/*
* Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "ci/ciConstant.hpp"
#include "ci/ciEnv.hpp"
#include "ci/ciField.hpp"
#include "ci/ciInstance.hpp"
#include "ci/ciInstanceKlass.hpp"
#include "ci/ciMethod.hpp"
#include "ci/ciNullObject.hpp"
#include "ci/ciReplay.hpp"
#include "ci/ciSymbols.hpp"
#include "ci/ciUtilities.inline.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmClasses.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/scopeDesc.hpp"
#include "compiler/compilationLog.hpp"
#include "compiler/compilationPolicy.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compilerEvent.hpp"
#include "compiler/compileLog.hpp"
#include "compiler/compileTask.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/bytecodeStream.hpp"
#include "interpreter/linkResolver.hpp"
#include "jfr/jfrEvents.hpp"
#include "jvm.h"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/constantPool.inline.hpp"
#include "oops/cpCache.inline.hpp"
#include "oops/method.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbolHandle.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/fieldDescriptor.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/reflection.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// ciEnv
//
// This class is the top level broker for requests from the compiler
// to the VM.
ciObject* ciEnv::_null_object_instance;
#define VM_CLASS_DEFN(name, ignore_s) ciInstanceKlass* ciEnv::_##name = NULL;
VM_CLASSES_DO(VM_CLASS_DEFN)
#undef VM_CLASS_DEFN
ciSymbol* ciEnv::_unloaded_cisymbol = NULL;
ciInstanceKlass* ciEnv::_unloaded_ciinstance_klass = NULL;
ciObjArrayKlass* ciEnv::_unloaded_ciobjarrayklass = NULL;
jobject ciEnv::_ArrayIndexOutOfBoundsException_handle = NULL;
jobject ciEnv::_ArrayStoreException_handle = NULL;
jobject ciEnv::_ClassCastException_handle = NULL;
#ifndef PRODUCT
static bool firstEnv = true;
#endif /* PRODUCT */
// ------------------------------------------------------------------
// ciEnv::ciEnv
ciEnv::ciEnv(CompileTask* task)
: _ciEnv_arena(mtCompiler) {
VM_ENTRY_MARK;
// Set up ciEnv::current immediately, for the sake of ciObjectFactory, etc.
thread->set_env(this);
assert(ciEnv::current() == this, "sanity");
_oop_recorder = NULL;
_debug_info = NULL;
_dependencies = NULL;
_failure_reason = NULL;
_inc_decompile_count_on_failure = true;
_compilable = MethodCompilable;
_break_at_compile = false;
_compiler_data = NULL;
#ifndef PRODUCT
assert(!firstEnv, "not initialized properly");
#endif /* !PRODUCT */
_num_inlined_bytecodes = 0;
assert(task == NULL || thread->task() == task, "sanity");
if (task != NULL) {
task->mark_started(os::elapsed_counter());
}
_task = task;
_log = NULL;
// Temporary buffer for creating symbols and such.
_name_buffer = NULL;
_name_buffer_len = 0;
_arena = &_ciEnv_arena;
_factory = new (_arena) ciObjectFactory(_arena, 128);
// Preload commonly referenced system ciObjects.
// During VM initialization, these instances have not yet been created.
// Assertions ensure that these instances are not accessed before
// their initialization.
assert(Universe::is_fully_initialized(), "should be complete");
oop o = Universe::null_ptr_exception_instance();
assert(o != NULL, "should have been initialized");
_NullPointerException_instance = get_object(o)->as_instance();
o = Universe::arithmetic_exception_instance();
assert(o != NULL, "should have been initialized");
_ArithmeticException_instance = get_object(o)->as_instance();
_ArrayIndexOutOfBoundsException_instance = NULL;
_ArrayStoreException_instance = NULL;
_ClassCastException_instance = NULL;
_the_null_string = NULL;
_the_min_jint_string = NULL;
_jvmti_redefinition_count = 0;
_jvmti_can_hotswap_or_post_breakpoint = false;
_jvmti_can_access_local_variables = false;
_jvmti_can_post_on_exceptions = false;
_jvmti_can_pop_frame = false;
_dyno_klasses = NULL;
_dyno_locs = NULL;
_dyno_name[0] = '\0';
}
// Record components of a location descriptor string. Components are appended by the constructor and
// removed by the destructor, like a stack, so scope matters. These location descriptors are used to
// locate dynamic classes, and terminate at a Method* or oop field associated with dynamic/hidden class.
//
// Example use:
//
// {
// RecordLocation fp(this, "field1");
// // location: "field1"
// { RecordLocation fp(this, " field2"); // location: "field1 field2" }
// // location: "field1"
// { RecordLocation fp(this, " field3"); // location: "field1 field3" }
// // location: "field1"
// }
// // location: ""
//
// Examples of actual locations
// @bci compiler/ciReplay/CiReplayBase$TestMain test (I)V 1 <appendix> argL0 ;
// // resolve invokedynamic at bci 1 of TestMain.test, then read field "argL0" from appendix
// @bci compiler/ciReplay/CiReplayBase$TestMain main ([Ljava/lang/String;)V 0 <appendix> form vmentry <vmtarget> ;
// // resolve invokedynamic at bci 0 of TestMain.main, then read field "form.vmentry.method.vmtarget" from appendix
// @cpi compiler/ciReplay/CiReplayBase$TestMain 56 form vmentry <vmtarget> ;
// // resolve MethodHandle at cpi 56 of TestMain, then read field "vmentry.method.vmtarget" from resolved MethodHandle
class RecordLocation {
private:
char* end;
ATTRIBUTE_PRINTF(3, 4)
void push(ciEnv* ci, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
push_va(ci, fmt, args);
va_end(args);
}
public:
ATTRIBUTE_PRINTF(3, 0)
void push_va(ciEnv* ci, const char* fmt, va_list args) {
char *e = ci->_dyno_name + strlen(ci->_dyno_name);
char *m = ci->_dyno_name + ARRAY_SIZE(ci->_dyno_name) - 1;
os::vsnprintf(e, m - e, fmt, args);
assert(strlen(ci->_dyno_name) < (ARRAY_SIZE(ci->_dyno_name) - 1), "overflow");
}
// append a new component
ATTRIBUTE_PRINTF(3, 4)
RecordLocation(ciEnv* ci, const char* fmt, ...) {
end = ci->_dyno_name + strlen(ci->_dyno_name);
va_list args;
va_start(args, fmt);
push(ci, " ");
push_va(ci, fmt, args);
va_end(args);
}
// reset to previous state
~RecordLocation() {
*end = '\0';
}
};
ciEnv::ciEnv(Arena* arena) : _ciEnv_arena(mtCompiler) {
ASSERT_IN_VM;
// Set up ciEnv::current immediately, for the sake of ciObjectFactory, etc.
CompilerThread* current_thread = CompilerThread::current();
assert(current_thread->env() == NULL, "must be");
current_thread->set_env(this);
assert(ciEnv::current() == this, "sanity");
_oop_recorder = NULL;
_debug_info = NULL;
_dependencies = NULL;
_failure_reason = NULL;
_inc_decompile_count_on_failure = true;
_compilable = MethodCompilable_never;
_break_at_compile = false;
_compiler_data = NULL;
#ifndef PRODUCT
assert(firstEnv, "must be first");
firstEnv = false;
#endif /* !PRODUCT */
_num_inlined_bytecodes = 0;
_task = NULL;
_log = NULL;
// Temporary buffer for creating symbols and such.
_name_buffer = NULL;
_name_buffer_len = 0;
_arena = arena;
_factory = new (_arena) ciObjectFactory(_arena, 128);
// Preload commonly referenced system ciObjects.
// During VM initialization, these instances have not yet been created.
// Assertions ensure that these instances are not accessed before
// their initialization.
assert(Universe::is_fully_initialized(), "must be");
_NullPointerException_instance = NULL;
_ArithmeticException_instance = NULL;
_ArrayIndexOutOfBoundsException_instance = NULL;
_ArrayStoreException_instance = NULL;
_ClassCastException_instance = NULL;
_the_null_string = NULL;
_the_min_jint_string = NULL;
_jvmti_redefinition_count = 0;
_jvmti_can_hotswap_or_post_breakpoint = false;
_jvmti_can_access_local_variables = false;
_jvmti_can_post_on_exceptions = false;
_jvmti_can_pop_frame = false;
_dyno_klasses = NULL;
_dyno_locs = NULL;
}
ciEnv::~ciEnv() {
GUARDED_VM_ENTRY(
CompilerThread* current_thread = CompilerThread::current();
_factory->remove_symbols();
// Need safepoint to clear the env on the thread. RedefineClasses might
// be reading it.
current_thread->set_env(NULL);
)
}
// ------------------------------------------------------------------
// Cache Jvmti state
bool ciEnv::cache_jvmti_state() {
VM_ENTRY_MARK;
// Get Jvmti capabilities under lock to get consistent values.
MutexLocker mu(JvmtiThreadState_lock);
_jvmti_redefinition_count = JvmtiExport::redefinition_count();
_jvmti_can_hotswap_or_post_breakpoint = JvmtiExport::can_hotswap_or_post_breakpoint();
_jvmti_can_access_local_variables = JvmtiExport::can_access_local_variables();
_jvmti_can_post_on_exceptions = JvmtiExport::can_post_on_exceptions();
_jvmti_can_pop_frame = JvmtiExport::can_pop_frame();
_jvmti_can_get_owned_monitor_info = JvmtiExport::can_get_owned_monitor_info();
_jvmti_can_walk_any_space = JvmtiExport::can_walk_any_space();
return _task != NULL && _task->method()->is_old();
}
bool ciEnv::jvmti_state_changed() const {
// Some classes were redefined
if (_jvmti_redefinition_count != JvmtiExport::redefinition_count()) {
return true;
}
if (!_jvmti_can_access_local_variables &&
JvmtiExport::can_access_local_variables()) {
return true;
}
if (!_jvmti_can_hotswap_or_post_breakpoint &&
JvmtiExport::can_hotswap_or_post_breakpoint()) {
return true;
}
if (!_jvmti_can_post_on_exceptions &&
JvmtiExport::can_post_on_exceptions()) {
return true;
}
if (!_jvmti_can_pop_frame &&
JvmtiExport::can_pop_frame()) {
return true;
}
if (!_jvmti_can_get_owned_monitor_info &&
JvmtiExport::can_get_owned_monitor_info()) {
return true;
}
if (!_jvmti_can_walk_any_space &&
JvmtiExport::can_walk_any_space()) {
return true;
}
return false;
}
// ------------------------------------------------------------------
// Cache DTrace flags
void ciEnv::cache_dtrace_flags() {
// Need lock?
_dtrace_method_probes = DTraceMethodProbes;
_dtrace_alloc_probes = DTraceAllocProbes;
}
// ------------------------------------------------------------------
// helper for lazy exception creation
ciInstance* ciEnv::get_or_create_exception(jobject& handle, Symbol* name) {
VM_ENTRY_MARK;
if (handle == NULL) {
// Cf. universe.cpp, creation of Universe::_null_ptr_exception_instance.
InstanceKlass* ik = SystemDictionary::find_instance_klass(THREAD, name, Handle(), Handle());
jobject objh = NULL;
if (ik != NULL) {
oop obj = ik->allocate_instance(THREAD);
if (!HAS_PENDING_EXCEPTION)
objh = JNIHandles::make_global(Handle(THREAD, obj));
}
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
} else {
handle = objh;
}
}
oop obj = JNIHandles::resolve(handle);
return obj == NULL? NULL: get_object(obj)->as_instance();
}
ciInstanceKlass* ciEnv::get_box_klass_for_primitive_type(BasicType type) {
switch (type) {
case T_BOOLEAN: return Boolean_klass();
case T_BYTE : return Byte_klass();
case T_CHAR : return Character_klass();
case T_SHORT : return Short_klass();
case T_INT : return Integer_klass();
case T_LONG : return Long_klass();
case T_FLOAT : return Float_klass();
case T_DOUBLE : return Double_klass();
default:
assert(false, "not a primitive: %s", type2name(type));
return NULL;
}
}
ciInstance* ciEnv::ArrayIndexOutOfBoundsException_instance() {
if (_ArrayIndexOutOfBoundsException_instance == NULL) {
_ArrayIndexOutOfBoundsException_instance
= get_or_create_exception(_ArrayIndexOutOfBoundsException_handle,
vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
return _ArrayIndexOutOfBoundsException_instance;
}
ciInstance* ciEnv::ArrayStoreException_instance() {
if (_ArrayStoreException_instance == NULL) {
_ArrayStoreException_instance
= get_or_create_exception(_ArrayStoreException_handle,
vmSymbols::java_lang_ArrayStoreException());
}
return _ArrayStoreException_instance;
}
ciInstance* ciEnv::ClassCastException_instance() {
if (_ClassCastException_instance == NULL) {
_ClassCastException_instance
= get_or_create_exception(_ClassCastException_handle,
vmSymbols::java_lang_ClassCastException());
}
return _ClassCastException_instance;
}
ciInstance* ciEnv::the_null_string() {
if (_the_null_string == NULL) {
VM_ENTRY_MARK;
_the_null_string = get_object(Universe::the_null_string())->as_instance();
}
return _the_null_string;
}
ciInstance* ciEnv::the_min_jint_string() {
if (_the_min_jint_string == NULL) {
VM_ENTRY_MARK;
_the_min_jint_string = get_object(Universe::the_min_jint_string())->as_instance();
}
return _the_min_jint_string;
}
// ------------------------------------------------------------------
// ciEnv::get_method_from_handle
ciMethod* ciEnv::get_method_from_handle(Method* method) {
VM_ENTRY_MARK;
return get_metadata(method)->as_method();
}
// ------------------------------------------------------------------
// ciEnv::check_klass_accessiblity
//
// Note: the logic of this method should mirror the logic of
// ConstantPool::verify_constant_pool_resolve.
bool ciEnv::check_klass_accessibility(ciKlass* accessing_klass,
Klass* resolved_klass) {
if (accessing_klass == NULL || !accessing_klass->is_loaded()) {
return true;
}
if (accessing_klass->is_obj_array_klass()) {
accessing_klass = accessing_klass->as_obj_array_klass()->base_element_klass();
}
if (!accessing_klass->is_instance_klass()) {
return true;
}
if (resolved_klass->is_objArray_klass()) {
// Find the element klass, if this is an array.
resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
}
if (resolved_klass->is_instance_klass()) {
return (Reflection::verify_class_access(accessing_klass->get_Klass(),
InstanceKlass::cast(resolved_klass),
true) == Reflection::ACCESS_OK);
}
return true;
}
// ------------------------------------------------------------------
// ciEnv::get_klass_by_name_impl
ciKlass* ciEnv::get_klass_by_name_impl(ciKlass* accessing_klass,
const constantPoolHandle& cpool,
ciSymbol* name,
bool require_local) {
ASSERT_IN_VM;
Thread* current = Thread::current();
// Now we need to check the SystemDictionary
Symbol* sym = name->get_symbol();
if (Signature::has_envelope(sym)) {
// This is a name from a signature. Strip off the trimmings.
// Call recursive to keep scope of strippedsym.
TempNewSymbol strippedsym = Signature::strip_envelope(sym);
ciSymbol* strippedname = get_symbol(strippedsym);
return get_klass_by_name_impl(accessing_klass, cpool, strippedname, require_local);
}
// Check for prior unloaded klass. The SystemDictionary's answers
// can vary over time but the compiler needs consistency.
ciKlass* unloaded_klass = check_get_unloaded_klass(accessing_klass, name);
if (unloaded_klass != NULL) {
if (require_local) return NULL;
return unloaded_klass;
}
Handle loader;
Handle domain;
if (accessing_klass != NULL) {
loader = Handle(current, accessing_klass->loader());
domain = Handle(current, accessing_klass->protection_domain());
}
Klass* found_klass;
{
ttyUnlocker ttyul; // release tty lock to avoid ordering problems
MutexLocker ml(current, Compile_lock);
Klass* kls;
if (!require_local) {
kls = SystemDictionary::find_constrained_instance_or_array_klass(current, sym, loader);
} else {
kls = SystemDictionary::find_instance_or_array_klass(current, sym, loader, domain);
}
found_klass = kls;
}
// If we fail to find an array klass, look again for its element type.
// The element type may be available either locally or via constraints.
// In either case, if we can find the element type in the system dictionary,
// we must build an array type around it. The CI requires array klasses
// to be loaded if their element klasses are loaded, except when memory
// is exhausted.
if (Signature::is_array(sym) &&
(sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
// We have an unloaded array.
// Build it on the fly if the element class exists.
SignatureStream ss(sym, false);
ss.skip_array_prefix(1);
// Get element ciKlass recursively.
ciKlass* elem_klass =
get_klass_by_name_impl(accessing_klass,
cpool,
get_symbol(ss.as_symbol()),
require_local);
if (elem_klass != NULL && elem_klass->is_loaded()) {
// Now make an array for it
return ciObjArrayKlass::make_impl(elem_klass);
}
}
if (found_klass == NULL && !cpool.is_null() && cpool->has_preresolution()) {
// Look inside the constant pool for pre-resolved class entries.
for (int i = cpool->length() - 1; i >= 1; i--) {
if (cpool->tag_at(i).is_klass()) {
Klass* kls = cpool->resolved_klass_at(i);
if (kls->name() == sym) {
found_klass = kls;
break;
}
}
}
}
if (found_klass != NULL) {
// Found it. Build a CI handle.
return get_klass(found_klass);
}
if (require_local) return NULL;
// Not yet loaded into the VM, or not governed by loader constraints.
// Make a CI representative for it.
return get_unloaded_klass(accessing_klass, name);
}
// ------------------------------------------------------------------
// ciEnv::get_klass_by_name
ciKlass* ciEnv::get_klass_by_name(ciKlass* accessing_klass,
ciSymbol* klass_name,
bool require_local) {
GUARDED_VM_ENTRY(return get_klass_by_name_impl(accessing_klass,
constantPoolHandle(),
klass_name,
require_local);)
}
// ------------------------------------------------------------------
// ciEnv::get_klass_by_index_impl
//
// Implementation of get_klass_by_index.
ciKlass* ciEnv::get_klass_by_index_impl(const constantPoolHandle& cpool,
int index,
bool& is_accessible,
ciInstanceKlass* accessor) {
Klass* klass = NULL;
Symbol* klass_name = NULL;
if (cpool->tag_at(index).is_symbol()) {
klass_name = cpool->symbol_at(index);
} else {
// Check if it's resolved if it's not a symbol constant pool entry.
klass = ConstantPool::klass_at_if_loaded(cpool, index);
// Try to look it up by name.
if (klass == NULL) {
klass_name = cpool->klass_name_at(index);
}
}
if (klass == NULL) {
// Not found in constant pool. Use the name to do the lookup.
ciKlass* k = get_klass_by_name_impl(accessor,
cpool,
get_symbol(klass_name),
false);
// Calculate accessibility the hard way.
if (!k->is_loaded()) {
is_accessible = false;
} else if (k->loader() != accessor->loader() &&
get_klass_by_name_impl(accessor, cpool, k->name(), true) == NULL) {
// Loaded only remotely. Not linked yet.
is_accessible = false;
} else {
// Linked locally, and we must also check public/private, etc.
is_accessible = check_klass_accessibility(accessor, k->get_Klass());
}
return k;
}
// Check for prior unloaded klass. The SystemDictionary's answers
// can vary over time but the compiler needs consistency.
ciSymbol* name = get_symbol(klass->name());
ciKlass* unloaded_klass = check_get_unloaded_klass(accessor, name);
if (unloaded_klass != NULL) {
is_accessible = false;
return unloaded_klass;
}
// It is known to be accessible, since it was found in the constant pool.
ciKlass* ciKlass = get_klass(klass);
is_accessible = true;
if (ReplayCompiles && ciKlass == _unloaded_ciinstance_klass) {
// Klass was unresolved at replay dump time and therefore not accessible.
is_accessible = false;
}
return ciKlass;
}
// ------------------------------------------------------------------
// ciEnv::get_klass_by_index
//
// Get a klass from the constant pool.
ciKlass* ciEnv::get_klass_by_index(const constantPoolHandle& cpool,
int index,
bool& is_accessible,
ciInstanceKlass* accessor) {
GUARDED_VM_ENTRY(return get_klass_by_index_impl(cpool, index, is_accessible, accessor);)
}
// ------------------------------------------------------------------
// ciEnv::unbox_primitive_value
//
// Unbox a primitive and return it as a ciConstant.
ciConstant ciEnv::unbox_primitive_value(ciObject* cibox, BasicType expected_bt) {
jvalue value;
BasicType bt = java_lang_boxing_object::get_value(cibox->get_oop(), &value);
if (bt != expected_bt && expected_bt != T_ILLEGAL) {
assert(false, "type mismatch: %s vs %s", type2name(expected_bt), cibox->klass()->name()->as_klass_external_name());
return ciConstant();
}
switch (bt) {
case T_BOOLEAN: return ciConstant(bt, value.z);
case T_BYTE: return ciConstant(bt, value.b);
case T_SHORT: return ciConstant(bt, value.s);
case T_CHAR: return ciConstant(bt, value.c);
case T_INT: return ciConstant(bt, value.i);
case T_LONG: return ciConstant(value.j);
case T_FLOAT: return ciConstant(value.f);
case T_DOUBLE: return ciConstant(value.d);
default:
assert(false, "not a primitive type: %s", type2name(bt));
return ciConstant();
}
}
// ------------------------------------------------------------------
// ciEnv::get_resolved_constant
//
ciConstant ciEnv::get_resolved_constant(const constantPoolHandle& cpool, int obj_index) {
assert(obj_index >= 0, "");
oop obj = cpool->resolved_references()->obj_at(obj_index);
if (obj == NULL) {
// Unresolved constant. It is resolved when the corresponding slot contains a non-null reference.
// Null constant is represented as a sentinel (non-null) value.
return ciConstant();
} else if (obj == Universe::the_null_sentinel()) {
return ciConstant(T_OBJECT, get_object(NULL));
} else {
ciObject* ciobj = get_object(obj);
if (ciobj->is_array()) {
return ciConstant(T_ARRAY, ciobj);
} else {
int cp_index = cpool->object_to_cp_index(obj_index);
BasicType bt = cpool->basic_type_for_constant_at(cp_index);
if (is_java_primitive(bt)) {
assert(cpool->tag_at(cp_index).is_dynamic_constant(), "sanity");
return unbox_primitive_value(ciobj, bt);
} else {
assert(ciobj->is_instance(), "should be an instance");
return ciConstant(T_OBJECT, ciobj);
}
}
}
}
// ------------------------------------------------------------------
// ciEnv::get_constant_by_index_impl
//
// Implementation of get_constant_by_index().
ciConstant ciEnv::get_constant_by_index_impl(const constantPoolHandle& cpool,
int index, int obj_index,
ciInstanceKlass* accessor) {
if (obj_index >= 0) {
ciConstant con = get_resolved_constant(cpool, obj_index);
if (con.is_valid()) {
return con;
}
}
constantTag tag = cpool->tag_at(index);
if (tag.is_int()) {
return ciConstant(T_INT, (jint)cpool->int_at(index));
} else if (tag.is_long()) {
return ciConstant((jlong)cpool->long_at(index));
} else if (tag.is_float()) {
return ciConstant((jfloat)cpool->float_at(index));
} else if (tag.is_double()) {
return ciConstant((jdouble)cpool->double_at(index));
} else if (tag.is_string()) {
EXCEPTION_CONTEXT;
assert(obj_index >= 0, "should have an object index");
oop string = cpool->string_at(index, obj_index, THREAD);
if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION;
record_out_of_memory_failure();
return ciConstant();
}
ciInstance* constant = get_object(string)->as_instance();
return ciConstant(T_OBJECT, constant);
} else if (tag.is_unresolved_klass_in_error()) {
return ciConstant(T_OBJECT, get_unloaded_klass_mirror(NULL));
} else if (tag.is_klass() || tag.is_unresolved_klass()) {
bool will_link;
ciKlass* klass = get_klass_by_index_impl(cpool, index, will_link, accessor);
ciInstance* mirror = (will_link ? klass->java_mirror() : get_unloaded_klass_mirror(klass));
return ciConstant(T_OBJECT, mirror);
} else if (tag.is_method_type() || tag.is_method_type_in_error()) {
// must execute Java code to link this CP entry into cache[i].f1
assert(obj_index >= 0, "should have an object index");
ciSymbol* signature = get_symbol(cpool->method_type_signature_at(index));
ciObject* ciobj = get_unloaded_method_type_constant(signature);
return ciConstant(T_OBJECT, ciobj);
} else if (tag.is_method_handle() || tag.is_method_handle_in_error()) {
// must execute Java code to link this CP entry into cache[i].f1
assert(obj_index >= 0, "should have an object index");
bool ignore_will_link;
int ref_kind = cpool->method_handle_ref_kind_at(index);
int callee_index = cpool->method_handle_klass_index_at(index);
ciKlass* callee = get_klass_by_index_impl(cpool, callee_index, ignore_will_link, accessor);
ciSymbol* name = get_symbol(cpool->method_handle_name_ref_at(index));
ciSymbol* signature = get_symbol(cpool->method_handle_signature_ref_at(index));
ciObject* ciobj = get_unloaded_method_handle_constant(callee, name, signature, ref_kind);
return ciConstant(T_OBJECT, ciobj);
} else if (tag.is_dynamic_constant() || tag.is_dynamic_constant_in_error()) {
assert(obj_index >= 0, "should have an object index");
return ciConstant(T_OBJECT, unloaded_ciinstance()); // unresolved dynamic constant
} else {
assert(false, "unknown tag: %d (%s)", tag.value(), tag.internal_name());
return ciConstant();
}
}
// ------------------------------------------------------------------
// ciEnv::get_constant_by_index
//
// Pull a constant out of the constant pool. How appropriate.
//
// Implementation note: this query is currently in no way cached.
ciConstant ciEnv::get_constant_by_index(const constantPoolHandle& cpool,
int pool_index, int cache_index,
ciInstanceKlass* accessor) {
GUARDED_VM_ENTRY(return get_constant_by_index_impl(cpool, pool_index, cache_index, accessor);)
}
// ------------------------------------------------------------------
// ciEnv::get_field_by_index_impl
//
// Implementation of get_field_by_index.
//
// Implementation note: the results of field lookups are cached
// in the accessor klass.
ciField* ciEnv::get_field_by_index_impl(ciInstanceKlass* accessor,
int index) {
ciConstantPoolCache* cache = accessor->field_cache();
if (cache == NULL) {
ciField* field = new (arena()) ciField(accessor, index);
return field;
} else {
ciField* field = (ciField*)cache->get(index);
if (field == NULL) {
field = new (arena()) ciField(accessor, index);
cache->insert(index, field);
}
return field;
}
}
// ------------------------------------------------------------------
// ciEnv::get_field_by_index
//
// Get a field by index from a klass's constant pool.
ciField* ciEnv::get_field_by_index(ciInstanceKlass* accessor,
int index) {
GUARDED_VM_ENTRY(return get_field_by_index_impl(accessor, index);)
}
// ------------------------------------------------------------------
// ciEnv::lookup_method
//
// Perform an appropriate method lookup based on accessor, holder,
// name, signature, and bytecode.
Method* ciEnv::lookup_method(ciInstanceKlass* accessor,
ciKlass* holder,
Symbol* name,
Symbol* sig,
Bytecodes::Code bc,
constantTag tag) {
InstanceKlass* accessor_klass = accessor->get_instanceKlass();
Klass* holder_klass = holder->get_Klass();
// Accessibility checks are performed in ciEnv::get_method_by_index_impl.
assert(check_klass_accessibility(accessor, holder_klass), "holder not accessible");
LinkInfo link_info(holder_klass, name, sig, accessor_klass,
LinkInfo::AccessCheck::required,
LinkInfo::LoaderConstraintCheck::required,
tag);
switch (bc) {
case Bytecodes::_invokestatic:
return LinkResolver::resolve_static_call_or_null(link_info);
case Bytecodes::_invokespecial:
return LinkResolver::resolve_special_call_or_null(link_info);
case Bytecodes::_invokeinterface:
return LinkResolver::linktime_resolve_interface_method_or_null(link_info);
case Bytecodes::_invokevirtual:
return LinkResolver::linktime_resolve_virtual_method_or_null(link_info);
default:
fatal("Unhandled bytecode: %s", Bytecodes::name(bc));
return NULL; // silence compiler warnings
}
}
// ------------------------------------------------------------------
// ciEnv::get_method_by_index_impl
ciMethod* ciEnv::get_method_by_index_impl(const constantPoolHandle& cpool,
int index, Bytecodes::Code bc,
ciInstanceKlass* accessor) {
assert(cpool.not_null(), "need constant pool");
assert(accessor != NULL, "need origin of access");
if (bc == Bytecodes::_invokedynamic) {
ConstantPoolCacheEntry* cpce = cpool->invokedynamic_cp_cache_entry_at(index);
bool is_resolved = !cpce->is_f1_null();
// FIXME: code generation could allow for null (unlinked) call site
// The call site could be made patchable as follows:
// Load the appendix argument from the constant pool.
// Test the appendix argument and jump to a known deopt routine if it is null.
// Jump through a patchable call site, which is initially a deopt routine.
// Patch the call site to the nmethod entry point of the static compiled lambda form.
// As with other two-component call sites, both values must be independently verified.
if (is_resolved) {
// Get the invoker Method* from the constant pool.
// (The appendix argument, if any, will be noted in the method's signature.)
Method* adapter = cpce->f1_as_method();
return get_method(adapter);
}
// Fake a method that is equivalent to a declared method.
ciInstanceKlass* holder = get_instance_klass(vmClasses::MethodHandle_klass());
ciSymbol* name = ciSymbols::invokeBasic_name();
ciSymbol* signature = get_symbol(cpool->signature_ref_at(index));
return get_unloaded_method(holder, name, signature, accessor);
} else {
const int holder_index = cpool->klass_ref_index_at(index);
bool holder_is_accessible;
ciKlass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor);
// Get the method's name and signature.
Symbol* name_sym = cpool->name_ref_at(index);
Symbol* sig_sym = cpool->signature_ref_at(index);
if (cpool->has_preresolution()
|| ((holder == ciEnv::MethodHandle_klass() || holder == ciEnv::VarHandle_klass()) &&
MethodHandles::is_signature_polymorphic_name(holder->get_Klass(), name_sym))) {
// Short-circuit lookups for JSR 292-related call sites.
// That is, do not rely only on name-based lookups, because they may fail
// if the names are not resolvable in the boot class loader (7056328).
switch (bc) {
case Bytecodes::_invokevirtual:
case Bytecodes::_invokeinterface:
case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic:
{
Method* m = ConstantPool::method_at_if_loaded(cpool, index);
if (m != NULL) {
return get_method(m);
}
}
break;
default:
break;
}
}
if (holder_is_accessible) { // Our declared holder is loaded.
constantTag tag = cpool->tag_ref_at(index);
assert(accessor->get_instanceKlass() == cpool->pool_holder(), "not the pool holder?");
Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag);
if (m != NULL &&
(bc == Bytecodes::_invokestatic
? m->method_holder()->is_not_initialized()
: !m->method_holder()->is_loaded())) {
m = NULL;
}
if (m != NULL && ReplayCompiles && !ciReplay::is_loaded(m)) {
m = NULL;
}
if (m != NULL) {
// We found the method.
return get_method(m);
}
}
// Either the declared holder was not loaded, or the method could
// not be found. Create a dummy ciMethod to represent the failed
// lookup.
ciSymbol* name = get_symbol(name_sym);
ciSymbol* signature = get_symbol(sig_sym);
return get_unloaded_method(holder, name, signature, accessor);
}
}
// ------------------------------------------------------------------
// ciEnv::get_instance_klass_for_declared_method_holder
ciInstanceKlass* ciEnv::get_instance_klass_for_declared_method_holder(ciKlass* method_holder) {
// For the case of <array>.clone(), the method holder can be a ciArrayKlass
// instead of a ciInstanceKlass. For that case simply pretend that the
// declared holder is Object.clone since that's where the call will bottom out.
// A more correct fix would trickle out through many interfaces in CI,
// requiring ciInstanceKlass* to become ciKlass* and many more places would
// require checks to make sure the expected type was found. Given that this
// only occurs for clone() the more extensive fix seems like overkill so
// instead we simply smear the array type into Object.
guarantee(method_holder != NULL, "no method holder");
if (method_holder->is_instance_klass()) {
return method_holder->as_instance_klass();
} else if (method_holder->is_array_klass()) {
return current()->Object_klass();
} else {
ShouldNotReachHere();
}
return NULL;
}
// ------------------------------------------------------------------
// ciEnv::get_method_by_index
ciMethod* ciEnv::get_method_by_index(const constantPoolHandle& cpool,
int index, Bytecodes::Code bc,
ciInstanceKlass* accessor) {
GUARDED_VM_ENTRY(return get_method_by_index_impl(cpool, index, bc, accessor);)
}
// ------------------------------------------------------------------
// ciEnv::name_buffer
char *ciEnv::name_buffer(int req_len) {
if (_name_buffer_len < req_len) {
if (_name_buffer == NULL) {
_name_buffer = (char*)arena()->Amalloc(sizeof(char)*req_len);
_name_buffer_len = req_len;
} else {
_name_buffer =
(char*)arena()->Arealloc(_name_buffer, _name_buffer_len, req_len);
_name_buffer_len = req_len;
}
}
return _name_buffer;
}
// ------------------------------------------------------------------
// ciEnv::is_in_vm
bool ciEnv::is_in_vm() {
return JavaThread::current()->thread_state() == _thread_in_vm;
}
// ------------------------------------------------------------------
// ciEnv::validate_compile_task_dependencies
//
// Check for changes during compilation (e.g. class loads, evolution,
// breakpoints, call site invalidation).
void ciEnv::validate_compile_task_dependencies(ciMethod* target) {
if (failing()) return; // no need for further checks
Dependencies::DepType result = dependencies()->validate_dependencies(_task);
if (result != Dependencies::end_marker) {
if (result == Dependencies::call_site_target_value) {
_inc_decompile_count_on_failure = false;
record_failure("call site target change");
} else if (Dependencies::is_klass_type(result)) {
record_failure("concurrent class loading");
} else {
record_failure("invalid non-klass dependency");
}
}
}
// ------------------------------------------------------------------
// ciEnv::register_method
void ciEnv::register_method(ciMethod* target,
int entry_bci,
CodeOffsets* offsets,
int orig_pc_offset,
CodeBuffer* code_buffer,
int frame_words,
OopMapSet* oop_map_set,
ExceptionHandlerTable* handler_table,
ImplicitExceptionTable* inc_table,
AbstractCompiler* compiler,
bool has_unsafe_access,
bool has_wide_vectors,
bool has_monitors,
int immediate_oops_patched,
RTMState rtm_state) {
VM_ENTRY_MARK;
nmethod* nm = NULL;
{
methodHandle method(THREAD, target->get_Method());
// We require method counters to store some method state (max compilation levels) required by the compilation policy.
if (method->get_method_counters(THREAD) == NULL) {
record_failure("can't create method counters");
// All buffers in the CodeBuffer are allocated in the CodeCache.
// If the code buffer is created on each compile attempt
// as in C2, then it must be freed.
code_buffer->free_blob();
return;
}
// Check if memory should be freed before allocation
CodeCache::gc_on_allocation();
// To prevent compile queue updates.
MutexLocker locker(THREAD, MethodCompileQueue_lock);
// Prevent SystemDictionary::add_to_hierarchy from running
// and invalidating our dependencies until we install this method.
// No safepoints are allowed. Otherwise, class redefinition can occur in between.
MutexLocker ml(Compile_lock);
NoSafepointVerifier nsv;
// Change in Jvmti state may invalidate compilation.
if (!failing() && jvmti_state_changed()) {
record_failure("Jvmti state change invalidated dependencies");
}
// Change in DTrace flags may invalidate compilation.
if (!failing() &&
( (!dtrace_method_probes() && DTraceMethodProbes) ||
(!dtrace_alloc_probes() && DTraceAllocProbes) )) {
record_failure("DTrace flags change invalidated dependencies");
}
if (!failing() && target->needs_clinit_barrier() &&
target->holder()->is_in_error_state()) {
record_failure("method holder is in error state");
}
if (!failing()) {
if (log() != NULL) {
// Log the dependencies which this compilation declares.
dependencies()->log_all_dependencies();
}
// Encode the dependencies now, so we can check them right away.
dependencies()->encode_content_bytes();
// Check for {class loads, evolution, breakpoints, ...} during compilation
validate_compile_task_dependencies(target);
}
#if INCLUDE_RTM_OPT
if (!failing() && (rtm_state != NoRTM) &&
(method()->method_data() != NULL) &&
(method()->method_data()->rtm_state() != rtm_state)) {
// Preemptive decompile if rtm state was changed.
record_failure("RTM state change invalidated rtm code");
}
#endif
if (!failing()) {
code_buffer->finalize_stubs();
}
if (failing()) {
// While not a true deoptimization, it is a preemptive decompile.
MethodData* mdo = method()->method_data();
if (mdo != NULL && _inc_decompile_count_on_failure) {
mdo->inc_decompile_count();
}
// All buffers in the CodeBuffer are allocated in the CodeCache.
// If the code buffer is created on each compile attempt
// as in C2, then it must be freed.
code_buffer->free_blob();
return;
}
assert(offsets->value(CodeOffsets::Deopt) != -1, "must have deopt entry");
assert(offsets->value(CodeOffsets::Exceptions) != -1, "must have exception entry");
nm = nmethod::new_nmethod(method,
compile_id(),
entry_bci,
offsets,
orig_pc_offset,
debug_info(), dependencies(), code_buffer,
frame_words, oop_map_set,
handler_table, inc_table,
compiler, CompLevel(task()->comp_level()));
// Free codeBlobs
code_buffer->free_blob();
if (nm != NULL) {
nm->set_has_unsafe_access(has_unsafe_access);
nm->set_has_wide_vectors(has_wide_vectors);
nm->set_has_monitors(has_monitors);
assert(!method->is_synchronized() || nm->has_monitors(), "");
#if INCLUDE_RTM_OPT
nm->set_rtm_state(rtm_state);
#endif
if (entry_bci == InvocationEntryBci) {
if (TieredCompilation) {
// If there is an old version we're done with it
CompiledMethod* old = method->code();
if (TraceMethodReplacement && old != NULL) {
ResourceMark rm;
char *method_name = method->name_and_sig_as_C_string();
tty->print_cr("Replacing method %s", method_name);
}
if (old != NULL) {
old->make_not_used();
}
}
LogTarget(Info, nmethod, install) lt;
if (lt.is_enabled()) {
ResourceMark rm;
char *method_name = method->name_and_sig_as_C_string();
lt.print("Installing method (%d) %s ",
task()->comp_level(), method_name);
}
// Allow the code to be executed
MutexLocker ml(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
if (nm->make_in_use()) {
method->set_code(method, nm);
}
} else {
LogTarget(Info, nmethod, install) lt;
if (lt.is_enabled()) {
ResourceMark rm;
char *method_name = method->name_and_sig_as_C_string();
lt.print("Installing osr method (%d) %s @ %d",
task()->comp_level(), method_name, entry_bci);
}
MutexLocker ml(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
if (nm->make_in_use()) {
method->method_holder()->add_osr_nmethod(nm);
}
}
}
}
NoSafepointVerifier nsv;
if (nm != NULL) {
// Compilation succeeded, post what we know about it
nm->post_compiled_method(task());
task()->set_num_inlined_bytecodes(num_inlined_bytecodes());
} else {
// The CodeCache is full.
record_failure("code cache is full");
}
// safepoints are allowed again
}
// ------------------------------------------------------------------
// ciEnv::find_system_klass
ciKlass* ciEnv::find_system_klass(ciSymbol* klass_name) {
VM_ENTRY_MARK;
return get_klass_by_name_impl(NULL, constantPoolHandle(), klass_name, false);
}
// ------------------------------------------------------------------
// ciEnv::comp_level
int ciEnv::comp_level() {
if (task() == NULL) return CompilationPolicy::highest_compile_level();
return task()->comp_level();
}
// ------------------------------------------------------------------
// ciEnv::compile_id
uint ciEnv::compile_id() {
if (task() == NULL) return 0;
return task()->compile_id();
}
// ------------------------------------------------------------------
// ciEnv::notice_inlined_method()
void ciEnv::notice_inlined_method(ciMethod* method) {
_num_inlined_bytecodes += method->code_size_for_inlining();
}
// ------------------------------------------------------------------
// ciEnv::num_inlined_bytecodes()
int ciEnv::num_inlined_bytecodes() const {
return _num_inlined_bytecodes;
}
// ------------------------------------------------------------------
// ciEnv::record_failure()
void ciEnv::record_failure(const char* reason) {
if (_failure_reason == NULL) {
// Record the first failure reason.
_failure_reason = reason;
}
}
void ciEnv::report_failure(const char* reason) {
EventCompilationFailure event;
if (event.should_commit()) {
CompilerEvent::CompilationFailureEvent::post(event, compile_id(), reason);
}
}
// ------------------------------------------------------------------
// ciEnv::record_method_not_compilable()
void ciEnv::record_method_not_compilable(const char* reason, bool all_tiers) {
int new_compilable =
all_tiers ? MethodCompilable_never : MethodCompilable_not_at_tier ;
// Only note transitions to a worse state
if (new_compilable > _compilable) {
if (log() != NULL) {
if (all_tiers) {
log()->elem("method_not_compilable");
} else {
log()->elem("method_not_compilable_at_tier level='%d'",
current()->task()->comp_level());
}
}
_compilable = new_compilable;
// Reset failure reason; this one is more important.
_failure_reason = NULL;
record_failure(reason);
}
}
// ------------------------------------------------------------------
// ciEnv::record_out_of_memory_failure()
void ciEnv::record_out_of_memory_failure() {
// If memory is low, we stop compiling methods.
record_method_not_compilable("out of memory");
}
ciInstance* ciEnv::unloaded_ciinstance() {
GUARDED_VM_ENTRY(return _factory->get_unloaded_object_constant();)
}
// ------------------------------------------------------------------
// Replay support
// Lookup location descriptor for the class, if any.
// Returns false if not found.
bool ciEnv::dyno_loc(const InstanceKlass* ik, const char *&loc) const {
bool found = false;
int pos = _dyno_klasses->find_sorted<const InstanceKlass*, klass_compare>(ik, found);
if (!found) {
return false;
}
loc = _dyno_locs->at(pos);
return found;
}
// Associate the current location descriptor with the given class and record for later lookup.
void ciEnv::set_dyno_loc(const InstanceKlass* ik) {
const char *loc = os::strdup(_dyno_name);
bool found = false;
int pos = _dyno_klasses->find_sorted<const InstanceKlass*, klass_compare>(ik, found);
if (found) {
_dyno_locs->at_put(pos, loc);
} else {
_dyno_klasses->insert_before(pos, ik);
_dyno_locs->insert_before(pos, loc);
}
}
// Associate the current location descriptor with the given class and record for later lookup.
// If it turns out that there are multiple locations for the given class, that conflict should
// be handled here. Currently we choose the first location found.
void ciEnv::record_best_dyno_loc(const InstanceKlass* ik) {
if (!ik->is_hidden()) {
return;
}
const char *loc0;
if (dyno_loc(ik, loc0)) {
// TODO: found multiple references, see if we can improve
if (Verbose) {
tty->print_cr("existing call site @ %s for %s",
loc0, ik->external_name());
}
} else {
set_dyno_loc(ik);
}
}
// Look up the location descriptor for the given class and print it to the output stream.
bool ciEnv::print_dyno_loc(outputStream* out, const InstanceKlass* ik) const {
const char *loc;
if (dyno_loc(ik, loc)) {
out->print("%s", loc);
return true;
} else {
return false;
}
}
// Look up the location descriptor for the given class and return it as a string.
// Returns NULL if no location is found.
const char *ciEnv::dyno_name(const InstanceKlass* ik) const {
if (ik->is_hidden()) {
stringStream ss;
if (print_dyno_loc(&ss, ik)) {
ss.print(" ;"); // add terminator
const char* call_site = ss.as_string();
return call_site;
}
}
return NULL;
}
// Look up the location descriptor for the given class and return it as a string.
// Returns the class name as a fallback if no location is found.
const char *ciEnv::replay_name(ciKlass* k) const {
if (k->is_instance_klass()) {
return replay_name(k->as_instance_klass()->get_instanceKlass());
}
return k->name()->as_quoted_ascii();
}
// Look up the location descriptor for the given class and return it as a string.
// Returns the class name as a fallback if no location is found.
const char *ciEnv::replay_name(const InstanceKlass* ik) const {
const char* name = dyno_name(ik);
if (name != NULL) {
return name;
}
return ik->name()->as_quoted_ascii();
}
// Process a java.lang.invoke.MemberName object and record any dynamic locations.
void ciEnv::record_member(Thread* thread, oop member) {
assert(java_lang_invoke_MemberName::is_instance(member), "!");
// Check MemberName.clazz field
oop clazz = java_lang_invoke_MemberName::clazz(member);
if (clazz->klass()->is_instance_klass()) {
RecordLocation fp(this, "clazz");
InstanceKlass* ik = InstanceKlass::cast(clazz->klass());
record_best_dyno_loc(ik);
}
// Check MemberName.method.vmtarget field
Method* vmtarget = java_lang_invoke_MemberName::vmtarget(member);
if (vmtarget != NULL) {
RecordLocation fp2(this, "");
InstanceKlass* ik = vmtarget->method_holder();
record_best_dyno_loc(ik);
}
}
// Read an object field. Lookup is done by name only.
static inline oop obj_field(oop obj, const char* name) {
return ciReplay::obj_field(obj, name);
}
// Process a java.lang.invoke.LambdaForm object and record any dynamic locations.
void ciEnv::record_lambdaform(Thread* thread, oop form) {
assert(java_lang_invoke_LambdaForm::is_instance(form), "!");
{
// Check LambdaForm.vmentry field
oop member = java_lang_invoke_LambdaForm::vmentry(form);
RecordLocation fp0(this, "vmentry");
record_member(thread, member);
}
// Check LambdaForm.names array
objArrayOop names = (objArrayOop)obj_field(form, "names");
if (names != NULL) {
RecordLocation lp0(this, "names");
int len = names->length();
for (int i = 0; i < len; ++i) {
oop name = names->obj_at(i);
RecordLocation lp1(this, "%d", i);
// Check LambdaForm.names[i].function field
RecordLocation lp2(this, "function");
oop function = obj_field(name, "function");
if (function != NULL) {
// Check LambdaForm.names[i].function.member field
oop member = obj_field(function, "member");
if (member != NULL) {
RecordLocation lp3(this, "member");
record_member(thread, member);
}
// Check LambdaForm.names[i].function.resolvedHandle field
oop mh = obj_field(function, "resolvedHandle");
if (mh != NULL) {
RecordLocation lp3(this, "resolvedHandle");
record_mh(thread, mh);
}
// Check LambdaForm.names[i].function.invoker field
oop invoker = obj_field(function, "invoker");
if (invoker != NULL) {
RecordLocation lp3(this, "invoker");
record_mh(thread, invoker);
}
}
}
}
}
// Process a java.lang.invoke.MethodHandle object and record any dynamic locations.
void ciEnv::record_mh(Thread* thread, oop mh) {
{
// Check MethodHandle.form field
oop form = java_lang_invoke_MethodHandle::form(mh);
RecordLocation fp(this, "form");
record_lambdaform(thread, form);
}
// Check DirectMethodHandle.member field
if (java_lang_invoke_DirectMethodHandle::is_instance(mh)) {
oop member = java_lang_invoke_DirectMethodHandle::member(mh);
RecordLocation fp(this, "member");
record_member(thread, member);
} else {
// Check <MethodHandle subclass>.argL<n> fields
// Probably BoundMethodHandle.Species_L*, but we only care if the field exists
char arg_name[] = "argLXX";
int max_arg = 99;
for (int index = 0; index <= max_arg; ++index) {
jio_snprintf(arg_name, sizeof (arg_name), "argL%d", index);
oop arg = obj_field(mh, arg_name);
if (arg != NULL) {
RecordLocation fp(this, "%s", arg_name);
if (arg->klass()->is_instance_klass()) {
InstanceKlass* ik2 = InstanceKlass::cast(arg->klass());
record_best_dyno_loc(ik2);
record_call_site_obj(thread, arg);
}
} else {
break;
}
}
}
}
// Process an object found at an invokedynamic/invokehandle call site and record any dynamic locations.
// Types currently supported are MethodHandle and CallSite.
// The object is typically the "appendix" object, or Bootstrap Method (BSM) object.
void ciEnv::record_call_site_obj(Thread* thread, oop obj)
{
if (obj != NULL) {
if (java_lang_invoke_MethodHandle::is_instance(obj)) {
record_mh(thread, obj);
} else if (java_lang_invoke_ConstantCallSite::is_instance(obj)) {
oop target = java_lang_invoke_CallSite::target(obj);
if (target->klass()->is_instance_klass()) {
RecordLocation fp(this, "target");
InstanceKlass* ik = InstanceKlass::cast(target->klass());
record_best_dyno_loc(ik);
}
}
}
}
// Process an adapter Method* found at an invokedynamic/invokehandle call site and record any dynamic locations.
void ciEnv::record_call_site_method(Thread* thread, Method* adapter) {
InstanceKlass* holder = adapter->method_holder();
if (!holder->is_hidden()) {
return;
}
RecordLocation fp(this, "");
record_best_dyno_loc(holder);
}
// Process an invokedynamic call site and record any dynamic locations.
void ciEnv::process_invokedynamic(const constantPoolHandle &cp, int indy_index, JavaThread* thread) {
ConstantPoolCacheEntry* cp_cache_entry = cp->invokedynamic_cp_cache_entry_at(indy_index);
if (cp_cache_entry->is_resolved(Bytecodes::_invokedynamic)) {
// process the adapter
Method* adapter = cp_cache_entry->f1_as_method();
record_call_site_method(thread, adapter);
// process the appendix
oop appendix = cp_cache_entry->appendix_if_resolved(cp);
{
RecordLocation fp(this, "");
record_call_site_obj(thread, appendix);
}
// process the BSM
int pool_index = cp_cache_entry->constant_pool_index();
BootstrapInfo bootstrap_specifier(cp, pool_index, indy_index);
oop bsm = cp->resolve_possibly_cached_constant_at(bootstrap_specifier.bsm_index(), thread);
{
RecordLocation fp(this, "");
record_call_site_obj(thread, bsm);
}
}
}
// Process an invokehandle call site and record any dynamic locations.
void ciEnv::process_invokehandle(const constantPoolHandle &cp, int index, JavaThread* thread) {
const int holder_index = cp->klass_ref_index_at(index);
if (!cp->tag_at(holder_index).is_klass()) {
return; // not resolved
}
Klass* holder = ConstantPool::klass_at_if_loaded(cp, holder_index);
Symbol* name = cp->name_ref_at(index);
if (MethodHandles::is_signature_polymorphic_name(holder, name)) {
ConstantPoolCacheEntry* cp_cache_entry = cp->cache()->entry_at(cp->decode_cpcache_index(index));
if (cp_cache_entry->is_resolved(Bytecodes::_invokehandle)) {
// process the adapter
Method* adapter = cp_cache_entry->f1_as_method();
oop appendix = cp_cache_entry->appendix_if_resolved(cp);
record_call_site_method(thread, adapter);
// process the appendix
{
RecordLocation fp(this, "");
record_call_site_obj(thread, appendix);
}
}
}
}
// Search the class hierarchy for dynamic classes reachable through dynamic call sites or
// constant pool entries and record for future lookup.
void ciEnv::find_dynamic_call_sites() {
_dyno_klasses = new (arena()) GrowableArray<const InstanceKlass*>(arena(), 100, 0, NULL);
_dyno_locs = new (arena()) GrowableArray<const char *>(arena(), 100, 0, NULL);
// Iterate over the class hierarchy
for (ClassHierarchyIterator iter(vmClasses::Object_klass()); !iter.done(); iter.next()) {
Klass* sub = iter.klass();
if (sub->is_instance_klass()) {
InstanceKlass *isub = InstanceKlass::cast(sub);
InstanceKlass* ik = isub;
if (!ik->is_linked()) {
continue;
}
if (ik->is_hidden()) {
continue;
}
JavaThread* thread = JavaThread::current();
const constantPoolHandle pool(thread, ik->constants());
// Look for invokedynamic/invokehandle call sites
for (int i = 0; i < ik->methods()->length(); ++i) {
Method* m = ik->methods()->at(i);
BytecodeStream bcs(methodHandle(thread, m));
while (!bcs.is_last_bytecode()) {
Bytecodes::Code opcode = bcs.next();
opcode = bcs.raw_code();
switch (opcode) {
case Bytecodes::_invokedynamic:
case Bytecodes::_invokehandle: {
RecordLocation fp(this, "@bci %s %s %s %d",
ik->name()->as_quoted_ascii(),
m->name()->as_quoted_ascii(), m->signature()->as_quoted_ascii(),
bcs.bci());
if (opcode == Bytecodes::_invokedynamic) {
int index = bcs.get_index_u4();
process_invokedynamic(pool, index, thread);
} else {
assert(opcode == Bytecodes::_invokehandle, "new switch label added?");
int cp_cache_index = bcs.get_index_u2_cpcache();
process_invokehandle(pool, cp_cache_index, thread);
}
break;
}
default:
break;
}
}
}
// Look for MethodHandle constant pool entries
RecordLocation fp(this, "@cpi %s", ik->name()->as_quoted_ascii());
int len = pool->length();
for (int i = 0; i < len; ++i) {
if (pool->tag_at(i).is_method_handle()) {
bool found_it;
oop mh = pool->find_cached_constant_at(i, found_it, thread);
if (mh != NULL) {
RecordLocation fp(this, "%d", i);
record_mh(thread, mh);
}
}
}
}
}
}
void ciEnv::dump_compile_data(outputStream* out) {
CompileTask* task = this->task();
if (task) {
#ifdef COMPILER2
if (ReplayReduce && compiler_data() != NULL) {
// Dump C2 "reduced" inlining data.
((Compile*)compiler_data())->dump_inline_data_reduced(out);
}
#endif
Method* method = task->method();
int entry_bci = task->osr_bci();
int comp_level = task->comp_level();
out->print("compile ");
get_method(method)->dump_name_as_ascii(out);
out->print(" %d %d", entry_bci, comp_level);
if (compiler_data() != NULL) {
if (is_c2_compile(comp_level)) {
#ifdef COMPILER2
// Dump C2 inlining data.
((Compile*)compiler_data())->dump_inline_data(out);
#endif
} else if (is_c1_compile(comp_level)) {
#ifdef COMPILER1
// Dump C1 inlining data.
((Compilation*)compiler_data())->dump_inline_data(out);
#endif
}
}
out->cr();
}
}
// Called from VM error reporter, so be careful.
// Don't safepoint or acquire any locks.
//
void ciEnv::dump_replay_data_helper(outputStream* out) {
NoSafepointVerifier no_safepoint;
ResourceMark rm;
out->print_cr("version %d", REPLAY_VERSION);
#if INCLUDE_JVMTI
out->print_cr("JvmtiExport can_access_local_variables %d", _jvmti_can_access_local_variables);
out->print_cr("JvmtiExport can_hotswap_or_post_breakpoint %d", _jvmti_can_hotswap_or_post_breakpoint);
out->print_cr("JvmtiExport can_post_on_exceptions %d", _jvmti_can_post_on_exceptions);
#endif // INCLUDE_JVMTI
find_dynamic_call_sites();
GrowableArray<ciMetadata*>* objects = _factory->get_ci_metadata();
out->print_cr("# %d ciObject found", objects->length());
// The very first entry is the InstanceKlass of the root method of the current compilation in order to get the right
// protection domain to load subsequent classes during replay compilation.
ciInstanceKlass::dump_replay_instanceKlass(out, task()->method()->method_holder());
for (int i = 0; i < objects->length(); i++) {
objects->at(i)->dump_replay_data(out);
}
dump_compile_data(out);
out->flush();
}
// Called from VM error reporter, so be careful.
// Don't safepoint or acquire any locks.
//
void ciEnv::dump_replay_data_unsafe(outputStream* out) {
GUARDED_VM_ENTRY(
dump_replay_data_helper(out);
)
}
void ciEnv::dump_replay_data(outputStream* out) {
GUARDED_VM_ENTRY(
MutexLocker ml(Compile_lock);
dump_replay_data_helper(out);
)
}
void ciEnv::dump_replay_data(int compile_id) {
char buffer[64];
int ret = jio_snprintf(buffer, sizeof(buffer), "replay_pid%d_compid%d.log", os::current_process_id(), compile_id);
if (ret > 0) {
int fd = os::open(buffer, O_RDWR | O_CREAT | O_TRUNC, 0666);
if (fd != -1) {
FILE* replay_data_file = os::fdopen(fd, "w");
if (replay_data_file != NULL) {
fileStream replay_data_stream(replay_data_file, /*need_close=*/true);
dump_replay_data(&replay_data_stream);
tty->print_cr("# Compiler replay data is saved as: %s", buffer);
} else {
tty->print_cr("# Can't open file to dump replay data.");
}
}
}
}
void ciEnv::dump_inline_data(int compile_id) {
char buffer[64];
int ret = jio_snprintf(buffer, sizeof(buffer), "inline_pid%d_compid%d.log", os::current_process_id(), compile_id);
if (ret > 0) {
int fd = os::open(buffer, O_RDWR | O_CREAT | O_TRUNC, 0666);
if (fd != -1) {
FILE* inline_data_file = os::fdopen(fd, "w");
if (inline_data_file != NULL) {
fileStream replay_data_stream(inline_data_file, /*need_close=*/true);
GUARDED_VM_ENTRY(
MutexLocker ml(Compile_lock);
dump_compile_data(&replay_data_stream);
)
replay_data_stream.flush();
tty->print("# Compiler inline data is saved as: ");
tty->print_cr("%s", buffer);
} else {
tty->print_cr("# Can't open file to dump inline data.");
}
}
}
}
¤ Dauer der Verarbeitung: 0.59 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|