(* Title: HOL/HOLCF/Up.thy
Author: Franz Regensburger
Author: Brian Huffman
*)
section \<open>The type of lifted values\<close>
theory Up
imports Cfun
begin
default_sort cpo
subsection \<open>Definition of new type for lifting\<close>
datatype 'a u ("(_\<^sub>\)" [1000] 999) = Ibottom | Iup 'a
primrec Ifup :: "('a \ 'b::pcpo) \ 'a u \ 'b"
where
"Ifup f Ibottom = \"
| "Ifup f (Iup x) = f\x"
subsection \<open>Ordering on lifted cpo\<close>
instantiation u :: (cpo) below
begin
definition below_up_def:
"(\) \
(\<lambda>x y.
(case x of
Ibottom \<Rightarrow> True
| Iup a \<Rightarrow> (case y of Ibottom \<Rightarrow> False | Iup b \<Rightarrow> a \<sqsubseteq> b)))"
instance ..
end
lemma minimal_up [iff]: "Ibottom \ z"
by (simp add: below_up_def)
lemma not_Iup_below [iff]: "Iup x \ Ibottom"
by (simp add: below_up_def)
lemma Iup_below [iff]: "(Iup x \ Iup y) = (x \ y)"
by (simp add: below_up_def)
subsection \<open>Lifted cpo is a partial order\<close>
instance u :: (cpo) po
proof
fix x :: "'a u"
show "x \ x"
by (simp add: below_up_def split: u.split)
next
fix x y :: "'a u"
assume "x \ y" "y \ x"
then show "x = y"
by (auto simp: below_up_def split: u.split_asm intro: below_antisym)
next
fix x y z :: "'a u"
assume "x \ y" "y \ z"
then show "x \ z"
by (auto simp: below_up_def split: u.split_asm intro: below_trans)
qed
subsection \<open>Lifted cpo is a cpo\<close>
lemma is_lub_Iup: "range S <<| x \ range (\i. Iup (S i)) <<| Iup x"
by (auto simp: is_lub_def is_ub_def ball_simps below_up_def split: u.split)
lemma up_chain_lemma:
assumes Y: "chain Y"
obtains "\i. Y i = Ibottom"
| A k where "\i. Iup (A i) = Y (i + k)" and "chain A" and "range Y <<| Iup (\i. A i)"
proof (cases "\k. Y k \ Ibottom")
case True
then obtain k where k: "Y k \ Ibottom" ..
define A where "A i = (THE a. Iup a = Y (i + k))" for i
have Iup_A: "\i. Iup (A i) = Y (i + k)"
proof
fix i :: nat
from Y le_add2 have "Y k \ Y (i + k)" by (rule chain_mono)
with k have "Y (i + k) \ Ibottom" by (cases "Y k") auto
then show "Iup (A i) = Y (i + k)"
by (cases "Y (i + k)", simp_all add: A_def)
qed
from Y have chain_A: "chain A"
by (simp add: chain_def Iup_below [symmetric] Iup_A)
then have "range A <<| (\i. A i)"
by (rule cpo_lubI)
then have "range (\i. Iup (A i)) <<| Iup (\i. A i)"
by (rule is_lub_Iup)
then have "range (\i. Y (i + k)) <<| Iup (\i. A i)"
by (simp only: Iup_A)
then have "range (\i. Y i) <<| Iup (\i. A i)"
by (simp only: is_lub_range_shift [OF Y])
with Iup_A chain_A show ?thesis ..
next
case False
then have "\i. Y i = Ibottom" by simp
then show ?thesis ..
qed
instance u :: (cpo) cpo
proof
fix S :: "nat \ 'a u"
assume S: "chain S"
then show "\x. range (\i. S i) <<| x"
proof (rule up_chain_lemma)
assume "\i. S i = Ibottom"
then have "range (\i. S i) <<| Ibottom"
by (simp add: is_lub_const)
then show ?thesis ..
next
fix A :: "nat \ 'a"
assume "range S <<| Iup (\i. A i)"
then show ?thesis ..
qed
qed
subsection \<open>Lifted cpo is pointed\<close>
instance u :: (cpo) pcpo
by intro_classes fast
text \<open>for compatibility with old HOLCF-Version\<close>
lemma inst_up_pcpo: "\ = Ibottom"
by (rule minimal_up [THEN bottomI, symmetric])
subsection \<open>Continuity of \emph{Iup} and \emph{Ifup}\<close>
text \<open>continuity for \<^term>\<open>Iup\<close>\<close>
lemma cont_Iup: "cont Iup"
apply (rule contI)
apply (rule is_lub_Iup)
apply (erule cpo_lubI)
done
text \<open>continuity for \<^term>\<open>Ifup\<close>\<close>
lemma cont_Ifup1: "cont (\f. Ifup f x)"
by (induct x) simp_all
lemma monofun_Ifup2: "monofun (\x. Ifup f x)"
apply (rule monofunI)
apply (case_tac x, simp)
apply (case_tac y, simp)
apply (simp add: monofun_cfun_arg)
done
lemma cont_Ifup2: "cont (\x. Ifup f x)"
proof (rule contI2)
fix Y
assume Y: "chain Y" and Y': "chain (\i. Ifup f (Y i))"
from Y show "Ifup f (\i. Y i) \ (\i. Ifup f (Y i))"
proof (rule up_chain_lemma)
fix A and k
assume A: "\i. Iup (A i) = Y (i + k)"
assume "chain A" and "range Y <<| Iup (\i. A i)"
then have "Ifup f (\i. Y i) = (\i. Ifup f (Iup (A i)))"
by (simp add: lub_eqI contlub_cfun_arg)
also have "\ = (\i. Ifup f (Y (i + k)))"
by (simp add: A)
also have "\ = (\i. Ifup f (Y i))"
using Y' by (rule lub_range_shift)
finally show ?thesis by simp
qed simp
qed (rule monofun_Ifup2)
subsection \<open>Continuous versions of constants\<close>
definition up :: "'a \ 'a u"
where "up = (\ x. Iup x)"
definition fup :: "('a \ 'b::pcpo) \ 'a u \ 'b"
where "fup = (\ f p. Ifup f p)"
translations
"case l of XCONST up\x \ t" \ "CONST fup\(\ x. t)\l"
"case l of (XCONST up :: 'a)\x \ t" \ "CONST fup\(\ x. t)\l"
"\(XCONST up\x). t" \ "CONST fup\(\ x. t)"
text \<open>continuous versions of lemmas for \<^typ>\<open>('a)u\<close>\<close>
lemma Exh_Up: "z = \ \ (\x. z = up\x)"
by (induct z) (simp add: inst_up_pcpo, simp add: up_def cont_Iup)
lemma up_eq [simp]: "(up\x = up\y) = (x = y)"
by (simp add: up_def cont_Iup)
lemma up_inject: "up\x = up\y \ x = y"
by simp
lemma up_defined [simp]: "up\x \ \"
by (simp add: up_def cont_Iup inst_up_pcpo)
lemma not_up_less_UU: "up\x \ \"
by simp (* FIXME: remove? *)
lemma up_below [simp]: "up\x \ up\y \ x \ y"
by (simp add: up_def cont_Iup)
lemma upE [case_names bottom up, cases type: u]: "\p = \ \ Q; \x. p = up\x \ Q\ \ Q"
by (cases p) (simp add: inst_up_pcpo, simp add: up_def cont_Iup)
lemma up_induct [case_names bottom up, induct type: u]: "P \ \ (\x. P (up\x)) \ P x"
by (cases x) simp_all
text \<open>lifting preserves chain-finiteness\<close>
lemma up_chain_cases:
assumes Y: "chain Y"
obtains "\i. Y i = \"
| A k where "\i. up\(A i) = Y (i + k)" and "chain A" and "(\i. Y i) = up\(\i. A i)"
by (rule up_chain_lemma [OF Y]) (simp_all add: inst_up_pcpo up_def cont_Iup lub_eqI)
lemma compact_up: "compact x \ compact (up\x)"
apply (rule compactI2)
apply (erule up_chain_cases)
apply simp
apply (drule (1) compactD2, simp)
apply (erule exE)
apply (drule_tac f="up" and x="x" in monofun_cfun_arg)
apply (simp, erule exI)
done
lemma compact_upD: "compact (up\x) \ compact x"
unfolding compact_def
by (drule adm_subst [OF cont_Rep_cfun2 [where f=up]], simp)
lemma compact_up_iff [simp]: "compact (up\x) = compact x"
by (safe elim!: compact_up compact_upD)
instance u :: (chfin) chfin
apply intro_classes
apply (erule compact_imp_max_in_chain)
apply (rule_tac p="\i. Y i" in upE, simp_all)
done
text \<open>properties of fup\<close>
lemma fup1 [simp]: "fup\f\\ = \"
by (simp add: fup_def cont_Ifup1 cont_Ifup2 inst_up_pcpo cont2cont_LAM)
lemma fup2 [simp]: "fup\f\(up\x) = f\x"
by (simp add: up_def fup_def cont_Iup cont_Ifup1 cont_Ifup2 cont2cont_LAM)
lemma fup3 [simp]: "fup\up\x = x"
by (cases x) simp_all
end
¤ Dauer der Verarbeitung: 0.17 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|