(* Title: HOL/Examples/Records.thy
Author: Wolfgang Naraschewski, TU Muenchen
Author: Norbert Schirmer, TU Muenchen
Author: Markus Wenzel, TU Muenchen
*)
section \<open>Using extensible records in HOL -- points and coloured points\<close>
theory Records
imports Main
begin
subsection \<open>Points\<close>
record point =
xpos :: nat
ypos :: nat
text \<open>
Apart many other things, above record declaration produces the
following theorems:
\<close>
thm point.simps
thm point.iffs
thm point.defs
text \<open>
The set of theorems @{thm [source] point.simps} is added
automatically to the standard simpset, @{thm [source] point.iffs} is
added to the Classical Reasoner and Simplifier context.
\<^medskip> Record declarations define new types and type abbreviations:
@{text [display]
\<open>point = \<lparr>xpos :: nat, ypos :: nat\<rparr> = () point_ext_type
'a point_scheme = \xpos :: nat, ypos :: nat, ... :: 'a\ = 'a point_ext_type\}
\<close>
consts foo2 :: "\xpos :: nat, ypos :: nat\"
consts foo4 :: "'a \ \xpos :: nat, ypos :: nat, \ :: 'a\"
subsubsection \<open>Introducing concrete records and record schemes\<close>
definition foo1 :: point
where "foo1 = \xpos = 1, ypos = 0\"
definition foo3 :: "'a \ 'a point_scheme"
where "foo3 ext = \xpos = 1, ypos = 0, \ = ext\"
subsubsection \<open>Record selection and record update\<close>
definition getX :: "'a point_scheme \ nat"
where "getX r = xpos r"
definition setX :: "'a point_scheme \ nat \ 'a point_scheme"
where "setX r n = r \xpos := n\"
subsubsection \<open>Some lemmas about records\<close>
text \<open>Basic simplifications.\<close>
lemma "point.make n p = \xpos = n, ypos = p\"
by (simp only: point.make_def)
lemma "xpos \xpos = m, ypos = n, \ = p\ = m"
by simp
lemma "\xpos = m, ypos = n, \ = p\\xpos:= 0\ = \xpos = 0, ypos = n, \ = p\"
by simp
text \<open>\<^medskip> Equality of records.\<close>
lemma "n = n' \ p = p' \ \xpos = n, ypos = p\ = \xpos = n', ypos = p'\"
\<comment> \<open>introduction of concrete record equality\<close>
by simp
lemma "\xpos = n, ypos = p\ = \xpos = n', ypos = p'\ \ n = n'"
\<comment> \<open>elimination of concrete record equality\<close>
by simp
lemma "r\xpos := n\\ypos := m\ = r\ypos := m\\xpos := n\"
\<comment> \<open>introduction of abstract record equality\<close>
by simp
lemma "r\xpos := n\ = r\xpos := n'\" if "n = n'"
\<comment> \<open>elimination of abstract record equality (manual proof)\<close>
proof -
let "?lhs = ?rhs" = ?thesis
from that have "xpos ?lhs = xpos ?rhs" by simp
then show ?thesis by simp
qed
text \<open>\<^medskip> Surjective pairing\<close>
lemma "r = \xpos = xpos r, ypos = ypos r\"
by simp
lemma "r = \xpos = xpos r, ypos = ypos r, \ = point.more r\"
by simp
text \<open>\<^medskip> Representation of records by cases or (degenerate) induction.\<close>
lemma "r\xpos := n\\ypos := m\ = r\ypos := m\\xpos := n\"
proof (cases r)
fix xpos ypos more
assume "r = \xpos = xpos, ypos = ypos, \ = more\"
then show ?thesis by simp
qed
lemma "r\xpos := n\\ypos := m\ = r\ypos := m\\xpos := n\"
proof (induct r)
fix xpos ypos more
show "\xpos = xpos, ypos = ypos, \ = more\\xpos := n, ypos := m\ =
\<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>\<lparr>ypos := m, xpos := n\<rparr>"
by simp
qed
lemma "r\xpos := n\\xpos := m\ = r\xpos := m\"
proof (cases r)
fix xpos ypos more
assume "r = \xpos = xpos, ypos = ypos, \ = more\"
then show ?thesis by simp
qed
lemma "r\xpos := n\\xpos := m\ = r\xpos := m\"
proof (cases r)
case fields
then show ?thesis by simp
qed
lemma "r\xpos := n\\xpos := m\ = r\xpos := m\"
by (cases r) simp
text \<open>\<^medskip> Concrete records are type instances of record schemes.\<close>
definition foo5 :: nat
where "foo5 = getX \xpos = 1, ypos = 0\"
text \<open>\<^medskip> Manipulating the ``\<open>...\<close>'' (more) part.\<close>
definition incX :: "'a point_scheme \ 'a point_scheme"
where "incX r = \xpos = xpos r + 1, ypos = ypos r, \ = point.more r\"
lemma "incX r = setX r (Suc (getX r))"
by (simp add: getX_def setX_def incX_def)
text \<open>\<^medskip> An alternative definition.\<close>
definition incX' :: "'a point_scheme \<Rightarrow> 'a point_scheme"
where "incX' r = r\xpos := xpos r + 1\"
subsection \<open>Coloured points: record extension\<close>
datatype colour = Red | Green | Blue
record cpoint = point +
colour :: colour
text \<open>
The record declaration defines a new type constructor and abbreviations:
@{text [display]
\<open>cpoint = \<lparr>xpos :: nat, ypos :: nat, colour :: colour\<rparr> =
() cpoint_ext_type point_ext_type
'a cpoint_scheme = \xpos :: nat, ypos :: nat, colour :: colour, \ :: 'a\ =
'a cpoint_ext_type point_ext_type\}
\<close>
consts foo6 :: cpoint
consts foo7 :: "\xpos :: nat, ypos :: nat, colour :: colour\"
consts foo8 :: "'a cpoint_scheme"
consts foo9 :: "\xpos :: nat, ypos :: nat, colour :: colour, \ :: 'a\"
text \<open>Functions on \<open>point\<close> schemes work for \<open>cpoints\<close> as well.\<close>
definition foo10 :: nat
where "foo10 = getX \xpos = 2, ypos = 0, colour = Blue\"
subsubsection \<open>Non-coercive structural subtyping\<close>
text \<open>Term \<^term>\<open>foo11\<close> has type \<^typ>\<open>cpoint\<close>, not type \<^typ>\<open>point\<close> --- Great!\<close>
definition foo11 :: cpoint
where "foo11 = setX \xpos = 2, ypos = 0, colour = Blue\ 0"
subsection \<open>Other features\<close>
text \<open>Field names contribute to record identity.\<close>
record point' =
xpos' :: nat
ypos' :: nat
text \<open>
\<^noindent> May not apply \<^term>\<open>getX\<close> to @{term [source] "\<lparr>xpos' = 2, ypos' = 0\<rparr>"}
--- type error.
\<close>
text \<open>\<^medskip> Polymorphic records.\<close>
record 'a point'' = point +
content :: 'a
type_synonym cpoint'' = "colour point''"
text \<open>Updating a record field with an identical value is simplified.\<close>
lemma "r\xpos := xpos r\ = r"
by simp
text \<open>Only the most recent update to a component survives simplification.\<close>
lemma "r\xpos := x, ypos := y, xpos := x'\ = r\ypos := y, xpos := x'\"
by simp
text \<open>
In some cases its convenient to automatically split (quantified) records.
For this purpose there is the simproc @{ML [source] "Record.split_simproc"}
and the tactic @{ML [source] "Record.split_simp_tac"}. The simplification
procedure only splits the records, whereas the tactic also simplifies the
resulting goal with the standard record simplification rules. A
(generalized) predicate on the record is passed as parameter that decides
whether or how `deep' to split the record. It can peek on the subterm
starting at the quantified occurrence of the record (including the
quantifier). The value \<^ML>\<open>0\<close> indicates no split, a value greater
\<^ML>\<open>0\<close> splits up to the given bound of record extension and finally the
value \<^ML>\<open>~1\<close> completely splits the record. @{ML [source]
"Record.split_simp_tac"} additionally takes a list of equations for
simplification and can also split fixed record variables.
\<close>
lemma "(\r. P (xpos r)) \ (\x. P x)"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
apply simp
done
lemma "(\r. P (xpos r)) \ (\x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply simp
done
lemma "(\r. P (xpos r)) \ (\x. P x)"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
apply simp
done
lemma "(\r. P (xpos r)) \ (\x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply simp
done
lemma "\r. P (xpos r) \ (\x. P x)"
apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
apply auto
done
lemma "\r. P (xpos r) \ (\x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply auto
done
lemma "P (xpos r) \ (\x. P x)"
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply auto
done
notepad
begin
have "\x. P x"
if "P (xpos r)" for P r
apply (insert that)
apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
apply auto
done
end
text \<open>
The effect of simproc @{ML [source] Record.ex_sel_eq_simproc} is illustrated
by the following lemma.\<close>
lemma "\r. xpos r = x"
by (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
addsimprocs [Record.ex_sel_eq_simproc]) 1\<close>)
subsection \<open>A more complex record expression\<close>
record ('a, 'b, 'c) bar = bar1 :: 'a
bar2 :: 'b
bar3 :: 'c
bar21 :: "'b \ 'a"
bar32 :: "'c \ 'b"
bar31 :: "'c \ 'a"
print_record "('a,'b,'c) bar"
subsection \<open>Some code generation\<close>
export_code foo1 foo3 foo5 foo10 checking SML
text \<open>
Code generation can also be switched off, for instance for very large
records:\<close>
declare [[record_codegen = false]]
record not_so_large_record =
bar520 :: nat
bar521 :: "nat \ nat"
declare [[record_codegen = true]]
end
¤ Dauer der Verarbeitung: 0.22 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|