(* Title: HOL/HOLCF/UpperPD.thy
Author: Brian Huffman
*)
section \<open>Upper powerdomain\<close>
theory UpperPD
imports Compact_Basis
begin
subsection \<open>Basis preorder\<close>
definition
upper_le :: "'a pd_basis \ 'a pd_basis \ bool" (infix "\\" 50) where
"upper_le = (\u v. \y\Rep_pd_basis v. \x\Rep_pd_basis u. x \ y)"
lemma upper_le_refl [simp]: "t \\ t"
unfolding upper_le_def by fast
lemma upper_le_trans: "\t \\ u; u \\ v\ \ t \\ v"
unfolding upper_le_def
apply (rule ballI)
apply (drule (1) bspec, erule bexE)
apply (drule (1) bspec, erule bexE)
apply (erule rev_bexI)
apply (erule (1) below_trans)
done
interpretation upper_le: preorder upper_le
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)
lemma upper_le_minimal [simp]: "PDUnit compact_bot \\ t"
unfolding upper_le_def Rep_PDUnit by simp
lemma PDUnit_upper_mono: "x \ y \ PDUnit x \\ PDUnit y"
unfolding upper_le_def Rep_PDUnit by simp
lemma PDPlus_upper_mono: "\s \\ t; u \\ v\ \ PDPlus s u \\ PDPlus t v"
unfolding upper_le_def Rep_PDPlus by fast
lemma PDPlus_upper_le: "PDPlus t u \\ t"
unfolding upper_le_def Rep_PDPlus by fast
lemma upper_le_PDUnit_PDUnit_iff [simp]:
"(PDUnit a \\ PDUnit b) = (a \ b)"
unfolding upper_le_def Rep_PDUnit by fast
lemma upper_le_PDPlus_PDUnit_iff:
"(PDPlus t u \\ PDUnit a) = (t \\ PDUnit a \ u \\ PDUnit a)"
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast
lemma upper_le_PDPlus_iff: "(t \\ PDPlus u v) = (t \\ u \ t \\ v)"
unfolding upper_le_def Rep_PDPlus by fast
lemma upper_le_induct [induct set: upper_le]:
assumes le: "t \\ u"
assumes 1: "\a b. a \ b \ P (PDUnit a) (PDUnit b)"
assumes 2: "\t u a. P t (PDUnit a) \ P (PDPlus t u) (PDUnit a)"
assumes 3: "\t u v. \P t u; P t v\ \ P t (PDPlus u v)"
shows "P t u"
using le apply (induct u arbitrary: t rule: pd_basis_induct)
apply (erule rev_mp)
apply (induct_tac t rule: pd_basis_induct)
apply (simp add: 1)
apply (simp add: upper_le_PDPlus_PDUnit_iff)
apply (simp add: 2)
apply (subst PDPlus_commute)
apply (simp add: 2)
apply (simp add: upper_le_PDPlus_iff 3)
done
subsection \<open>Type definition\<close>
typedef 'a upper_pd ("('(_')\)") =
"{S::'a pd_basis set. upper_le.ideal S}"
by (rule upper_le.ex_ideal)
instantiation upper_pd :: (bifinite) below
begin
definition
"x \ y \ Rep_upper_pd x \ Rep_upper_pd y"
instance ..
end
instance upper_pd :: (bifinite) po
using type_definition_upper_pd below_upper_pd_def
by (rule upper_le.typedef_ideal_po)
instance upper_pd :: (bifinite) cpo
using type_definition_upper_pd below_upper_pd_def
by (rule upper_le.typedef_ideal_cpo)
definition
upper_principal :: "'a pd_basis \ 'a upper_pd" where
"upper_principal t = Abs_upper_pd {u. u \\ t}"
interpretation upper_pd:
ideal_completion upper_le upper_principal Rep_upper_pd
using type_definition_upper_pd below_upper_pd_def
using upper_principal_def pd_basis_countable
by (rule upper_le.typedef_ideal_completion)
text \<open>Upper powerdomain is pointed\<close>
lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \ ys"
by (induct ys rule: upper_pd.principal_induct, simp, simp)
instance upper_pd :: (bifinite) pcpo
by intro_classes (fast intro: upper_pd_minimal)
lemma inst_upper_pd_pcpo: "\ = upper_principal (PDUnit compact_bot)"
by (rule upper_pd_minimal [THEN bottomI, symmetric])
subsection \<open>Monadic unit and plus\<close>
definition
upper_unit :: "'a \ 'a upper_pd" where
"upper_unit = compact_basis.extension (\a. upper_principal (PDUnit a))"
definition
upper_plus :: "'a upper_pd \ 'a upper_pd \ 'a upper_pd" where
"upper_plus = upper_pd.extension (\t. upper_pd.extension (\u.
upper_principal (PDPlus t u)))"
abbreviation
upper_add :: "'a upper_pd \ 'a upper_pd \ 'a upper_pd"
(infixl "\\" 65) where
"xs \\ ys == upper_plus\xs\ys"
syntax
"_upper_pd" :: "args \ logic" ("{_}\")
translations
"{x,xs}\" == "{x}\ \\ {xs}\"
"{x}\" == "CONST upper_unit\x"
lemma upper_unit_Rep_compact_basis [simp]:
"{Rep_compact_basis a}\ = upper_principal (PDUnit a)"
unfolding upper_unit_def
by (simp add: compact_basis.extension_principal PDUnit_upper_mono)
lemma upper_plus_principal [simp]:
"upper_principal t \\ upper_principal u = upper_principal (PDPlus t u)"
unfolding upper_plus_def
by (simp add: upper_pd.extension_principal
upper_pd.extension_mono PDPlus_upper_mono)
interpretation upper_add: semilattice upper_add proof
fix xs ys zs :: "'a upper_pd"
show "(xs \\ ys) \\ zs = xs \\ (ys \\ zs)"
apply (induct xs rule: upper_pd.principal_induct, simp)
apply (induct ys rule: upper_pd.principal_induct, simp)
apply (induct zs rule: upper_pd.principal_induct, simp)
apply (simp add: PDPlus_assoc)
done
show "xs \\ ys = ys \\ xs"
apply (induct xs rule: upper_pd.principal_induct, simp)
apply (induct ys rule: upper_pd.principal_induct, simp)
apply (simp add: PDPlus_commute)
done
show "xs \\ xs = xs"
apply (induct xs rule: upper_pd.principal_induct, simp)
apply (simp add: PDPlus_absorb)
done
qed
lemmas upper_plus_assoc = upper_add.assoc
lemmas upper_plus_commute = upper_add.commute
lemmas upper_plus_absorb = upper_add.idem
lemmas upper_plus_left_commute = upper_add.left_commute
lemmas upper_plus_left_absorb = upper_add.left_idem
text \<open>Useful for \<open>simp add: upper_plus_ac\<close>\<close>
lemmas upper_plus_ac =
upper_plus_assoc upper_plus_commute upper_plus_left_commute
text \<open>Useful for \<open>simp only: upper_plus_aci\<close>\<close>
lemmas upper_plus_aci =
upper_plus_ac upper_plus_absorb upper_plus_left_absorb
lemma upper_plus_below1: "xs \\ ys \ xs"
apply (induct xs rule: upper_pd.principal_induct, simp)
apply (induct ys rule: upper_pd.principal_induct, simp)
apply (simp add: PDPlus_upper_le)
done
lemma upper_plus_below2: "xs \\ ys \ ys"
by (subst upper_plus_commute, rule upper_plus_below1)
lemma upper_plus_greatest: "\xs \ ys; xs \ zs\ \ xs \ ys \\ zs"
apply (subst upper_plus_absorb [of xs, symmetric])
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
done
lemma upper_below_plus_iff [simp]:
"xs \ ys \\ zs \ xs \ ys \ xs \ zs"
apply safe
apply (erule below_trans [OF _ upper_plus_below1])
apply (erule below_trans [OF _ upper_plus_below2])
apply (erule (1) upper_plus_greatest)
done
lemma upper_plus_below_unit_iff [simp]:
"xs \\ ys \ {z}\ \ xs \ {z}\ \ ys \ {z}\"
apply (induct xs rule: upper_pd.principal_induct, simp)
apply (induct ys rule: upper_pd.principal_induct, simp)
apply (induct z rule: compact_basis.principal_induct, simp)
apply (simp add: upper_le_PDPlus_PDUnit_iff)
done
lemma upper_unit_below_iff [simp]: "{x}\ \ {y}\ \ x \ y"
apply (induct x rule: compact_basis.principal_induct, simp)
apply (induct y rule: compact_basis.principal_induct, simp)
apply simp
done
lemmas upper_pd_below_simps =
upper_unit_below_iff
upper_below_plus_iff
upper_plus_below_unit_iff
lemma upper_unit_eq_iff [simp]: "{x}\ = {y}\ \ x = y"
unfolding po_eq_conv by simp
lemma upper_unit_strict [simp]: "{\}\ = \"
using upper_unit_Rep_compact_basis [of compact_bot]
by (simp add: inst_upper_pd_pcpo)
lemma upper_plus_strict1 [simp]: "\ \\ ys = \"
by (rule bottomI, rule upper_plus_below1)
lemma upper_plus_strict2 [simp]: "xs \\ \ = \"
by (rule bottomI, rule upper_plus_below2)
lemma upper_unit_bottom_iff [simp]: "{x}\ = \ \ x = \"
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)
lemma upper_plus_bottom_iff [simp]:
"xs \\ ys = \ \ xs = \ \ ys = \"
apply (induct xs rule: upper_pd.principal_induct, simp)
apply (induct ys rule: upper_pd.principal_induct, simp)
apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff
upper_le_PDPlus_PDUnit_iff)
done
lemma compact_upper_unit: "compact x \ compact {x}\"
by (auto dest!: compact_basis.compact_imp_principal)
lemma compact_upper_unit_iff [simp]: "compact {x}\ \ compact x"
apply (safe elim!: compact_upper_unit)
apply (simp only: compact_def upper_unit_below_iff [symmetric])
apply (erule adm_subst [OF cont_Rep_cfun2])
done
lemma compact_upper_plus [simp]:
"\compact xs; compact ys\ \ compact (xs \\ ys)"
by (auto dest!: upper_pd.compact_imp_principal)
subsection \<open>Induction rules\<close>
lemma upper_pd_induct1:
assumes P: "adm P"
assumes unit: "\x. P {x}\"
assumes insert: "\x ys. \P {x}\; P ys\ \ P ({x}\ \\ ys)"
shows "P (xs::'a upper_pd)"
apply (induct xs rule: upper_pd.principal_induct, rule P)
apply (induct_tac a rule: pd_basis_induct1)
apply (simp only: upper_unit_Rep_compact_basis [symmetric])
apply (rule unit)
apply (simp only: upper_unit_Rep_compact_basis [symmetric]
upper_plus_principal [symmetric])
apply (erule insert [OF unit])
done
lemma upper_pd_induct
[case_names adm upper_unit upper_plus, induct type: upper_pd]:
assumes P: "adm P"
assumes unit: "\x. P {x}\"
assumes plus: "\xs ys. \P xs; P ys\ \ P (xs \\ ys)"
shows "P (xs::'a upper_pd)"
apply (induct xs rule: upper_pd.principal_induct, rule P)
apply (induct_tac a rule: pd_basis_induct)
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
apply (simp only: upper_plus_principal [symmetric] plus)
done
subsection \<open>Monadic bind\<close>
definition
upper_bind_basis ::
"'a pd_basis \ ('a \ 'b upper_pd) \ 'b upper_pd" where
"upper_bind_basis = fold_pd
(\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
(\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<sharp> y\<cdot>f)"
lemma ACI_upper_bind:
"semilattice (\x y. \ f. x\f \\ y\f)"
apply unfold_locales
apply (simp add: upper_plus_assoc)
apply (simp add: upper_plus_commute)
apply (simp add: eta_cfun)
done
lemma upper_bind_basis_simps [simp]:
"upper_bind_basis (PDUnit a) =
(\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
"upper_bind_basis (PDPlus t u) =
(\<Lambda> f. upper_bind_basis t\<cdot>f \<union>\<sharp> upper_bind_basis u\<cdot>f)"
unfolding upper_bind_basis_def
apply -
apply (rule fold_pd_PDUnit [OF ACI_upper_bind])
apply (rule fold_pd_PDPlus [OF ACI_upper_bind])
done
lemma upper_bind_basis_mono:
"t \\ u \ upper_bind_basis t \ upper_bind_basis u"
unfolding cfun_below_iff
apply (erule upper_le_induct, safe)
apply (simp add: monofun_cfun)
apply (simp add: below_trans [OF upper_plus_below1])
apply simp
done
definition
upper_bind :: "'a upper_pd \ ('a \ 'b upper_pd) \ 'b upper_pd" where
"upper_bind = upper_pd.extension upper_bind_basis"
syntax
"_upper_bind" :: "[logic, logic, logic] \ logic"
("(3\\_\_./ _)" [0, 0, 10] 10)
translations
"\\x\xs. e" == "CONST upper_bind\xs\(\ x. e)"
lemma upper_bind_principal [simp]:
"upper_bind\(upper_principal t) = upper_bind_basis t"
unfolding upper_bind_def
apply (rule upper_pd.extension_principal)
apply (erule upper_bind_basis_mono)
done
lemma upper_bind_unit [simp]:
"upper_bind\{x}\\f = f\x"
by (induct x rule: compact_basis.principal_induct, simp, simp)
lemma upper_bind_plus [simp]:
"upper_bind\(xs \\ ys)\f = upper_bind\xs\f \\ upper_bind\ys\f"
by (induct xs rule: upper_pd.principal_induct, simp,
induct ys rule: upper_pd.principal_induct, simp, simp)
lemma upper_bind_strict [simp]: "upper_bind\\\f = f\\"
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
lemma upper_bind_bind:
"upper_bind\(upper_bind\xs\f)\g = upper_bind\xs\(\ x. upper_bind\(f\x)\g)"
by (induct xs, simp_all)
subsection \<open>Map\<close>
definition
upper_map :: "('a \ 'b) \ 'a upper_pd \ 'b upper_pd" where
"upper_map = (\ f xs. upper_bind\xs\(\ x. {f\x}\))"
lemma upper_map_unit [simp]:
"upper_map\f\{x}\ = {f\x}\"
unfolding upper_map_def by simp
lemma upper_map_plus [simp]:
"upper_map\f\(xs \\ ys) = upper_map\f\xs \\ upper_map\f\ys"
unfolding upper_map_def by simp
lemma upper_map_bottom [simp]: "upper_map\f\\ = {f\\}\"
unfolding upper_map_def by simp
lemma upper_map_ident: "upper_map\(\ x. x)\xs = xs"
by (induct xs rule: upper_pd_induct, simp_all)
lemma upper_map_ID: "upper_map\ID = ID"
by (simp add: cfun_eq_iff ID_def upper_map_ident)
lemma upper_map_map:
"upper_map\f\(upper_map\g\xs) = upper_map\(\ x. f\(g\x))\xs"
by (induct xs rule: upper_pd_induct, simp_all)
lemma upper_bind_map:
"upper_bind\(upper_map\f\xs)\g = upper_bind\xs\(\ x. g\(f\x))"
by (simp add: upper_map_def upper_bind_bind)
lemma upper_map_bind:
"upper_map\f\(upper_bind\xs\g) = upper_bind\xs\(\ x. upper_map\f\(g\x))"
by (simp add: upper_map_def upper_bind_bind)
lemma ep_pair_upper_map: "ep_pair e p \ ep_pair (upper_map\e) (upper_map\p)"
apply standard
apply (induct_tac x rule: upper_pd_induct, simp_all add: ep_pair.e_inverse)
apply (induct_tac y rule: upper_pd_induct)
apply (simp_all add: ep_pair.e_p_below monofun_cfun del: upper_below_plus_iff)
done
lemma deflation_upper_map: "deflation d \ deflation (upper_map\d)"
apply standard
apply (induct_tac x rule: upper_pd_induct, simp_all add: deflation.idem)
apply (induct_tac x rule: upper_pd_induct)
apply (simp_all add: deflation.below monofun_cfun del: upper_below_plus_iff)
done
(* FIXME: long proof! *)
lemma finite_deflation_upper_map:
assumes "finite_deflation d" shows "finite_deflation (upper_map\d)"
proof (rule finite_deflation_intro)
interpret d: finite_deflation d by fact
from d.deflation_axioms show "deflation (upper_map\d)"
by (rule deflation_upper_map)
have "finite (range (\x. d\x))" by (rule d.finite_range)
hence "finite (Rep_compact_basis -` range (\x. d\x))"
by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
hence "finite (Pow (Rep_compact_basis -` range (\x. d\x)))" by simp
hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\x. d\x))))"
by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
hence *: "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\x. d\x))))" by simp
hence "finite (range (\xs. upper_map\d\xs))"
apply (rule rev_finite_subset)
apply clarsimp
apply (induct_tac xs rule: upper_pd.principal_induct)
apply (simp add: adm_mem_finite *)
apply (rename_tac t, induct_tac t rule: pd_basis_induct)
apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit)
apply simp
apply (subgoal_tac "\b. d\(Rep_compact_basis a) = Rep_compact_basis b")
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep_PDUnit)
apply (rule range_eqI)
apply (erule sym)
apply (rule exI)
apply (rule Abs_compact_basis_inverse [symmetric])
apply (simp add: d.compact)
apply (simp only: upper_plus_principal [symmetric] upper_map_plus)
apply clarsimp
apply (rule imageI)
apply (rule vimageI2)
apply (simp add: Rep_PDPlus)
done
thus "finite {xs. upper_map\d\xs = xs}"
by (rule finite_range_imp_finite_fixes)
qed
subsection \<open>Upper powerdomain is bifinite\<close>
lemma approx_chain_upper_map:
assumes "approx_chain a"
shows "approx_chain (\i. upper_map\(a i))"
using assms unfolding approx_chain_def
by (simp add: lub_APP upper_map_ID finite_deflation_upper_map)
instance upper_pd :: (bifinite) bifinite
proof
show "\(a::nat \ 'a upper_pd \ 'a upper_pd). approx_chain a"
using bifinite [where 'a='a]
by (fast intro!: approx_chain_upper_map)
qed
subsection \<open>Join\<close>
definition
upper_join :: "'a upper_pd upper_pd \ 'a upper_pd" where
"upper_join = (\ xss. upper_bind\xss\(\ xs. xs))"
lemma upper_join_unit [simp]:
"upper_join\{xs}\ = xs"
unfolding upper_join_def by simp
lemma upper_join_plus [simp]:
"upper_join\(xss \\ yss) = upper_join\xss \\ upper_join\yss"
unfolding upper_join_def by simp
lemma upper_join_bottom [simp]: "upper_join\\ = \"
unfolding upper_join_def by simp
lemma upper_join_map_unit:
"upper_join\(upper_map\upper_unit\xs) = xs"
by (induct xs rule: upper_pd_induct, simp_all)
lemma upper_join_map_join:
"upper_join\(upper_map\upper_join\xsss) = upper_join\(upper_join\xsss)"
by (induct xsss rule: upper_pd_induct, simp_all)
lemma upper_join_map_map:
"upper_join\(upper_map\(upper_map\f)\xss) =
upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
by (induct xss rule: upper_pd_induct, simp_all)
end
¤ Dauer der Verarbeitung: 0.21 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|