section "Arithmetic and Boolean Expressions"
subsection "Arithmetic Expressions"
theory AExp imports Main begin
type_synonym vname = string
type_synonym val = int
type_synonym state = "vname \ val"
text_raw\<open>\snip{AExpaexpdef}{2}{1}{%\<close>
datatype aexp = N int | V vname | Plus aexp aexp
text_raw\<open>}%endsnip\<close>
text_raw\<open>\snip{AExpavaldef}{1}{2}{%\<close>
fun aval :: "aexp \ state \ val" where
"aval (N n) s = n" |
"aval (V x) s = s x" |
"aval (Plus a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s + aval a\<^sub>2 s"
text_raw\<open>}%endsnip\<close>
value "aval (Plus (V ''x'') (N 5)) (\x. if x = ''x'' then 7 else 0)"
text \<open>The same state more concisely:\<close>
value "aval (Plus (V ''x'') (N 5)) ((\x. 0) (''x'':= 7))"
text \<open>A little syntax magic to write larger states compactly:\<close>
definition null_state ("<>") where
"null_state \ \x. 0"
syntax
"_State" :: "updbinds => 'a" ("<_>")
translations
"_State ms" == "_Update <> ms"
"_State (_updbinds b bs)" <= "_Update (_State b) bs"
text \<open>\noindent
We can now write a series of updates to the function \<open>\<lambda>x. 0\<close> compactly:
\<close>
lemma " = (<> (a := 1)) (b := (2::int))"
by (rule refl)
value "aval (Plus (V ''x'') (N 5)) <''x'' := 7>"
text \<open>In the @{term[source] "<a := b>"} syntax, variables that are not mentioned are 0 by default:
\<close>
value "aval (Plus (V ''x'') (N 5)) <''y'' := 7>"
text\<open>Note that this \<open><\<dots>>\<close> syntax works for any function space
\<open>\<tau>\<^sub>1 \<Rightarrow> \<tau>\<^sub>2\<close> where \<open>\<tau>\<^sub>2\<close> has a \<open>0\<close>.\<close>
subsection "Constant Folding"
text\<open>Evaluate constant subsexpressions:\<close>
text_raw\<open>\snip{AExpasimpconstdef}{0}{2}{%\<close>
fun asimp_const :: "aexp \ aexp" where
"asimp_const (N n) = N n" |
"asimp_const (V x) = V x" |
"asimp_const (Plus a\<^sub>1 a\<^sub>2) =
(case (asimp_const a\<^sub>1, asimp_const a\<^sub>2) of
(N n\<^sub>1, N n\<^sub>2) \<Rightarrow> N(n\<^sub>1+n\<^sub>2) |
(b\<^sub>1,b\<^sub>2) \<Rightarrow> Plus b\<^sub>1 b\<^sub>2)"
text_raw\<open>}%endsnip\<close>
theorem aval_asimp_const:
"aval (asimp_const a) s = aval a s"
apply(induction a)
apply (auto split: aexp.split)
done
text\<open>Now we also eliminate all occurrences 0 in additions. The standard
method: optimized versions of the constructors:\<close>
text_raw\<open>\snip{AExpplusdef}{0}{2}{%\<close>
fun plus :: "aexp \ aexp \ aexp" where
"plus (N i\<^sub>1) (N i\<^sub>2) = N(i\<^sub>1+i\<^sub>2)" |
"plus (N i) a = (if i=0 then a else Plus (N i) a)" |
"plus a (N i) = (if i=0 then a else Plus a (N i))" |
"plus a\<^sub>1 a\<^sub>2 = Plus a\<^sub>1 a\<^sub>2"
text_raw\<open>}%endsnip\<close>
lemma aval_plus[simp]:
"aval (plus a1 a2) s = aval a1 s + aval a2 s"
apply(induction a1 a2 rule: plus.induct)
apply simp_all (* just for a change from auto *)
done
text_raw\<open>\snip{AExpasimpdef}{2}{0}{%\<close>
fun asimp :: "aexp \ aexp" where
"asimp (N n) = N n" |
"asimp (V x) = V x" |
"asimp (Plus a\<^sub>1 a\<^sub>2) = plus (asimp a\<^sub>1) (asimp a\<^sub>2)"
text_raw\<open>}%endsnip\<close>
text\<open>Note that in \<^const>\<open>asimp_const\<close> the optimized constructor was
inlined. Making it a separate function \<^const>\<open>plus\<close> improves modularity of
the code and the proofs.\<close>
value "asimp (Plus (Plus (N 0) (N 0)) (Plus (V ''x'') (N 0)))"
theorem aval_asimp[simp]:
"aval (asimp a) s = aval a s"
apply(induction a)
apply simp_all
done
end
¤ Dauer der Verarbeitung: 0.15 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|