(* Author: Tobias Nipkow *)
subsection "Computable Abstract Interpretation"
theory Abs_Int1
imports Abs_State
begin
text\<open>Abstract interpretation over type \<open>st\<close> instead of functions.\<close>
context Gamma_semilattice
begin
fun aval' :: "aexp \ 'av st \ 'av" where
"aval' (N i) S = num' i" |
"aval' (V x) S = fun S x" |
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"
lemma aval'_correct: "s \ \\<^sub>s S \ aval a s \ \(aval' a S)"
by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def)
lemma gamma_Step_subcomm: fixes C1 C2 :: "'a::semilattice_sup acom"
assumes "!!x e S. f1 x e (\\<^sub>o S) \ \\<^sub>o (f2 x e S)"
"!!b S. g1 b (\\<^sub>o S) \ \\<^sub>o (g2 b S)"
shows "Step f1 g1 (\\<^sub>o S) (\\<^sub>c C) \ \\<^sub>c (Step f2 g2 S C)"
proof(induction C arbitrary: S)
qed (auto simp: assms intro!: mono_gamma_o sup_ge1 sup_ge2)
lemma in_gamma_update: "\ s \ \\<^sub>s S; i \ \ a \ \ s(x := i) \ \\<^sub>s(update S x a)"
by(simp add: \<gamma>_st_def)
end
locale Abs_Int = Gamma_semilattice where \<gamma>=\<gamma>
for \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set"
begin
definition "step' = Step
(\<lambda>x e S. case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S)))
(\<lambda>b S. S)"
definition AI :: "com \ 'av st option acom option" where
"AI c = pfp (step' \) (bot c)"
lemma strip_step'[simp]: "strip(step' S C) = strip C"
by(simp add: step'_def)
text\<open>Correctness:\<close>
lemma step_step': "step (\\<^sub>o S) (\\<^sub>c C) \ \\<^sub>c (step' S C)"
unfolding step_def step'_def
by(rule gamma_Step_subcomm)
(auto simp: intro!: aval'_correct in_gamma_update split: option.splits)
lemma AI_correct: "AI c = Some C \ CS c \ \\<^sub>c C"
proof(simp add: CS_def AI_def)
assume 1: "pfp (step' \) (bot c) = Some C"
have pfp': "step' \<top> C \<le> C" by(rule pfp_pfp[OF 1])
have 2: "step (\\<^sub>o \) (\\<^sub>c C) \ \\<^sub>c C" \ \transfer the pfp'\
proof(rule order_trans)
show "step (\\<^sub>o \) (\\<^sub>c C) \ \\<^sub>c (step' \ C)" by(rule step_step')
show "... \ \\<^sub>c C" by (metis mono_gamma_c[OF pfp'])
qed
have 3: "strip (\\<^sub>c C) = c" by(simp add: strip_pfp[OF _ 1] step'_def)
have "lfp c (step (\\<^sub>o \)) \ \\<^sub>c C"
by(rule lfp_lowerbound[simplified,where f="step (\\<^sub>o \)", OF 3 2])
thus "lfp c (step UNIV) \ \\<^sub>c C" by simp
qed
end
subsubsection "Monotonicity"
locale Abs_Int_mono = Abs_Int +
assumes mono_plus': "a1 \ b1 \ a2 \ b2 \ plus' a1 a2 \ plus' b1 b2"
begin
lemma mono_aval': "S1 \ S2 \ aval' e S1 \ aval' e S2"
by(induction e) (auto simp: mono_plus' mono_fun)
theorem mono_step': "S1 \ S2 \ C1 \ C2 \ step' S1 C1 \ step' S2 C2"
unfolding step'_def
by(rule mono2_Step) (auto simp: mono_aval' split: option.split)
lemma mono_step'_top: "C \ C' \ step' \ C \ step' \ C'"
by (metis mono_step' order_refl)
lemma AI_least_pfp: assumes "AI c = Some C" "step' \ C' \ C'" "strip C' = c"
shows "C \ C'"
by(rule pfp_bot_least[OF _ _ assms(2,3) assms(1)[unfolded AI_def]])
(simp_all add: mono_step'_top)
end
subsubsection "Termination"
locale Measure1 =
fixes m :: "'av::order_top \ nat"
fixes h :: "nat"
assumes h: "m x \ h"
begin
definition m_s :: "'av st \ vname set \ nat" ("m\<^sub>s") where
"m_s S X = (\ x \ X. m(fun S x))"
lemma m_s_h: "finite X \ m_s S X \ h * card X"
by(simp add: m_s_def) (metis mult.commute of_nat_id sum_bounded_above[OF h])
definition m_o :: "'av st option \ vname set \ nat" ("m\<^sub>o") where
"m_o opt X = (case opt of None \ h * card X + 1 | Some S \ m_s S X)"
lemma m_o_h: "finite X \ m_o opt X \ (h*card X + 1)"
by(auto simp add: m_o_def m_s_h le_SucI split: option.split dest:m_s_h)
definition m_c :: "'av st option acom \ nat" ("m\<^sub>c") where
"m_c C = sum_list (map (\a. m_o a (vars C)) (annos C))"
text\<open>Upper complexity bound:\<close>
lemma m_c_h: "m_c C \ size(annos C) * (h * card(vars C) + 1)"
proof-
let ?X = "vars C" let ?n = "card ?X" let ?a = "size(annos C)"
have "m_c C = (\i
by(simp add: m_c_def sum_list_sum_nth atLeast0LessThan)
also have "\ \ (\i
apply(rule sum_mono) using m_o_h[OF finite_Cvars] by simp
also have "\ = ?a * (h * ?n + 1)" by simp
finally show ?thesis .
qed
end
fun top_on_st :: "'a::order_top st \ vname set \ bool" ("top'_on\<^sub>s") where
"top_on_st S X = (\x\X. fun S x = \)"
fun top_on_opt :: "'a::order_top st option \ vname set \ bool" ("top'_on\<^sub>o") where
"top_on_opt (Some S) X = top_on_st S X" |
"top_on_opt None X = True"
definition top_on_acom :: "'a::order_top st option acom \ vname set \ bool" ("top'_on\<^sub>c") where
"top_on_acom C X = (\a \ set(annos C). top_on_opt a X)"
lemma top_on_top: "top_on_opt (\::_ st option) X"
by(auto simp: top_option_def fun_top)
lemma top_on_bot: "top_on_acom (bot c) X"
by(auto simp add: top_on_acom_def bot_def)
lemma top_on_post: "top_on_acom C X \ top_on_opt (post C) X"
by(simp add: top_on_acom_def post_in_annos)
lemma top_on_acom_simps:
"top_on_acom (SKIP {Q}) X = top_on_opt Q X"
"top_on_acom (x ::= e {Q}) X = top_on_opt Q X"
"top_on_acom (C1;;C2) X = (top_on_acom C1 X \ top_on_acom C2 X)"
"top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X =
(top_on_opt P1 X \<and> top_on_acom C1 X \<and> top_on_opt P2 X \<and> top_on_acom C2 X \<and> top_on_opt Q X)"
"top_on_acom ({I} WHILE b DO {P} C {Q}) X =
(top_on_opt I X \<and> top_on_acom C X \<and> top_on_opt P X \<and> top_on_opt Q X)"
by(auto simp add: top_on_acom_def)
lemma top_on_sup:
"top_on_opt o1 X \ top_on_opt o2 X \ top_on_opt (o1 \ o2 :: _ st option) X"
apply(induction o1 o2 rule: sup_option.induct)
apply(auto)
by transfer simp
lemma top_on_Step: fixes C :: "('a::semilattice_sup_top)st option acom"
assumes "!!x e S. \top_on_opt S X; x \ X; vars e \ -X\ \ top_on_opt (f x e S) X"
"!!b S. top_on_opt S X \ vars b \ -X \ top_on_opt (g b S) X"
shows "\ vars C \ -X; top_on_opt S X; top_on_acom C X \ \ top_on_acom (Step f g S C) X"
proof(induction C arbitrary: S)
qed (auto simp: top_on_acom_simps vars_acom_def top_on_post top_on_sup assms)
locale Measure = Measure1 +
assumes m2: "x < y \ m x > m y"
begin
lemma m1: "x \ y \ m x \ m y"
by(auto simp: le_less m2)
lemma m_s2_rep: assumes "finite(X)" and "S1 = S2 on -X" and "\x. S1 x \ S2 x" and "S1 \ S2"
shows "(\x\X. m (S2 x)) < (\x\X. m (S1 x))"
proof-
from assms(3) have 1: "\x\X. m(S1 x) \ m(S2 x)" by (simp add: m1)
from assms(2,3,4) have "\x\X. S1 x < S2 x"
by(simp add: fun_eq_iff) (metis Compl_iff le_neq_trans)
hence 2: "\x\X. m(S1 x) > m(S2 x)" by (metis m2)
from sum_strict_mono_ex1[OF \<open>finite X\<close> 1 2]
show "(\x\X. m (S2 x)) < (\x\X. m (S1 x))" .
qed
lemma m_s2: "finite(X) \ fun S1 = fun S2 on -X
\<Longrightarrow> S1 < S2 \<Longrightarrow> m_s S1 X > m_s S2 X"
apply(auto simp add: less_st_def m_s_def)
apply (transfer fixing: m)
apply(simp add: less_eq_st_rep_iff eq_st_def m_s2_rep)
done
lemma m_o2: "finite X \ top_on_opt o1 (-X) \ top_on_opt o2 (-X) \
o1 < o2 \<Longrightarrow> m_o o1 X > m_o o2 X"
proof(induction o1 o2 rule: less_eq_option.induct)
case 1 thus ?case by (auto simp: m_o_def m_s2 less_option_def)
next
case 2 thus ?case by(auto simp: m_o_def less_option_def le_imp_less_Suc m_s_h)
next
case 3 thus ?case by (auto simp: less_option_def)
qed
lemma m_o1: "finite X \ top_on_opt o1 (-X) \ top_on_opt o2 (-X) \
o1 \<le> o2 \<Longrightarrow> m_o o1 X \<ge> m_o o2 X"
by(auto simp: le_less m_o2)
lemma m_c2: "top_on_acom C1 (-vars C1) \ top_on_acom C2 (-vars C2) \
C1 < C2 \<Longrightarrow> m_c C1 > m_c C2"
proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def less_acom_def)
let ?X = "vars(strip C2)"
assume top: "top_on_acom C1 (- vars(strip C2))" "top_on_acom C2 (- vars(strip C2))"
and strip_eq: "strip C1 = strip C2"
and 0: "\i annos C2 ! i"
hence 1: "\i m_o (annos C2 ! i) ?X"
apply (auto simp: all_set_conv_all_nth vars_acom_def top_on_acom_def)
by (metis finite_cvars m_o1 size_annos_same2)
fix i assume i: "i < size(annos C2)" "\ annos C2 ! i \ annos C1 ! i"
have topo1: "top_on_opt (annos C1 ! i) (- ?X)"
using i(1) top(1) by(simp add: top_on_acom_def size_annos_same[OF strip_eq])
have topo2: "top_on_opt (annos C2 ! i) (- ?X)"
using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF strip_eq])
from i have "m_o (annos C1 ! i) ?X > m_o (annos C2 ! i) ?X" (is "?P i")
by (metis 0 less_option_def m_o2[OF finite_cvars topo1] topo2)
hence 2: "\i < size(annos C2). ?P i" using \i < size(annos C2)\ by blast
have "(\i
< (\<Sum>i<size(annos C2). m_o (annos C1 ! i) ?X)"
apply(rule sum_strict_mono_ex1) using 1 2 by (auto)
thus ?thesis
by(simp add: m_c_def vars_acom_def strip_eq sum_list_sum_nth atLeast0LessThan size_annos_same[OF strip_eq])
qed
end
locale Abs_Int_measure =
Abs_Int_mono where \<gamma>=\<gamma> + Measure where m=m
for \<gamma> :: "'av::semilattice_sup_top \<Rightarrow> val set" and m :: "'av \<Rightarrow> nat"
begin
lemma top_on_step': "\ top_on_acom C (-vars C) \ \ top_on_acom (step' \ C) (-vars C)"
unfolding step'_def
by(rule top_on_Step)
(auto simp add: top_option_def fun_top split: option.splits)
lemma AI_Some_measure: "\C. AI c = Some C"
unfolding AI_def
apply(rule pfp_termination[where I = "\C. top_on_acom C (- vars C)" and m="m_c"])
apply(simp_all add: m_c2 mono_step'_top bot_least top_on_bot)
using top_on_step' apply(auto simp add: vars_acom_def)
done
end
end
¤ Dauer der Verarbeitung: 0.16 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|