(* Author: Tobias Nipkow *)
section \<open>2-3 Tree from List\<close>
theory Tree23_of_List
imports Tree23
begin
text \<open>Linear-time bottom up conversion of a list of items into a complete 2-3 tree
whose inorder traversal yields the list of items.\<close>
subsection "Code"
text \<open>Nonempty lists of 2-3 trees alternating with items, starting and ending with a 2-3 tree:\<close>
datatype 'a tree23s = T "'a tree23" | TTs "'a tree23" "'a" "'a tree23s"
abbreviation "not_T ts == (\t. ts \ T t)"
fun len :: "'a tree23s \ nat" where
"len (T _) = 1" |
"len (TTs _ _ ts) = len ts + 1"
fun trees :: "'a tree23s \ 'a tree23 set" where
"trees (T t) = {t}" |
"trees (TTs t a ts) = {t} \ trees ts"
text \<open>Join pairs of adjacent trees:\<close>
fun join_adj :: "'a tree23s \ 'a tree23s" where
"join_adj (TTs t1 a (T t2)) = T(Node2 t1 a t2)" |
"join_adj (TTs t1 a (TTs t2 b (T t3))) = T(Node3 t1 a t2 b t3)" |
"join_adj (TTs t1 a (TTs t2 b ts)) = TTs (Node2 t1 a t2) b (join_adj ts)"
text \<open>Towards termination of \<open>join_all\<close>:\<close>
lemma len_ge2:
"not_T ts \ len ts \ 2"
by(cases ts rule: join_adj.cases) auto
lemma [measure_function]: "is_measure len"
by(rule is_measure_trivial)
lemma len_join_adj_div2:
"not_T ts \ len(join_adj ts) \ len ts div 2"
by(induction ts rule: join_adj.induct) auto
lemma len_join_adj1: "not_T ts \ len(join_adj ts) < len ts"
using len_join_adj_div2[of ts] len_ge2[of ts] by simp
corollary len_join_adj2[termination_simp]: "len(join_adj (TTs t a ts)) \ len ts"
using len_join_adj1[of "TTs t a ts"] by simp
fun join_all :: "'a tree23s \ 'a tree23" where
"join_all (T t) = t" |
"join_all ts = join_all (join_adj ts)"
fun leaves :: "'a list \ 'a tree23s" where
"leaves [] = T Leaf" |
"leaves (a # as) = TTs Leaf a (leaves as)"
definition tree23_of_list :: "'a list \ 'a tree23" where
"tree23_of_list as = join_all(leaves as)"
subsection \<open>Functional correctness\<close>
subsubsection \<open>\<open>inorder\<close>:\<close>
fun inorder2 :: "'a tree23s \ 'a list" where
"inorder2 (T t) = inorder t" |
"inorder2 (TTs t a ts) = inorder t @ a # inorder2 ts"
lemma inorder2_join_adj: "not_T ts \ inorder2(join_adj ts) = inorder2 ts"
by (induction ts rule: join_adj.induct) auto
lemma inorder_join_all: "inorder (join_all ts) = inorder2 ts"
proof (induction ts rule: join_all.induct)
case 1 thus ?case by simp
next
case (2 t a ts)
thus ?case using inorder2_join_adj[of "TTs t a ts"]
by (simp add: le_imp_less_Suc)
qed
lemma inorder2_leaves: "inorder2(leaves as) = as"
by(induction as) auto
lemma inorder: "inorder(tree23_of_list as) = as"
by(simp add: tree23_of_list_def inorder_join_all inorder2_leaves)
subsubsection \<open>Completeness:\<close>
lemma complete_join_adj:
"\t \ trees ts. complete t \ height t = n \ not_T ts \
\<forall>t \<in> trees (join_adj ts). complete t \<and> height t = Suc n"
by (induction ts rule: join_adj.induct) auto
lemma complete_join_all:
"\t \ trees ts. complete t \ height t = n \ complete (join_all ts)"
proof (induction ts arbitrary: n rule: join_all.induct)
case 1 thus ?case by simp
next
case (2 t a ts)
thus ?case
apply simp using complete_join_adj[of "TTs t a ts" n, simplified] by blast
qed
lemma complete_leaves: "t \ trees (leaves as) \ complete t \ height t = 0"
by (induction as) auto
corollary complete: "complete(tree23_of_list as)"
by(simp add: tree23_of_list_def complete_leaves complete_join_all[of _ 0])
subsection "Linear running time"
fun T_join_adj :: "'a tree23s \ nat" where
"T_join_adj (TTs t1 a (T t2)) = 1" |
"T_join_adj (TTs t1 a (TTs t2 b (T t3))) = 1" |
"T_join_adj (TTs t1 a (TTs t2 b ts)) = T_join_adj ts + 1"
fun T_join_all :: "'a tree23s \ nat" where
"T_join_all (T t) = 1" |
"T_join_all ts = T_join_adj ts + T_join_all (join_adj ts) + 1"
fun T_leaves :: "'a list \ nat" where
"T_leaves [] = 1" |
"T_leaves (a # as) = T_leaves as + 1"
definition T_tree23_of_list :: "'a list \ nat" where
"T_tree23_of_list as = T_leaves as + T_join_all(leaves as) + 1"
lemma T_join_adj: "not_T ts \ T_join_adj ts \ len ts div 2"
by(induction ts rule: T_join_adj.induct) auto
lemma len_ge_1: "len ts \ 1"
by(cases ts) auto
lemma T_join_all: "T_join_all ts \ 2 * len ts"
proof(induction ts rule: join_all.induct)
case 1 thus ?case by simp
next
case (2 t a ts)
let ?ts = "TTs t a ts"
have "T_join_all ?ts = T_join_adj ?ts + T_join_all (join_adj ?ts) + 1"
by simp
also have "\ \ len ?ts div 2 + T_join_all (join_adj ?ts) + 1"
using T_join_adj[of ?ts] by simp
also have "\ \ len ?ts div 2 + 2 * len (join_adj ?ts) + 1"
using "2.IH" by simp
also have "\ \ len ?ts div 2 + 2 * (len ?ts div 2) + 1"
using len_join_adj_div2[of ?ts] by simp
also have "\ \ 2 * len ?ts" using len_ge_1[of ?ts] by linarith
finally show ?case .
qed
lemma T_leaves: "T_leaves as = length as + 1"
by(induction as) auto
lemma len_leaves: "len(leaves as) = length as + 1"
by(induction as) auto
lemma T_tree23_of_list: "T_tree23_of_list as \ 3*(length as) + 4"
using T_join_all[of "leaves as"] by(simp add: T_tree23_of_list_def T_leaves len_leaves)
end
¤ Dauer der Verarbeitung: 0.26 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|