h z = cos(of_real pi * g z)"
  proof (rule Schottky_lemma0 [OF holf convex_imp_contractible, of 0])
    show "\z. z \ cball 0 1 \ h z \ 1 \ h z \ - 1"
      using h not01 by fastforce+
  qed auto
  have g0_2_f0: "norm(g 0) \ 2 + norm(f 0)"
  proof -
    have "cmod (2 * f 0 - 1) \ cmod (2 * f 0) + 1"
      by (metis norm_one norm_triangle_ineq4)
    also have "... \ 6 + 9 * cmod (f 0)"
      by auto
    finally have "1 + norm(2 * f 0 - 1) / 3 \ (2 + norm(f 0) - 1) * 3"
      by (simp add: divide_simps)
    with nh0 have "norm(h 0) \ (2 + norm(f 0) - 1) * 3"
      by linarith
    then have "1 + norm(h 0) / 3 \ 2 + norm(f 0)"
      by simp
    with ng0 show ?thesis
      by auto
  qed
  have "z \ ball 0 1"
    using assms by auto
  have norm_g_12: "norm(g z - g 0) \ (12 * t) / (1 - t)"
  proof -
    obtain g' where g'"\x. x \ cball 0 1 \ (g has_field_derivative g' x) (at x within cball 0 1)"
      using holg [unfolded holomorphic_on_def field_differentiable_def] by metis
    have int_g': "(g' has_contour_integral g z - g 0) (linepath 0 z)"
      using contour_integral_primitive [OF g' valid_path_linepath, of 0 z]
      using \<open>z \<in> ball 0 1\<close> segment_bound1 by fastforce
    have "cmod (g' w) \ 12 / (1 - t)" if "w \ closed_segment 0 z" for w
    proof -
      have w: "w \ ball 0 1"
        using segment_bound [OF that] \<open>z \<in> ball 0 1\<close> by simp
      have *: "\\b. (\w \ T \ U. w \ ball b 1); \x. x \ D \ g x \ T \ U\ \ \b. ball b 1 \ g ` D" for T U D
        by force
      have ttt: "1 - t \ dist w u" if "cmod u = 1" for u
        using \<open>norm z \<le> t\<close> segment_bound1 [OF \<open>w \<in> closed_segment 0 z\<close>] norm_triangle_ineq2 [of u w] that
        by (simp add: dist_norm norm_minus_commute)
      have "\b. ball b 1 \ g ` cball 0 1"
      proof (rule *)
        show "(\w \ (\m \ Ints. \n \ {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \
                    (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)}). w \<in> ball b 1)" for b
        proof -
          obtain m where m: "m \ \" "\Re b - m\ \ 1/2"
            by (metis Ints_of_int abs_minus_commute of_int_round_abs_le)
          show ?thesis
          proof (cases "0::real" "Im b" rule: le_cases)
            case le
            then obtain n where "0 < n" and n: "\Im b - ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi\ < 1/2"
              using Schottky_lemma2 [of "Im b"by blast
            have "dist b (Complex m (Im b)) \ 1/2"
              by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code)
            moreover
            have "dist (Complex m (Im b)) (Complex m (ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1/2"
              using n by (simp add: complex_norm cmod_eq_Re complex_diff dist_norm del: Complex_eq)
            ultimately have "dist b (Complex m (ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1"
              by (simp add: dist_triangle_lt [of b "Complex m (Im b)"] dist_commute)
            with le m \<open>0 < n\<close> show ?thesis
              apply (rule_tac x = "Complex m (ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)" in bexI)
               by (force simp del: Complex_eq greaterThan_0)+
          next
            case ge
            then obtain n where "0 < n" and n: "\- Im b - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\ < 1/2"
              using Schottky_lemma2 [of "- Im b"by auto
            have "dist b (Complex m (Im b)) \ 1/2"
              by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code)
            moreover
            have "dist (Complex m (- ln (n + sqrt ((real n)\<^sup>2 - 1)) / pi)) (Complex m (Im b))
                = \<bar> - Im b - ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi\<bar>"
              by (simp add: complex_norm dist_norm cmod_eq_Re complex_diff)
            ultimately have "dist b (Complex m (- ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)) < 1"
              using n by (simp add: dist_triangle_lt [of b "Complex m (Im b)"] dist_commute)
            with ge m \<open>0 < n\<close> show ?thesis
              by (rule_tac x = "Complex m (- ln (real n + sqrt ((real n)\<^sup>2 - 1)) / pi)" in bexI) auto
          qed
        qed
        show "g v \ (\m \ Ints. \n \ {0<..}. {Complex m (ln(n + sqrt(real n ^ 2 - 1)) / pi)}) \
                    (\<Union>m \<in> Ints. \<Union>n \<in> {0<..}. {Complex m (-ln(n + sqrt(real n ^ 2 - 1)) / pi)})"
             if "v \ cball 0 1" for v
          using not01 [OF that]
          by (force simp: g [OF that, symmetric] h [OF that, symmetric] dest!: Schottky_lemma3 [of "g v"])
      qed
      then have 12: "(1 - t) * cmod (deriv g w) / 12 < 1"
        using Bloch_general [OF holg _ ttt, of 1] w by force
      have "g field_differentiable at w within cball 0 1"
        using holg w by (simp add: holomorphic_on_def)
      then have "g field_differentiable at w within ball 0 1"
        using ball_subset_cball field_differentiable_within_subset by blast
      with w have der_gw: "(g has_field_derivative deriv g w) (at w)"
        by (simp add: field_differentiable_within_open [of _ "ball 0 1"] field_differentiable_derivI)
      with DERIV_unique [OF der_gw] g' w have "deriv g w = g' w"
        by (metis open_ball at_within_open ball_subset_cball has_field_derivative_subset subsetCE)
      then show "cmod (g' w) \ 12 / (1 - t)"
        using g' 12 \t < 1\ by (simp add: field_simps)
    qed
    then have "cmod (g z - g 0) \ 12 / (1 - t) * cmod z"
      using has_contour_integral_bound_linepath [OF int_g', of "12/(1 - t)"] assms
      by simp
    with \<open>cmod z \<le> t\<close> \<open>t < 1\<close> show ?thesis
      by (simp add: field_split_simps)
  qed
  have fz: "f z = (1 + cos(of_real pi * h z)) / 2"
    using h \<open>z \<in> ball 0 1\<close> by (auto simp: field_simps)
  have "cmod (f z) \ exp (cmod (complex_of_real pi * h z))"
    by (simp add: fz mult.commute norm_cos_plus1_le)
  also have "... \ exp (pi * exp (pi * (2 + 2 * r + 12 * t / (1 - t))))"
  proof (simp add: norm_mult)
    have "cmod (g z - g 0) \ 12 * t / (1 - t)"
      using norm_g_12 \<open>t < 1\<close> by (simp add: norm_mult)
    then have "cmod (g z) - cmod (g 0) \ 12 * t / (1 - t)"
      using norm_triangle_ineq2 order_trans by blast
    then have *: "cmod (g z) \ 2 + 2 * r + 12 * t / (1 - t)"
      using g0_2_f0 norm_ge_zero [of "f 0"] nof0
        by linarith
    have "cmod (h z) \ exp (cmod (complex_of_real pi * g z))"
      using \<open>z \<in> ball 0 1\<close> by (simp add: g norm_cos_le)
    also have "... \ exp (pi * (2 + 2 * r + 12 * t / (1 - t)))"
      using \<open>t < 1\<close> nof0 * by (simp add: norm_mult)
    finally show "cmod (h z) \ exp (pi * (2 + 2 * r + 12 * t / (1 - t)))" .
  qed
  finally show ?thesis .
qed

  
subsection\<open>The Little Picard Theorem\<close>

theorem Landau_Picard:
  obtains R
    where "\z. 0 < R z"
          "\f. \f holomorphic_on cball 0 (R(f 0));
                 \<And>z. norm z \<le> R(f 0) \<Longrightarrow> f z \<noteq> 0 \<and> f z \<noteq> 1\<rbrakk> \<Longrightarrow> norm(deriv f 0) < 1"
proof -
  define R where "R \ \z. 3 * exp(pi * exp(pi*(2 + 2 * cmod z + 12)))"
  show ?thesis
  proof
    show Rpos: "\z. 0 < R z"
      by (auto simp: R_def)
    show "norm(deriv f 0) < 1"
         if holf: "f holomorphic_on cball 0 (R(f 0))"
         and Rf:  "\z. norm z \ R(f 0) \ f z \ 0 \ f z \ 1" for f
    proof -
      let ?r = "R(f 0)"
      define g where "g \ f \ (\z. of_real ?r * z)"
      have "0 < ?r"
        using Rpos by blast
      have holg: "g holomorphic_on cball 0 1"
        unfolding g_def
      proof (intro holomorphic_intros holomorphic_on_compose holomorphic_on_subset [OF holf])
        show "(*) (complex_of_real (R (f 0))) ` cball 0 1 \ cball 0 (R (f 0))"
          using Rpos by (auto simp: less_imp_le norm_mult)
      qed
      have *: "norm(g z) \ exp(pi * exp(pi * (2 + 2 * norm (f 0) + 12 * t / (1 - t))))"
           if "0 < t" "t < 1" "norm z \ t" for t z
      proof (rule Schottky [OF holg])
        show "cmod (g 0) \ cmod (f 0)"
          by (simp add: g_def)
        show "\z. z \ cball 0 1 \ \ (g z = 0 \ g z = 1)"
          using Rpos by (simp add: g_def less_imp_le norm_mult Rf)
      qed (auto simp: that)
      have C1: "g holomorphic_on ball 0 (1/2)"
        by (rule holomorphic_on_subset [OF holg]) auto
      have C2: "continuous_on (cball 0 (1/2)) g"
        by (meson cball_divide_subset_numeral holg holomorphic_on_imp_continuous_on holomorphic_on_subset)
      have C3: "cmod (g z) \ R (f 0) / 3" if "cmod (0 - z) = 1/2" for z
      proof -
        have "norm(g z) \ exp(pi * exp(pi * (2 + 2 * norm (f 0) + 12)))"
          using * [of "1/2"] that by simp
        also have "... = ?r / 3"
          by (simp add: R_def)
        finally show ?thesis .
      qed
      then have cmod_g'_le: "cmod (deriv g 0) * 3 \ R (f 0) * 2"
        using Cauchy_inequality [OF C1 C2 _ C3, of 1] by simp
      have holf': "f holomorphic_on ball 0 (R(f 0))"
        by (rule holomorphic_on_subset [OF holf]) auto
      then have fd0: "f field_differentiable at 0"
        by (rule holomorphic_on_imp_differentiable_at [OF _ open_ball])
           (auto simp: Rpos [of "f 0"])
      have g_eq: "deriv g 0 = of_real ?r * deriv f 0"
        unfolding g_def
        by (metis DERIV_imp_deriv DERIV_chain DERIV_cmult_Id fd0 field_differentiable_derivI mult.commute mult_zero_right)
      show ?thesis
        using cmod_g'_le Rpos [of "f 0"] by (simp add: g_eq norm_mult)
    qed
  qed
qed

lemma little_Picard_01:
  assumes holf: "f holomorphic_on UNIV" and f01: "\z. f z \ 0 \ f z \ 1"
  obtains c where "f = (\x. c)"
proof -
  obtain R
    where Rpos: "\z. 0 < R z"
      and R:    "\h. \h holomorphic_on cball 0 (R(h 0));
                      \<And>z. norm z \<le> R(h 0) \<Longrightarrow> h z \<noteq> 0 \<and> h z \<noteq> 1\<rbrakk> \<Longrightarrow> norm(deriv h 0) < 1"
    using Landau_Picard by metis
  have contf: "continuous_on UNIV f"
    by (simp add: holf holomorphic_on_imp_continuous_on)
  show ?thesis
  proof (cases "\x. deriv f x = 0")
    case True
    have "(f has_field_derivative 0) (at x)" for x
      by (metis True UNIV_I holf holomorphic_derivI open_UNIV)
    then obtain c where "\x. f(x) = c"
      by (meson UNIV_I DERIV_zero_connected_constant [OF connected_UNIV open_UNIV finite.emptyI contf])
    then show ?thesis
      using that by auto
  next
    case False
    then obtain w where w: "deriv f w \ 0" by auto
    define fw where "fw \ (f \ (\z. w + z / deriv f w))"
    have norm_let1: "norm(deriv fw 0) < 1"
    proof (rule R)
      show "fw holomorphic_on cball 0 (R (fw 0))"
        unfolding fw_def
        by (intro holomorphic_intros holomorphic_on_compose w holomorphic_on_subset [OF holf] subset_UNIV)
      show "fw z \ 0 \ fw z \ 1" if "cmod z \ R (fw 0)" for z
        using f01 by (simp add: fw_def)
    qed
    have "(fw has_field_derivative deriv f w * inverse (deriv f w)) (at 0)"
      unfolding fw_def
      apply (intro DERIV_chain derivative_eq_intros w)+
      using holf holomorphic_derivI by (force simp: field_simps)+
    then show ?thesis
      using norm_let1 w by (simp add: DERIV_imp_deriv)
  qed
qed


theorem little_Picard:
  assumes holf: "f holomorphic_on UNIV"
      and "a \ b" "range f \ {a,b} = {}"
    obtains c where "f = (\x. c)"
proof -
  let ?g = "\x. 1/(b - a)*(f x - b) + 1"
  obtain c where "?g = (\x. c)"
  proof (rule little_Picard_01)
    show "?g holomorphic_on UNIV"
      by (intro holomorphic_intros holf)
    show "\z. ?g z \ 0 \ ?g z \ 1"
      using assms by (auto simp: field_simps)
  qed auto
  then have "?g x = c" for x
    by meson
  then have "f x = c * (b-a) + a" for x
    using assms by (auto simp: field_simps)
  then show ?thesis
    using that by blast
qed


text\<open>A couple of little applications of Little Picard\<close>

lemma holomorphic_periodic_fixpoint:
  assumes holf: "f holomorphic_on UNIV"
      and "p \ 0" and per: "\z. f(z + p) = f z"
  obtains x where "f x = x"
proof -
  have False if non: "\x. f x \ x"
  proof -
    obtain c where "(\z. f z - z) = (\z. c)"
    proof (rule little_Picard)
      show "(\z. f z - z) holomorphic_on UNIV"
        by (simp add: holf holomorphic_on_diff)
      show "range (\z. f z - z) \ {p,0} = {}"
          using assms non by auto (metis add.commute diff_eq_eq)
      qed (auto simp: assms)
    with per show False
      by (metis add.commute add_cancel_left_left \<open>p \<noteq> 0\<close> diff_add_cancel)
  qed
  then show ?thesis
    using that by blast
qed


lemma holomorphic_involution_point:
  assumes holfU: "f holomorphic_on UNIV" and non: "\a. f \ (\x. a + x)"
  obtains x where "f(f x) = x"
proof -
  { assume non_ff [simp]: "\x. f(f x) \ x"
    then have non_fp [simp]: "f z \ z" for z
      by metis
    have holf: "f holomorphic_on X" for X
      using assms holomorphic_on_subset by blast
    obtain c where c: "(\x. (f(f x) - x)/(f x - x)) = (\x. c)"
    proof (rule little_Picard_01)
      show "(\x. (f(f x) - x)/(f x - x)) holomorphic_on UNIV"
        using non_fp
        by (intro holomorphic_intros holf holomorphic_on_compose [unfolded o_def, OF holf]) auto
    qed auto
    then obtain "c \ 0" "c \ 1"
      by (metis (no_types, hide_lams) non_ff diff_zero divide_eq_0_iff right_inverse_eq)
    have eq: "f(f x) - c * f x = x*(1 - c)" for x
      using fun_cong [OF c, of x] by (simp add: field_simps)
    have df_times_dff: "deriv f z * (deriv f (f z) - c) = 1 * (1 - c)" for z
    proof (rule DERIV_unique)
      show "((\x. f (f x) - c * f x) has_field_derivative
              deriv f z * (deriv f (f z) - c)) (at z)"
        by (rule derivative_eq_intros holomorphic_derivI [OF holfU] 
                    DERIV_chain [unfolded o_def, where f=f and g=f] | simp add: algebra_simps)+
      show "((\x. f (f x) - c * f x) has_field_derivative 1 * (1 - c)) (at z)"
        by (simp add: eq mult_commute_abs)
    qed
    { fix z::complex
      obtain k where k: "deriv f \ f = (\x. k)"
      proof (rule little_Picard)
        show "(deriv f \ f) holomorphic_on UNIV"
          by (meson holfU holomorphic_deriv holomorphic_on_compose holomorphic_on_subset open_UNIV subset_UNIV)
        obtain "deriv f (f x) \ 0" "deriv f (f x) \ c" for x
          using df_times_dff \<open>c \<noteq> 1\<close> eq_iff_diff_eq_0
          by (metis lambda_one mult_zero_left mult_zero_right)
        then show "range (deriv f \ f) \ {0,c} = {}"
          by force
      qed (use \<open>c \<noteq> 0\<close> in auto)
      have "\ f constant_on UNIV"
        by (meson UNIV_I non_ff constant_on_def)
      with holf open_mapping_thm have "open(range f)"
        by blast
      obtain l where l: "\x. f x - k * x = l"
      proof (rule DERIV_zero_connected_constant [of UNIV "{}" "\x. f x - k * x"], simp_all)
        have "deriv f w - k = 0" for w
        proof (rule analytic_continuation [OF _ open_UNIV connected_UNIV subset_UNIV, of "\z. deriv f z - k" "f z" "range f" w])
          show "(\z. deriv f z - k) holomorphic_on UNIV"
            by (intro holomorphic_intros holf open_UNIV)
          show "f z islimpt range f"
            by (metis (no_types, lifting) IntI UNIV_I \<open>open (range f)\<close> image_eqI inf.absorb_iff2 inf_aci(1) islimpt_UNIV islimpt_eq_acc_point open_Int top_greatest)
          show "\z. z \ range f \ deriv f z - k = 0"
            by (metis comp_def diff_self image_iff k)
        qed auto
        moreover
        have "((\x. f x - k * x) has_field_derivative deriv f x - k) (at x)" for x
          by (metis DERIV_cmult_Id Deriv.field_differentiable_diff UNIV_I field_differentiable_derivI holf holomorphic_on_def)
        ultimately
        show "\x. ((\x. f x - k * x) has_field_derivative 0) (at x)"
          by auto
        show "continuous_on UNIV (\x. f x - k * x)"
          by (simp add: continuous_on_diff holf holomorphic_on_imp_continuous_on)
      qed (auto simp: connected_UNIV)
      have False
      proof (cases "k=1")
        case True
        then have "\x. k * x + l \ a + x" for a
          using l non [of a] ext [of f "(+) a"]
          by (metis add.commute diff_eq_eq)
        with True show ?thesis by auto
      next
        case False
        have "\x. (1 - k) * x \ f 0"
          using l [of 0]
          by (simp add: algebra_simps) (metis diff_add_cancel l mult.commute non_fp)
        then show False
          by (metis False eq_iff_diff_eq_0 mult.commute nonzero_mult_div_cancel_right times_divide_eq_right)
      qed
    }
  }
  then show thesis
    using that by blast
qed


subsection\<open>The Arzelà--Ascoli theorem\<close>

lemma subsequence_diagonalization_lemma:
  fixes P :: "nat \ (nat \ 'a) \ bool"
  assumes sub: "\i r. \k. strict_mono (k :: nat \ nat) \ P i (r \ k)"
      and P_P:  "\i r::nat \ 'a. \k1 k2 N.
                   \<lbrakk>P i (r \<circ> k1); \<And>j. N \<le> j \<Longrightarrow> \<exists>j'. j \<le> j' \<and> k2 j = k1 j'\<rbrakk> \<Longrightarrow> P i (r \<circ> k2)"
   obtains k where "strict_mono (k :: nat \ nat)" "\i. P i (r \ k)"
proof -
  obtain kk where "\i r. strict_mono (kk i r :: nat \ nat) \ P i (r \ (kk i r))"
    using sub by metis
  then have sub_kk: "\i r. strict_mono (kk i r)" and P_kk: "\i r. P i (r \ (kk i r))"
    by auto
  define rr where "rr \ rec_nat (kk 0 r) (\n x. x \ kk (Suc n) (r \ x))"
  then have [simp]: "rr 0 = kk 0 r" "\n. rr(Suc n) = rr n \ kk (Suc n) (r \ rr n)"
    by auto
  show thesis
  proof
    have sub_rr: "strict_mono (rr i)" for i
      using sub_kk  by (induction i) (auto simp: strict_mono_def o_def)
    have P_rr: "P i (r \ rr i)" for i
      using P_kk  by (induction i) (auto simp: o_def)
    have "i \ i+d \ rr i n \ rr (i+d) n" for d i n
    proof (induction d)
      case 0 then show ?case
        by simp
    next
      case (Suc d) then show ?case
        using seq_suble [OF sub_kk] strict_mono_less_eq [OF sub_rr]
        by (simp add: order_subst1)
    qed
    then have "\i j n. i \ j \ rr i n \ rr j n"
      by (metis le_iff_add)
    show "strict_mono (\n. rr n n)"
      unfolding strict_mono_Suc_iff
      by (simp add: Suc_le_lessD strict_monoD strict_mono_imp_increasing sub_kk sub_rr)
    have "\j. i \ j \ rr (n+d) i = rr n j" for d n i
    proof (induction d arbitrary: i)
      case (Suc d)
      then show ?case
        using seq_suble [OF sub_kk] by simp (meson order_trans)
    qed auto
    then have "\m n i. n \ m \ \j. i \ j \ rr m i = rr n j"
      by (metis le_iff_add)
    then show "P i (r \ (\n. rr n n))" for i
      by (meson P_rr P_P)
  qed
qed

lemma function_convergent_subsequence:
  fixes f :: "[nat,'a] \ 'b::{real_normed_vector,heine_borel}"
  assumes "countable S" and M: "\n::nat. \x. x \ S \ norm(f n x) \ M"
   obtains k where "strict_mono (k::nat\nat)" "\x. x \ S \ \l. (\n. f (k n) x) \ l"
proof (cases "S = {}")
  case True
  then show ?thesis
    using strict_mono_id that by fastforce
next
  case False
  with \<open>countable S\<close> obtain \<sigma> :: "nat \<Rightarrow> 'a" where \<sigma>: "S = range \<sigma>"
    using uncountable_def by blast
  obtain k where "strict_mono k" and k: "\i. \l. (\n. (f \ k) n (\ i)) \ l"
  proof (rule subsequence_diagonalization_lemma
      [of "\i r. \l. ((\n. (f \ r) n (\ i)) \ l) sequentially" id])
    show "\k::nat\nat. strict_mono k \ (\l. (\n. (f \ (r \ k)) n (\ i)) \ l)" for i r
    proof -
      have "f (r n) (\ i) \ cball 0 M" for n
        by (simp add: \<sigma> M)
      then show ?thesis
        using compact_def [of "cball (0::'b) M"by (force simp: o_def)
    qed
    show "\l. (\n. (f \ (r \ k2)) n (\ i)) \ l"
      if "\l. (\n. (f \ (r \ k1)) n (\ i)) \ l" "\j. N \ j \ \j'\j. k2 j = k1 j'"
      for i N and r k1 k2 :: "nat\nat"
      using that
      by (simp add: lim_sequentially) (metis (no_types, hide_lams) le_cases order_trans)
  qed auto
  with \<sigma> that show ?thesis
    by force
qed


theorem Arzela_Ascoli:
  fixes \<F> :: "[nat,'a::euclidean_space] \<Rightarrow> 'b::{real_normed_vector,heine_borel}"
  assumes "compact S"
      and M: "\n x. x \ S \ norm(\ n x) \ M"
      and equicont:
          "\x e. \x \ S; 0 < e\
                 \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>n y. y \<in> S \<and> norm(x - y) < d \<longrightarrow> norm(\<F> n x - \<F> n y) < e)"
  obtains g k where "continuous_on S g" "strict_mono (k :: nat \ nat)"
                    "\e. 0 < e \ \N. \n x. n \ N \ x \ S \ norm(\(k n) x - g x) < e"
proof -
  have UEQ: "\e. 0 < e \ \d. 0 < d \ (\n. \x \ S. \x' \ S. dist x' x < d \ dist (\ n x') (\ n x) < e)"
    apply (rule compact_uniformly_equicontinuous [OF \<open>compact S\<close>, of "range \<F>"])
    using equicont by (force simp: dist_commute dist_norm)+
  have "continuous_on S g"
       if "\e. 0 < e \ \N. \n x. n \ N \ x \ S \ norm(\(r n) x - g x) < e"
       for g:: "'a \ 'b" and r :: "nat \ nat"
  proof (rule uniform_limit_theorem [of _ "\ \ r"])
    have "continuous_on S (\ (r n))" for n
      using UEQ by (force simp: continuous_on_iff)
    then show "\\<^sub>F n in sequentially. continuous_on S ((\ \ r) n)"
      by (simp add: eventually_sequentially)
    show "uniform_limit S (\ \ r) g sequentially"
      using that by (metis (mono_tags, hide_lams) comp_apply dist_norm uniform_limit_sequentially_iff)
  qed auto
  moreover
  obtain R where "countable R" "R \ S" and SR: "S \ closure R"
    by (metis separable that)
  obtain k where "strict_mono k" and k: "\x. x \ R \ \l. (\n. \ (k n) x) \ l"
    using \<open>R \<subseteq> S\<close> by (force intro: function_convergent_subsequence [OF \<open>countable R\<close> M])
  then have Cauchy: "Cauchy ((\n. \ (k n) x))" if "x \ R" for x
    using convergent_eq_Cauchy that by blast
  have "\N. \m n x. N \ m \ N \ n \ x \ S \ dist ((\ \ k) m x) ((\ \ k) n x) < e"
    if "0 < e" for e
  proof -
    obtain d where "0 < d"
      and d: "\n. \x \ S. \x' \ S. dist x' x < d \ dist (\ n x') (\ n x) < e/3"
      by (metis UEQ \<open>0 < e\<close> divide_pos_pos zero_less_numeral)
    obtain T where "T \ R" and "finite T" and T: "S \ (\c\T. ball c d)"
    proof (rule compactE_image [OF  \<open>compact S\<close>, of R "(\<lambda>x. ball x d)"])
      have "closure R \ (\c\R. ball c d)"
        using \<open>0 < d\<close> by (auto simp: closure_approachable)
      with SR show "S \ (\c\R. ball c d)"
        by auto
    qed auto
    have "\M. \m\M. \n\M. dist (\ (k m) x) (\ (k n) x) < e/3" if "x \ R" for x
      using Cauchy \<open>0 < e\<close> that unfolding Cauchy_def
      by (metis less_divide_eq_numeral1(1) mult_zero_left)
    then obtain MF where MF: "\x m n. \x \ R; m \ MF x; n \ MF x\ \ norm (\ (k m) x - \ (k n) x) < e/3"
      using dist_norm by metis
    have "dist ((\ \ k) m x) ((\ \ k) n x) < e"
         if m: "Max (MF ` T) \ m" and n: "Max (MF ` T) \ n" "x \ S" for m n x
    proof -
      obtain t where "t \ T" and t: "x \ ball t d"
        using \<open>x \<in> S\<close> T by auto
      have "norm(\ (k m) t - \ (k m) x) < e / 3"
        by (metis \<open>R \<subseteq> S\<close> \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> d dist_norm mem_ball subset_iff t \<open>x \<in> S\<close>)
      moreover
      have "norm(\ (k n) t - \ (k n) x) < e / 3"
        by (metis \<open>R \<subseteq> S\<close> \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> subsetD d dist_norm mem_ball t \<open>x \<in> S\<close>)
      moreover
      have "norm(\ (k m) t - \ (k n) t) < e / 3"
      proof (rule MF)
        show "t \ R"
          using \<open>T \<subseteq> R\<close> \<open>t \<in> T\<close> by blast
        show "MF t \ m" "MF t \ n"
          by (meson Max_ge \<open>finite T\<close> \<open>t \<in> T\<close> finite_imageI imageI le_trans m n)+
      qed
      ultimately
      show ?thesis
        unfolding dist_norm [symmetric] o_def
          by (metis dist_triangle_third dist_commute)
    qed
    then show ?thesis
      by force
  qed
  then obtain g where "\e>0. \N. \n x. N \ n \ x \ S \ norm ((\ \ k) n x - g x) < e"
    using uniformly_convergent_eq_cauchy [of "\x. x \ S" "\ \ k"] by (auto simp add: dist_norm)
  ultimately show thesis
    by (metis \<open>strict_mono k\<close> comp_apply that)
qed



subsubsection\<^marker>\<open>tag important\<close>\<open>Montel's theorem\<close>

text\<open>a sequence of holomorphic functions uniformly bounded
on compact subsets of an open set S has a subsequence that converges to a
holomorphic functionand converges \emph{uniformly} on compact subsets of S.\<close>


theorem Montel:
  fixes \<F> :: "[nat,complex] \<Rightarrow> complex"
  assumes "open S"
      and \<H>: "\<And>h. h \<in> \<H> \<Longrightarrow> h holomorphic_on S"
      and bounded: "\K. \compact K; K \ S\ \ \B. \h \ \. \ z \ K. norm(h z) \ B"
      and rng_f: "range \ \ \"
  obtains g r
    where "g holomorphic_on S" "strict_mono (r :: nat \ nat)"
          "\x. x \ S \ ((\n. \ (r n) x) \ g x) sequentially"
          "\K. \compact K; K \ S\ \ uniform_limit K (\ \ r) g sequentially"
proof -
  obtain K where comK: "\n. compact(K n)" and KS: "\n::nat. K n \ S"
             and subK: "\X. \compact X; X \ S\ \ \N. \n\N. X \ K n"
    using open_Union_compact_subsets [OF \<open>open S\<close>] by metis
  then have "\i. \B. \h \ \. \ z \ K i. norm(h z) \ B"
    by (simp add: bounded)
  then obtain B where B: "\i h z. \h \ \; z \ K i\ \ norm(h z) \ B i"
    by metis
  have *: "\r g. strict_mono (r::nat\nat) \ (\e > 0. \N. \n\N. \x \ K i. norm((\ \ r) n x - g x) < e)"
        if "\n. \ n \ \" for \ i
  proof -
    obtain g k where "continuous_on (K i) g" "strict_mono (k::nat\nat)"
                    "\e. 0 < e \ \N. \n\N. \x \ K i. norm(\(k n) x - g x) < e"
    proof (rule Arzela_Ascoli [of "K i" "\" "B i"])
      show "\d>0. \n y. y \ K i \ cmod (z - y) < d \ cmod (\ n z - \ n y) < e"
             if z: "z \ K i" and "0 < e" for z e
      proof -
        obtain r where "0 < r" and r: "cball z r \ S"
          using z KS [of i] \<open>open S\<close> by (force simp: open_contains_cball)
        have "cball z (2/3 * r) \ cball z r"
          using \<open>0 < r\<close> by (simp add: cball_subset_cball_iff)
        then have z23S: "cball z (2/3 * r) \ S"
          using r by blast
        obtain M where "0 < M" and M: "\n w. dist z w \ 2/3 * r \ norm(\ n w) \ M"
        proof -
          obtain N where N: "\n\N. cball z (2/3 * r) \ K n"
            using subK compact_cball [of z "(2/3 * r)"] z23S by force
          have "cmod (\ n w) \ \B N\ + 1" if "dist z w \ 2/3 * r" for n w
          proof -
            have "w \ K N"
              using N mem_cball that by blast
            then have "cmod (\ n w) \ B N"
              using B \<open>\<And>n. \<F> n \<in> \<H>\<close> by blast
            also have "... \ \B N\ + 1"
              by simp
            finally show ?thesis .
          qed
          then show ?thesis
            by (rule_tac M="\B N\ + 1" in that) auto
        qed
        have "cmod (\ n z - \ n y) < e"
              if "y \ K i" and y_near_z: "cmod (z - y) < r/3" "cmod (z - y) < e * r / (6 * M)"
              for n y
        proof -
          have "((\w. \ n w / (w - \)) has_contour_integral
                    (2 * pi) * \<i> * winding_number (circlepath z (2/3 * r)) \<xi> * \<F> n \<xi>)
                (circlepath z (2/3 * r))"
             if "dist \ z < (2/3 * r)" for \
          proof (rule Cauchy_integral_formula_convex_simple)
            have "\ n holomorphic_on S"
              by (simp add: \<H> \<open>\<And>n. \<F> n \<in> \<H>\<close>)
            with z23S show "\ n holomorphic_on cball z (2/3 * r)"
              using holomorphic_on_subset by blast
          qed (use that \<open>0 < r\<close> in \<open>auto simp: dist_commute\<close>)
          then have *: "((\w. \ n w / (w - \)) has_contour_integral (2 * pi) * \ * \ n \)
                     (circlepath z (2/3 * r))"
             if "dist \ z < (2/3 * r)" for \
            using that by (simp add: winding_number_circlepath dist_norm)
           have y: "((\w. \ n w / (w - y)) has_contour_integral (2 * pi) * \ * \ n y)
                    (circlepath z (2/3 * r))"
           proof (rule *)
             show "dist y z < 2/3 * r"
               using that \<open>0 < r\<close> by (simp only: dist_norm norm_minus_commute)
           qed
           have z: "((\w. \ n w / (w - z)) has_contour_integral (2 * pi) * \ * \ n z)
                 (circlepath z (2/3 * r))"
             using \<open>0 < r\<close> by (force intro!: *)
           have le_er: "cmod (\ n x / (x - y) - \ n x / (x - z)) \ e / r"
                if "cmod (x - z) = r/3 + r/3" for x
           proof -
             have "\ (cmod (x - y) < r/3)"
               using y_near_z(1) that \<open>M > 0\<close> \<open>r > 0\<close>
               by (metis (full_types) norm_diff_triangle_less norm_minus_commute order_less_irrefl)
             then have r4_le_xy: "r/4 \ cmod (x - y)"
               using \<open>r > 0\<close> by simp
             then have neq: "x \ y" "x \ z"
               using that \<open>r > 0\<close> by (auto simp: field_split_simps norm_minus_commute)
             have leM: "cmod (\ n x) \ M"
               by (simp add: M dist_commute dist_norm that)
             have "cmod (\ n x / (x - y) - \ n x / (x - z)) = cmod (\ n x) * cmod (1 / (x - y) - 1 / (x - z))"
               by (metis (no_types, lifting) divide_inverse mult.left_neutral norm_mult right_diff_distrib')
             also have "... = cmod (\ n x) * cmod ((y - z) / ((x - y) * (x - z)))"
               using neq by (simp add: field_split_simps)
             also have "... = cmod (\ n x) * (cmod (y - z) / (cmod(x - y) * (2/3 * r)))"
               by (simp add: norm_mult norm_divide that)
             also have "... \ M * (cmod (y - z) / (cmod(x - y) * (2/3 * r)))"
               using \<open>r > 0\<close> \<open>M > 0\<close> by (intro mult_mono [OF leM]) auto
             also have "... < M * ((e * r / (6 * M)) / (cmod(x - y) * (2/3 * r)))"
               unfolding mult_less_cancel_left
               using y_near_z(2) \<open>M > 0\<close> \<open>r > 0\<close> neq
               by (simp add: field_simps mult_less_0_iff norm_minus_commute)
             also have "... \ e/r"
               using \<open>e > 0\<close> \<open>r > 0\<close> r4_le_xy by (simp add: field_split_simps)
             finally show ?thesis by simp
           qed
           have "(2 * pi) * cmod (\ n y - \ n z) = cmod ((2 * pi) * \ * \ n y - (2 * pi) * \ * \ n z)"
             by (simp add: right_diff_distrib [symmetric] norm_mult)
           also have "cmod ((2 * pi) * \ * \ n y - (2 * pi) * \ * \ n z) \ e / r * (2 * pi * (2/3 * r))"

           proof (rule has_contour_integral_bound_circlepath [OF has_contour_integral_diff [OF y z]])
             show "\x. cmod (x - z) = 2/3 * r \ cmod (\ n x / (x - y) - \ n x / (x - z)) \ e / r"
               using le_er by auto
           qed (use \<open>e > 0\<close> \<open>r > 0\<close> in auto)
           also have "... = (2 * pi) * e * ((2/3))"
             using \<open>r > 0\<close> by (simp add: field_split_simps)
           finally have "cmod (\ n y - \ n z) \ e * (2/3)"
             by simp
           also have "... < e"
             using \<open>e > 0\<close> by simp
           finally show ?thesis by (simp add: norm_minus_commute)
        qed
        then show ?thesis
          apply (rule_tac x="min (r/3) ((e * r)/(6 * M))" in exI)
          using \<open>0 < e\<close> \<open>0 < r\<close> \<open>0 < M\<close> by simp
      qed
      show "\n x. x \ K i \ cmod (\ n x) \ B i"
        using B \<open>\<And>n. \<F> n \<in> \<H>\<close> by blast
    next
      fix g :: "complex \ complex" and k :: "nat \ nat"
      assume *: "\(g::complex\complex) (k::nat\nat). continuous_on (K i) g \
                  strict_mono k \<Longrightarrow>
                  (\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>K i. cmod (\<F> (k n) x - g x) < e) \<Longrightarrow> thesis"
           "continuous_on (K i) g"
           "strict_mono k"
           "\e. 0 < e \ \N. \n x. N \ n \ x \ K i \ cmod (\ (k n) x - g x) < e"
      show ?thesis
        by (rule *(1)[OF *(2,3)], drule *(4)) auto
    qed (use comK in simp_all)
    then show ?thesis
      by auto
  qed
  define \<Phi> where "\<Phi> \<equiv> \<lambda>g i r. \<lambda>k::nat\<Rightarrow>nat. \<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>K i. cmod ((\<F> \<circ> (r \<circ> k)) n x - g x) < e"
  obtain k :: "nat \ nat" where "strict_mono k" and k: "\i. \g. \ g i id k"
  proof (rule subsequence_diagonalization_lemma [where r=id])
    show "\g. \ g i id (r \ k2)"
      if ex: "\g. \ g i id (r \ k1)" and "\j. N \ j \ \j'\j. k2 j = k1 j'"
      for i k1 k2 N and r::"nat\nat"
    proof -
      obtain g where "\ g i id (r \ k1)"
        using ex by blast
      then have "\ g i id (r \ k2)"
        using that
        by (simp add: \<Phi>_def) (metis (no_types, hide_lams) le_trans linear)
      then show ?thesis
        by metis
    qed
    have "\k g. strict_mono (k::nat\nat) \ \ g i id (r \ k)" for i r
      unfolding \<Phi>_def o_assoc using rng_f by (force intro!: *)
    then show "\i r. \k. strict_mono (k::nat\nat) \ (\g. \ g i id (r \ k))"
      by force
  qed fastforce
  have "\l. \e>0. \N. \n\N. norm(\ (k n) z - l) < e" if "z \ S" for z
  proof -
    obtain G where G: "\i e. e > 0 \ \M. \n\M. \x\K i. cmod ((\ \ k) n x - G i x) < e"
      using k unfolding \<Phi>_def by (metis id_comp)
    obtain N where "\n. n \ N \ z \ K n"
      using subK [of "{z}"] that \<open>z \<in> S\<close> by auto
    moreover have "\e. e > 0 \ \M. \n\M. \x\K N. cmod ((\ \ k) n x - G N x) < e"
      using G by auto
    ultimately show ?thesis
      by (metis comp_apply order_refl)
  qed
  then obtain g where g: "\z e. \z \ S; e > 0\ \ \N. \n\N. norm(\ (k n) z - g z) < e"
    by metis
  show ?thesis
  proof
    show g_lim: "\x. x \ S \ (\n. \ (k n) x) \ g x"
      by (simp add: lim_sequentially g dist_norm)    
    have dg_le_e: "\N. \n\N. \x\T. cmod (\ (k n) x - g x) < e"
      if T: "compact T" "T \ S" and "0 < e" for T e
    proof -
      obtain N where N: "\n. n \ N \ T \ K n"
        using subK [OF T] by blast
      obtain h where h: "\e. e>0 \ \M. \n\M. \x\K N. cmod ((\ \ k) n x - h x) < e"
        using k unfolding \<Phi>_def by (metis id_comp)
      have geq: "g w = h w" if "w \ T" for w
      proof (rule LIMSEQ_unique)
        show "(\n. \ (k n) w) \ g w"
          using \<open>T \<subseteq> S\<close> g_lim that by blast
        show "(\n. \ (k n) w) \ h w"
          using h N that by (force simp: lim_sequentially dist_norm)
      qed
      show ?thesis
        using T h N \<open>0 < e\<close> by (fastforce simp add: geq)
    qed
    then show "\K. \compact K; K \ S\
         \<Longrightarrow> uniform_limit K (\<F> \<circ> k) g sequentially"
      by (simp add: uniform_limit_iff dist_norm eventually_sequentially)
    show "g holomorphic_on S"
    proof (rule holomorphic_uniform_sequence [OF \<open>open S\<close> \<H>])
      show "\n. (\ \ k) n \ \"
        by (simp add: range_subsetD rng_f)
      show "\d>0. cball z d \ S \ uniform_limit (cball z d) (\n. (\ \ k) n) g sequentially"
        if "z \ S" for z
      proof -
        obtain d where d: "d>0" "cball z d \ S"
          using \<open>open S\<close> \<open>z \<in> S\<close> open_contains_cball by blast
        then have "uniform_limit (cball z d) (\ \ k) g sequentially"
          using dg_le_e compact_cball by (auto simp: uniform_limit_iff eventually_sequentially dist_norm)
        with d show ?thesis by blast
      qed
    qed
  qed (auto simp: \<open>strict_mono k\<close>)
qed



subsection\<open>Some simple but useful cases of Hurwitz's theorem\<close>

proposition Hurwitz_no_zeros:
  assumes S: "open S" "connected S"
      and holf: "\n::nat. \ n holomorphic_on S"
      and holg: "g holomorphic_on S"
      and ul_g: "\K. \compact K; K \ S\ \ uniform_limit K \ g sequentially"
      and nonconst: "\ g constant_on S"
      and nz: "\n z. z \ S \ \ n z \ 0"
      and "z0 \ S"
      shows "g z0 \ 0"
proof
  assume g0: "g z0 = 0"
  obtain h r m
    where "0 < m" "0 < r" and subS: "ball z0 r \ S"
      and holh: "h holomorphic_on ball z0 r"
      and geq:  "\w. w \ ball z0 r \ g w = (w - z0)^m * h w"
      and hnz:  "\w. w \ ball z0 r \ h w \ 0"
    by (blast intro: holomorphic_factor_zero_nonconstant [OF holg S \<open>z0 \<in> S\<close> g0 nonconst])
  then have holf0: "\ n holomorphic_on ball z0 r" for n
    by (meson holf holomorphic_on_subset)
  have *: "((\z. deriv (\ n) z / \ n z) has_contour_integral 0) (circlepath z0 (r/2))" for n
  proof (rule Cauchy_theorem_disc_simple)
    show "(\z. deriv (\ n) z / \ n z) holomorphic_on ball z0 r"
      by (metis (no_types) \<open>open S\<close> holf holomorphic_deriv holomorphic_on_divide holomorphic_on_subset nz subS)
  qed (use \<open>0 < r\<close> in auto)
  have hol_dg: "deriv g holomorphic_on S"
    by (simp add: \<open>open S\<close> holg holomorphic_deriv)
  have "continuous_on (sphere z0 (r/2)) (deriv g)"
    using \<open>0 < r\<close> subS 
    by (intro holomorphic_on_imp_continuous_on holomorphic_on_subset [OF hol_dg]) auto
  then have "compact (deriv g ` (sphere z0 (r/2)))"
    by (rule compact_continuous_image [OF _ compact_sphere])
  then have bo_dg: "bounded (deriv g ` (sphere z0 (r/2)))"
    using compact_imp_bounded by blast
  have "continuous_on (sphere z0 (r/2)) (cmod \ g)"
    using \<open>0 < r\<close> subS 
    by (intro continuous_intros holomorphic_on_imp_continuous_on holomorphic_on_subset [OF holg]) auto
  then have "compact ((cmod \ g) ` sphere z0 (r/2))"
    by (rule compact_continuous_image [OF _ compact_sphere])
  moreover have "(cmod \ g) ` sphere z0 (r/2) \ {}"
    using \<open>0 < r\<close> by auto
  ultimately obtain b where b: "b \ (cmod \ g) ` sphere z0 (r/2)"
                               "\t. t \ (cmod \ g) ` sphere z0 (r/2) \ b \ t"
    using compact_attains_inf [of "(norm \ g) ` (sphere z0 (r/2))"] by blast
  have "(\n. contour_integral (circlepath z0 (r/2)) (\z. deriv (\ n) z / \ n z)) \
        contour_integral (circlepath z0 (r/2)) (\<lambda>z. deriv g z / g z)"
  proof (rule contour_integral_uniform_limit_circlepath)
    show "\\<^sub>F n in sequentially. (\z. deriv (\ n) z / \ n z) contour_integrable_on circlepath z0 (r/2)"
      using * contour_integrable_on_def eventually_sequentiallyI by meson
    show "uniform_limit (sphere z0 (r/2)) (\n z. deriv (\ n) z / \ n z) (\z. deriv g z / g z) sequentially"
    proof (rule uniform_lim_divide [OF _ _ bo_dg])
      show "uniform_limit (sphere z0 (r/2)) (\a. deriv (\ a)) (deriv g) sequentially"
      proof (rule uniform_limitI)
        fix e::real
        assume "0 < e"

        show "\\<^sub>F n in sequentially. \x \ sphere z0 (r/2). dist (deriv (\ n) x) (deriv g x) < e"
        proof -
          have "dist (deriv (\ n) w) (deriv g w) < e"
            if e8: "\x. dist z0 x \ 3 * r / 4 \ dist (\ n x) (g x) * 8 < r * e"
              and w: "w \ sphere z0 (r/2)" for n w
          proof -
            have "ball w (r/4) \ ball z0 r" "cball w (r/4) \ ball z0 r"
              using \<open>0 < r\<close> w by (simp_all add: ball_subset_ball_iff cball_subset_ball_iff dist_commute)
            with subS have wr4_sub: "ball w (r/4) \ S" "cball w (r/4) \ S" by force+
            moreover
            have "(\z. \ n z - g z) holomorphic_on S"
              by (intro holomorphic_intros holf holg)
            ultimately have hol: "(\z. \ n z - g z) holomorphic_on ball w (r/4)"
              and cont: "continuous_on (cball w (r / 4)) (\z. \ n z - g z)"
              using holomorphic_on_subset by (blast intro: holomorphic_on_imp_continuous_on)+
            have "w \ S"
              using \<open>0 < r\<close> wr4_sub by auto
            have "dist z0 y \ 3 * r / 4" if "dist w y < r/4" for y
            proof (rule dist_triangle_le [where z=w])
              show "dist z0 w + dist y w \ 3 * r / 4"
                using w that by (simp add: dist_commute)
            qed
            with e8 have in_ball: "\y. y \ ball w (r/4) \ \ n y - g y \ ball 0 (r/4 * e/2)"
              by (simp add: dist_norm [symmetric])
            have "\ n field_differentiable at w"
              by (metis holomorphic_on_imp_differentiable_at \<open>w \<in> S\<close> holf \<open>open S\<close>)
            moreover
            have "g field_differentiable at w"
              using \<open>w \<in> S\<close> \<open>open S\<close> holg holomorphic_on_imp_differentiable_at by auto
            moreover
            have "cmod (deriv (\w. \ n w - g w) w) * 2 \ e"
              using Cauchy_higher_deriv_bound [OF hol cont in_ball, of 1] \<open>r > 0\<close> by auto
            ultimately have "dist (deriv (\ n) w) (deriv g w) \ e/2"
              by (simp add: dist_norm)
            then show ?thesis
              using \<open>e > 0\<close> by auto
          qed
          moreover
          have "cball z0 (3 * r / 4) \ ball z0 r"
            by (simp add: cball_subset_ball_iff \<open>0 < r\<close>)
          with subS have "uniform_limit (cball z0 (3 * r/4)) \ g sequentially"
            by (force intro: ul_g)
          then have "\\<^sub>F n in sequentially. \x\cball z0 (3 * r / 4). dist (\ n x) (g x) < r / 4 * e / 2"
            using \<open>0 < e\<close> \<open>0 < r\<close> by (force simp: intro!: uniform_limitD)
          ultimately show ?thesis
            by (force simp add: eventually_sequentially)
        qed
      qed
      show "uniform_limit (sphere z0 (r/2)) \ g sequentially"
      proof (rule uniform_limitI)
        fix e::real
        assume "0 < e"
        have "sphere z0 (r/2) \ ball z0 r"
          using \<open>0 < r\<close> by auto
        with subS have "uniform_limit (sphere z0 (r/2)) \ g sequentially"
          by (force intro: ul_g)
        then show "\\<^sub>F n in sequentially. \x \ sphere z0 (r/2). dist (\ n x) (g x) < e"
          using \<open>0 < e\<close> uniform_limit_iff by blast
      qed
      show "b > 0" "\x. x \ sphere z0 (r/2) \ b \ cmod (g x)"
        using b \<open>0 < r\<close> by (fastforce simp: geq hnz)+
    qed
  qed (use \<open>0 < r\<close> in auto)
  then have "(\n. 0) \ contour_integral (circlepath z0 (r/2)) (\z. deriv g z / g z)"
    by (simp add: contour_integral_unique [OF *])
  then have "contour_integral (circlepath z0 (r/2)) (\z. deriv g z / g z) = 0"
    by (simp add: LIMSEQ_const_iff)
  moreover
  have "contour_integral (circlepath z0 (r/2)) (\z. deriv g z / g z) =
        contour_integral (circlepath z0 (r/2)) (\<lambda>z. m / (z - z0) + deriv h z / h z)"
  proof (rule contour_integral_eq, use \<open>0 < r\<close> in simp)
    fix w
    assume w: "dist z0 w * 2 = r"
    then have w_inb: "w \ ball z0 r"
      using \<open>0 < r\<close> by auto
    have h_der: "(h has_field_derivative deriv h w) (at w)"
      using holh holomorphic_derivI w_inb by blast
    have "deriv g w = ((of_nat m * h w + deriv h w * (w - z0)) * (w - z0) ^ m) / (w - z0)"
      if "r = dist z0 w * 2" "w \ z0"
    proof -
      have "((\w. (w - z0) ^ m * h w) has_field_derivative
            (m * h w + deriv h w * (w - z0)) * (w - z0) ^ m / (w - z0)) (at w)"
        apply (rule derivative_eq_intros h_der refl)+
        using that \<open>m > 0\<close> \<open>0 < r\<close> apply (simp add: divide_simps distrib_right)
        by (metis Suc_pred mult.commute power_Suc)
      then show ?thesis
      proof (rule DERIV_imp_deriv [OF has_field_derivative_transform_within_open])
        show "\x. x \ ball z0 r \ (x - z0) ^ m * h x = g x"
          by (simp add: hnz geq)
      qed (use that \<open>m > 0\<close> \<open>0 < r\<close> in auto)
    qed
    with \<open>0 < r\<close> \<open>0 < m\<close> w w_inb show "deriv g w / g w = of_nat m / (w - z0) + deriv h w / h w"
      by (auto simp: geq field_split_simps hnz)
  qed
  moreover
  have "contour_integral (circlepath z0 (r/2)) (\z. m / (z - z0) + deriv h z / h z) =
        2 * of_real pi * \<i> * m + 0"
  proof (rule contour_integral_unique [OF has_contour_integral_add])
    show "((\x. m / (x - z0)) has_contour_integral 2 * of_real pi * \ * m) (circlepath z0 (r/2))"
      by (force simp: \<open>0 < r\<close> intro: Cauchy_integral_circlepath_simple)
    show "((\x. deriv h x / h x) has_contour_integral 0) (circlepath z0 (r/2))"
      using hnz holh holomorphic_deriv holomorphic_on_divide \<open>0 < r\<close>
      by (fastforce intro!: Cauchy_theorem_disc_simple [of _ z0 r])
  qed
  ultimately show False using \<open>0 < m\<close> by auto
qed

corollary Hurwitz_injective:
  assumes S: "open S" "connected S"
      and holf: "\n::nat. \ n holomorphic_on S"
      and holg: "g holomorphic_on S"
      and ul_g: "\K. \compact K; K \ S\ \ uniform_limit K \ g sequentially"
      and nonconst: "\ g constant_on S"
      and inj: "\n. inj_on (\ n) S"
    shows "inj_on g S"
proof -
  have False if z12: "z1 \ S" "z2 \ S" "z1 \ z2" "g z2 = g z1" for z1 z2
  proof -
    obtain z0 where "z0 \ S" and z0: "g z0 \ g z2"
      using constant_on_def nonconst by blast
    have "(\z. g z - g z1) holomorphic_on S"
      by (intro holomorphic_intros holg)
    then obtain r where "0 < r" "ball z2 r \ S" "\z. dist z2 z < r \ z \ z2 \ g z \ g z1"
      apply (rule isolated_zeros [of "\z. g z - g z1" S z2 z0])
      using S \<open>z0 \<in> S\<close> z0 z12 by auto
    have "g z2 - g z1 \ 0"
    proof (rule Hurwitz_no_zeros [of "S - {z1}" "\n z. \ n z - \ n z1" "\z. g z - g z1"])
      show "open (S - {z1})"
        by (simp add: S open_delete)
      show "connected (S - {z1})"
        by (simp add: connected_open_delete [OF S])
      show "\n. (\z. \ n z - \ n z1) holomorphic_on S - {z1}"
        by (intro holomorphic_intros holomorphic_on_subset [OF holf]) blast
      show "(\z. g z - g z1) holomorphic_on S - {z1}"
        by (intro holomorphic_intros holomorphic_on_subset [OF holg]) blast
      show "uniform_limit K (\n z. \ n z - \ n z1) (\z. g z - g z1) sequentially"
           if "compact K" "K \ S - {z1}" for K
      proof (rule uniform_limitI)
        fix e::real
        assume "e > 0"
        have "uniform_limit K \ g sequentially"
          using that ul_g by fastforce
        then have K: "\\<^sub>F n in sequentially. \x \ K. dist (\ n x) (g x) < e/2"
          using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD)
        have "uniform_limit {z1} \ g sequentially"
          by (simp add: ul_g z12)
        then have "\\<^sub>F n in sequentially. \x \ {z1}. dist (\ n x) (g x) < e/2"
          using \<open>0 < e\<close> by (force simp: intro!: uniform_limitD)
        then have z1: "\\<^sub>F n in sequentially. dist (\ n z1) (g z1) < e/2"
          by simp
        show "\\<^sub>F n in sequentially. \x\K. dist (\ n x - \ n z1) (g x - g z1) < e"
          apply (rule eventually_mono [OF  eventually_conj [OF K z1]])
          by (metis (no_types, hide_lams) diff_add_eq diff_diff_eq2 dist_commute dist_norm dist_triangle_add_half)
      qed
      show "\ (\z. g z - g z1) constant_on S - {z1}"
        unfolding constant_on_def
        by (metis Diff_iff \<open>z0 \<in> S\<close> empty_iff insert_iff right_minus_eq z0 z12)
      show "\n z. z \ S - {z1} \ \ n z - \ n z1 \ 0"
        by (metis DiffD1 DiffD2 eq_iff_diff_eq_0 inj inj_onD insertI1 \<open>z1 \<in> S\<close>)
      show "z2 \ S - {z1}"
        using \<open>z2 \<in> S\<close> \<open>z1 \<noteq> z2\<close> by auto
    qed
    with z12 show False by auto
  qed
  then show ?thesis by (auto simp: inj_on_def)
qed



subsection\<open>The Great Picard theorem\<close>

lemma GPicard1:
  assumes S: "open S" "connected S" and "w \ S" "0 < r" "Y \ X"
      and holX: "\h. h \ X \ h holomorphic_on S"
      and X01:  "\h z. \h \ X; z \ S\ \ h z \ 0 \ h z \ 1"
      and r:    "\h. h \ Y \ norm(h w) \ r"
  obtains B Z where "0 < B" "open Z" "w \ Z" "Z \ S" "\h z. \h \ Y; z \ Z\ \ norm(h z) \ B"
proof -
--> --------------------

--> maximum size reached

--> --------------------

¤ Dauer der Verarbeitung: 0.119 Sekunden  (vorverarbeitet)  ¤





Kontakt
Drucken
Kontakt
sprechenden Kalenders

Eigene Datei ansehen




schauen Sie vor die Tür

Fenster


Die Firma ist wie angegeben erreichbar.

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff