(* Title: ZF/Induct/PropLog.thy
Author: Tobias Nipkow & Lawrence C Paulson
Copyright 1993 University of Cambridge
*)
section \<open>Meta-theory of propositional logic\<close>
theory PropLog imports ZF begin
text \<open>
Datatype definition of propositional logic formulae and inductive
definition of the propositional tautologies.
Inductive definition of propositional logic. Soundness and
completeness w.r.t.\ truth-tables.
Prove: If \<open>H |= p\<close> then \<open>G |= p\<close> where \<open>G \<in>
Fin(H)\<close>
\<close>
subsection \<open>The datatype of propositions\<close>
consts
propn :: i
datatype propn =
Fls
| Var ("n \ nat") (\#_\ [100] 100)
| Imp ("p \ propn", "q \ propn") (infixr \=>\ 90)
subsection \<open>The proof system\<close>
consts thms :: "i => i"
abbreviation
thms_syntax :: "[i,i] => o" (infixl \<open>|-\<close> 50)
where "H |- p == p \ thms(H)"
inductive
domains "thms(H)" \<subseteq> "propn"
intros
H: "[| p \ H; p \ propn |] ==> H |- p"
K: "[| p \ propn; q \ propn |] ==> H |- p=>q=>p"
S: "[| p \ propn; q \ propn; r \ propn |]
==> H |- (p=>q=>r) => (p=>q) => p=>r"
DN: "p \ propn ==> H |- ((p=>Fls) => Fls) => p"
MP: "[| H |- p=>q; H |- p; p \ propn; q \ propn |] ==> H |- q"
type_intros "propn.intros"
declare propn.intros [simp]
subsection \<open>The semantics\<close>
subsubsection \<open>Semantics of propositional logic.\<close>
consts
is_true_fun :: "[i,i] => i"
primrec
"is_true_fun(Fls, t) = 0"
"is_true_fun(Var(v), t) = (if v \ t then 1 else 0)"
"is_true_fun(p=>q, t) = (if is_true_fun(p,t) = 1 then is_true_fun(q,t) else 1)"
definition
is_true :: "[i,i] => o" where
"is_true(p,t) == is_true_fun(p,t) = 1"
\<comment> \<open>this definition is required since predicates can't be recursive\<close>
lemma is_true_Fls [simp]: "is_true(Fls,t) \ False"
by (simp add: is_true_def)
lemma is_true_Var [simp]: "is_true(#v,t) \ v \ t"
by (simp add: is_true_def)
lemma is_true_Imp [simp]: "is_true(p=>q,t) \ (is_true(p,t)\is_true(q,t))"
by (simp add: is_true_def)
subsubsection \<open>Logical consequence\<close>
text \<open>
For every valuation, if all elements of \<open>H\<close> are true then so
is \<open>p\<close>.
\<close>
definition
logcon :: "[i,i] => o" (infixl \<open>|=\<close> 50) where
"H |= p == \t. (\q \ H. is_true(q,t)) \ is_true(p,t)"
text \<open>
A finite set of hypotheses from \<open>t\<close> and the \<open>Var\<close>s in
\<open>p\<close>.
\<close>
consts
hyps :: "[i,i] => i"
primrec
"hyps(Fls, t) = 0"
"hyps(Var(v), t) = (if v \ t then {#v} else {#v=>Fls})"
"hyps(p=>q, t) = hyps(p,t) \ hyps(q,t)"
subsection \<open>Proof theory of propositional logic\<close>
lemma thms_mono: "G \ H ==> thms(G) \ thms(H)"
apply (unfold thms.defs)
apply (rule lfp_mono)
apply (rule thms.bnd_mono)+
apply (assumption | rule univ_mono basic_monos)+
done
lemmas thms_in_pl = thms.dom_subset [THEN subsetD]
inductive_cases ImpE: "p=>q \ propn"
lemma thms_MP: "[| H |- p=>q; H |- p |] ==> H |- q"
\<comment> \<open>Stronger Modus Ponens rule: no typechecking!\<close>
apply (rule thms.MP)
apply (erule asm_rl thms_in_pl thms_in_pl [THEN ImpE])+
done
lemma thms_I: "p \ propn ==> H |- p=>p"
\<comment> \<open>Rule is called \<open>I\<close> for Identity Combinator, not for Introduction.\<close>
apply (rule thms.S [THEN thms_MP, THEN thms_MP])
apply (rule_tac [5] thms.K)
apply (rule_tac [4] thms.K)
apply simp_all
done
subsubsection \<open>Weakening, left and right\<close>
lemma weaken_left: "[| G \ H; G|-p |] ==> H|-p"
\<comment> \<open>Order of premises is convenient with \<open>THEN\<close>\<close>
by (erule thms_mono [THEN subsetD])
lemma weaken_left_cons: "H |- p ==> cons(a,H) |- p"
by (erule subset_consI [THEN weaken_left])
lemmas weaken_left_Un1 = Un_upper1 [THEN weaken_left]
lemmas weaken_left_Un2 = Un_upper2 [THEN weaken_left]
lemma weaken_right: "[| H |- q; p \ propn |] ==> H |- p=>q"
by (simp_all add: thms.K [THEN thms_MP] thms_in_pl)
subsubsection \<open>The deduction theorem\<close>
theorem deduction: "[| cons(p,H) |- q; p \ propn |] ==> H |- p=>q"
apply (erule thms.induct)
apply (blast intro: thms_I thms.H [THEN weaken_right])
apply (blast intro: thms.K [THEN weaken_right])
apply (blast intro: thms.S [THEN weaken_right])
apply (blast intro: thms.DN [THEN weaken_right])
apply (blast intro: thms.S [THEN thms_MP [THEN thms_MP]])
done
subsubsection \<open>The cut rule\<close>
lemma cut: "[| H|-p; cons(p,H) |- q |] ==> H |- q"
apply (rule deduction [THEN thms_MP])
apply (simp_all add: thms_in_pl)
done
lemma thms_FlsE: "[| H |- Fls; p \ propn |] ==> H |- p"
apply (rule thms.DN [THEN thms_MP])
apply (rule_tac [2] weaken_right)
apply (simp_all add: propn.intros)
done
lemma thms_notE: "[| H |- p=>Fls; H |- p; q \ propn |] ==> H |- q"
by (erule thms_MP [THEN thms_FlsE])
subsubsection \<open>Soundness of the rules wrt truth-table semantics\<close>
theorem soundness: "H |- p ==> H |= p"
apply (unfold logcon_def)
apply (induct set: thms)
apply auto
done
subsection \<open>Completeness\<close>
subsubsection \<open>Towards the completeness proof\<close>
lemma Fls_Imp: "[| H |- p=>Fls; q \ propn |] ==> H |- p=>q"
apply (frule thms_in_pl)
apply (rule deduction)
apply (rule weaken_left_cons [THEN thms_notE])
apply (blast intro: thms.H elim: ImpE)+
done
lemma Imp_Fls: "[| H |- p; H |- q=>Fls |] ==> H |- (p=>q)=>Fls"
apply (frule thms_in_pl)
apply (frule thms_in_pl [of concl: "q=>Fls"])
apply (rule deduction)
apply (erule weaken_left_cons [THEN thms_MP])
apply (rule consI1 [THEN thms.H, THEN thms_MP])
apply (blast intro: weaken_left_cons elim: ImpE)+
done
lemma hyps_thms_if:
"p \ propn ==> hyps(p,t) |- (if is_true(p,t) then p else p=>Fls)"
\<comment> \<open>Typical example of strengthening the induction statement.\<close>
apply simp
apply (induct_tac p)
apply (simp_all add: thms_I thms.H)
apply (safe elim!: Fls_Imp [THEN weaken_left_Un1] Fls_Imp [THEN weaken_left_Un2])
apply (blast intro: weaken_left_Un1 weaken_left_Un2 weaken_right Imp_Fls)+
done
lemma logcon_thms_p: "[| p \ propn; 0 |= p |] ==> hyps(p,t) |- p"
\<comment> \<open>Key lemma for completeness; yields a set of assumptions satisfying \<open>p\<close>\<close>
apply (drule hyps_thms_if)
apply (simp add: logcon_def)
done
text \<open>
For proving certain theorems in our new propositional logic.
\<close>
lemmas propn_SIs = propn.intros deduction
and propn_Is = thms_in_pl thms.H thms.H [THEN thms_MP]
text \<open>
The excluded middle in the form of an elimination rule.
\<close>
lemma thms_excluded_middle:
"[| p \ propn; q \ propn |] ==> H |- (p=>q) => ((p=>Fls)=>q) => q"
apply (rule deduction [THEN deduction])
apply (rule thms.DN [THEN thms_MP])
apply (best intro!: propn_SIs intro: propn_Is)+
done
lemma thms_excluded_middle_rule:
"[| cons(p,H) |- q; cons(p=>Fls,H) |- q; p \ propn |] ==> H |- q"
\<comment> \<open>Hard to prove directly because it requires cuts\<close>
apply (rule thms_excluded_middle [THEN thms_MP, THEN thms_MP])
apply (blast intro!: propn_SIs intro: propn_Is)+
done
subsubsection \<open>Completeness -- lemmas for reducing the set of assumptions\<close>
text \<open>
For the case \<^prop>\<open>hyps(p,t)-cons(#v,Y) |- p\<close> we also have \<^prop>\<open>hyps(p,t)-{#v} \<subseteq> hyps(p, t-{v})\<close>.
\<close>
lemma hyps_Diff:
"p \ propn ==> hyps(p, t-{v}) \ cons(#v=>Fls, hyps(p,t)-{#v})"
by (induct set: propn) auto
text \<open>
For the case \<^prop>\<open>hyps(p,t)-cons(#v => Fls,Y) |- p\<close> we also have
\<^prop>\<open>hyps(p,t)-{#v=>Fls} \<subseteq> hyps(p, cons(v,t))\<close>.
\<close>
lemma hyps_cons:
"p \ propn ==> hyps(p, cons(v,t)) \ cons(#v, hyps(p,t)-{#v=>Fls})"
by (induct set: propn) auto
text \<open>Two lemmas for use with \<open>weaken_left\<close>\<close>
lemma cons_Diff_same: "B-C \ cons(a, B-cons(a,C))"
by blast
lemma cons_Diff_subset2: "cons(a, B-{c}) - D \ cons(a, B-cons(c,D))"
by blast
text \<open>
The set \<^term>\<open>hyps(p,t)\<close> is finite, and elements have the form
\<^term>\<open>#v\<close> or \<^term>\<open>#v=>Fls\<close>; could probably prove the stronger
\<^prop>\<open>hyps(p,t) \<in> Fin(hyps(p,0) \<union> hyps(p,nat))\<close>.
\<close>
lemma hyps_finite: "p \ propn ==> hyps(p,t) \ Fin(\v \ nat. {#v, #v=>Fls})"
by (induct set: propn) auto
lemmas Diff_weaken_left = Diff_mono [OF _ subset_refl, THEN weaken_left]
text \<open>
Induction on the finite set of assumptions \<^term>\<open>hyps(p,t0)\<close>. We
may repeatedly subtract assumptions until none are left!
\<close>
lemma completeness_0_lemma [rule_format]:
"[| p \ propn; 0 |= p |] ==> \t. hyps(p,t) - hyps(p,t0) |- p"
apply (frule hyps_finite)
apply (erule Fin_induct)
apply (simp add: logcon_thms_p Diff_0)
txt \<open>inductive step\<close>
apply safe
txt \<open>Case \<^prop>\<open>hyps(p,t)-cons(#v,Y) |- p\<close>\<close>
apply (rule thms_excluded_middle_rule)
apply (erule_tac [3] propn.intros)
apply (blast intro: cons_Diff_same [THEN weaken_left])
apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
hyps_Diff [THEN Diff_weaken_left])
txt \<open>Case \<^prop>\<open>hyps(p,t)-cons(#v => Fls,Y) |- p\<close>\<close>
apply (rule thms_excluded_middle_rule)
apply (erule_tac [3] propn.intros)
apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
hyps_cons [THEN Diff_weaken_left])
apply (blast intro: cons_Diff_same [THEN weaken_left])
done
subsubsection \<open>Completeness theorem\<close>
lemma completeness_0: "[| p \ propn; 0 |= p |] ==> 0 |- p"
\<comment> \<open>The base case for completeness\<close>
apply (rule Diff_cancel [THEN subst])
apply (blast intro: completeness_0_lemma)
done
lemma logcon_Imp: "[| cons(p,H) |= q |] ==> H |= p=>q"
\<comment> \<open>A semantic analogue of the Deduction Theorem\<close>
by (simp add: logcon_def)
lemma completeness:
"H \ Fin(propn) ==> p \ propn \ H |= p \ H |- p"
apply (induct arbitrary: p set: Fin)
apply (safe intro!: completeness_0)
apply (rule weaken_left_cons [THEN thms_MP])
apply (blast intro!: logcon_Imp propn.intros)
apply (blast intro: propn_Is)
done
theorem thms_iff: "H \ Fin(propn) ==> H |- p \ H |= p \ p \ propn"
by (blast intro: soundness completeness thms_in_pl)
end
¤ Dauer der Verarbeitung: 0.33 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|