products/sources/formale sprachen/Java/openjdk-20-36_src/test/hotspot/gtest/memory image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: test_arena.cpp   Sprache: C

/*
 * Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2021 SAP SE. All rights reserved.
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


#include "precompiled.hpp"
#include "memory/arena.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/globalDefinitions.hpp"
#include "unittest.hpp"
#include "testutils.hpp"

#define ASSERT_CONTAINS(ar, p) ASSERT_TRUE(ar.contains(p))

// Note:
// - Amalloc returns 64bit aligned pointer (also on 32-bit)
// - AmallocWords returns word-aligned pointer
#define ASSERT_ALIGN_AMALLOC(p)       ASSERT_ALIGN(p, ARENA_AMALLOC_ALIGNMENT)
#define ASSERT_ALIGN_AMALLOCWORDS(p)  ASSERT_ALIGN(p, BytesPerWords)

// Do a couple of checks on the return of a successful Amalloc
#define ASSERT_AMALLOC(ar, p) \
  ASSERT_NOT_NULL(p); \
  ASSERT_CONTAINS(ar, p); \
  ASSERT_ALIGN_AMALLOC(p);

// #define LOG(s) tty->print_cr s;
#define LOG(s)

// Test behavior for Amalloc(0).
// Amalloc just ignores Amalloc(0) and returns the current hwm without increasing it.
// Therefore, the returned pointer should be not null, aligned, but not (!) contained
// in the arena since hwm points beyond the arena.
TEST_VM(Arena, alloc_size_0) {
  Arena ar(mtTest);
  void* p = ar.Amalloc(0);
  ASSERT_NOT_NULL(p);
  ASSERT_ALIGN_AMALLOC(p);

  ASSERT_FALSE(ar.contains(p));
  // Allocate again. The new allocations should have the same position as the 0-sized
  // first one.
  void* p2 = ar.Amalloc(1);
  ASSERT_AMALLOC(ar, p2);
  ASSERT_EQ(p2, p);
}

// Test behavior for Arealloc(p, 0)
TEST_VM(Arena, realloc_size_0) {
  // Arealloc(p, 0) behaves like Afree(p). It should release the memory
  // and, if top position, roll back the hwm.
  Arena ar(mtTest);
  void* p1 = ar.Amalloc(0x10);
  ASSERT_AMALLOC(ar, p1);
  void* p2 = ar.Arealloc(p1, 0x10, 0);
  ASSERT_NULL(p2);

  // a subsequent allocation should get the same pointer
  void* p3 = ar.Amalloc(0x20);
  ASSERT_EQ(p3, p1);
}

// Realloc equal sizes is a noop
TEST_VM(Arena, realloc_same_size) {
  Arena ar(mtTest);
  void* p1 = ar.Amalloc(0x200);
  ASSERT_AMALLOC(ar, p1);
  GtestUtils::mark_range(p1, 0x200);

  void* p2 = ar.Arealloc(p1, 0x200, 0x200);

  ASSERT_EQ(p2, p1);
  ASSERT_RANGE_IS_MARKED(p2, 0x200);
}

// Test behavior for Afree(NULL) and Arealloc(NULL, x)
TEST_VM(Arena, free_null) {
  Arena ar(mtTest);
  ar.Afree(NULL, 10); // should just be ignored
}

TEST_VM(Arena, realloc_null) {
  Arena ar(mtTest);
  void* p = ar.Arealloc(NULL, 0, 20); // equivalent to Amalloc(20)
  ASSERT_AMALLOC(ar, p);
}

// Check Arena.Afree in a non-top position.
// The free'd allocation should be zapped (debug only),
// surrounding blocks should be unaffected.
TEST_VM(Arena, free_nontop) {
  Arena ar(mtTest);

  void* p_before = ar.Amalloc(0x10);
  ASSERT_AMALLOC(ar, p_before);
  GtestUtils::mark_range(p_before, 0x10);

  void* p = ar.Amalloc(0x10);
  ASSERT_AMALLOC(ar, p);
  GtestUtils::mark_range_with(p, 0x10, 'Z');

  void* p_after = ar.Amalloc(0x10);
  ASSERT_AMALLOC(ar, p_after);
  GtestUtils::mark_range(p_after, 0x10);

  ASSERT_RANGE_IS_MARKED(p_before, 0x10);
  ASSERT_RANGE_IS_MARKED_WITH(p, 0x10, 'Z');
  ASSERT_RANGE_IS_MARKED(p_after, 0x10);

  ar.Afree(p, 0x10);

  ASSERT_RANGE_IS_MARKED(p_before, 0x10);
  DEBUG_ONLY(ASSERT_RANGE_IS_MARKED_WITH(p, 0x10, badResourceValue);)
  ASSERT_RANGE_IS_MARKED(p_after, 0x10);
}

// Check Arena.Afree in a top position.
// The free'd allocation (non-top) should be zapped (debug only),
// the hwm should have been rolled back.
TEST_VM(Arena, free_top) {
  Arena ar(mtTest);

  void* p = ar.Amalloc(0x10);
  ASSERT_AMALLOC(ar, p);
  GtestUtils::mark_range_with(p, 0x10, 'Z');

  ar.Afree(p, 0x10);
  DEBUG_ONLY(ASSERT_RANGE_IS_MARKED_WITH(p, 0x10, badResourceValue);)

  // a subsequent allocation should get the same pointer
  void* p2 = ar.Amalloc(0x20);
  ASSERT_EQ(p2, p);
}


// In-place shrinking.
TEST_VM(Arena, realloc_top_shrink) {
  Arena ar(mtTest);

  void* p1 = ar.Amalloc(0x200);
  ASSERT_AMALLOC(ar, p1);
  GtestUtils::mark_range(p1, 0x200);

  void* p2 = ar.Arealloc(p1, 0x200, 0x100);
  ASSERT_EQ(p1, p2);
  ASSERT_RANGE_IS_MARKED(p2, 0x100); // realloc should preserve old content

  // A subsequent allocation should be placed right after the end of the first, shrunk, allocation
  void* p3 = ar.Amalloc(1);
  ASSERT_EQ(p3, ((char*)p1) + 0x100);
}

// not-in-place shrinking.
TEST_VM(Arena, realloc_nontop_shrink) {
  Arena ar(mtTest);

  void* p1 = ar.Amalloc(200);
  ASSERT_AMALLOC(ar, p1);
  GtestUtils::mark_range(p1, 200);

  void* p_other = ar.Amalloc(20); // new top, p1 not top anymore

  void* p2 = ar.Arealloc(p1, 200, 100);
  ASSERT_EQ(p1, p2); // should still shrink in place
  ASSERT_RANGE_IS_MARKED(p2, 100); // realloc should preserve old content
}

// in-place growing.
TEST_VM(Arena, realloc_top_grow) {
  Arena ar(mtTest); // initial chunk size large enough to ensure below allocation grows in-place.

  void* p1 = ar.Amalloc(0x10);
  ASSERT_AMALLOC(ar, p1);
  GtestUtils::mark_range(p1, 0x10);

  void* p2 = ar.Arealloc(p1, 0x10, 0x20);
  ASSERT_EQ(p1, p2);
  ASSERT_RANGE_IS_MARKED(p2, 0x10); // realloc should preserve old content
}

// not-in-place growing.
TEST_VM(Arena, realloc_nontop_grow) {
  Arena ar(mtTest);

  void* p1 = ar.Amalloc(10);
  ASSERT_AMALLOC(ar, p1);
  GtestUtils::mark_range(p1, 10);

  void* p_other = ar.Amalloc(20); // new top, p1 not top anymore

  void* p2 = ar.Arealloc(p1, 10, 20);
  ASSERT_AMALLOC(ar, p2);
  ASSERT_RANGE_IS_MARKED(p2, 10); // realloc should preserve old content
}

// -------- random alloc test -------------

static uint8_t canary(int i) {
  return (uint8_t)('A' + i % 26);
}

// Randomly allocate and reallocate with random sizes and differing alignments;
//  check alignment; check for overwriters.
// We do this a number of times, to give chunk pool handling a good workout too.
TEST_VM(Arena, random_allocs) {

  const int num_allocs = 250 * 1000;
  const int avg_alloc_size = 64;

  void** ptrs = NEW_C_HEAP_ARRAY(void*, num_allocs, mtTest);
  size_t* sizes = NEW_C_HEAP_ARRAY(size_t, num_allocs, mtTest);
  size_t* alignments = NEW_C_HEAP_ARRAY(size_t, num_allocs, mtTest);

  Arena ar(mtTest);

  // Allocate
  for (int i = 0; i < num_allocs; i ++) {
    size_t size = os::random() % (avg_alloc_size * 2); // Note: size==0 is okay; we want to test that too
    size_t alignment = 0;
    void* p = NULL;
    if (os::random() % 2) { // randomly switch between Amalloc and AmallocWords
      p = ar.Amalloc(size);
      alignment = BytesPerLong;
    } else {
      // Inconsistency: AmallocWords wants its input size word aligned, whereas Amalloc takes
      //  care of alignment itself. We may want to clean this up, but for now just go with it.
      size = align_up(size, BytesPerWord);
      p = ar.AmallocWords(size);
      alignment = BytesPerWord;
    }
    LOG(("[%d]: " PTR_FORMAT ", size " SIZE_FORMAT ", aligned " SIZE_FORMAT,
         i, p2i(p), size, alignment));
    ASSERT_NOT_NULL(p);
    ASSERT_ALIGN(p, alignment);
    if (size > 0) {
      ASSERT_CONTAINS(ar, p);
    }
    GtestUtils::mark_range_with(p, size, canary(i));
    ptrs[i] = p; sizes[i] = size; alignments[i] = alignment;
  }

  // Check pattern in allocations for overwriters.
  for (int i = 0; i < num_allocs; i ++) {
    ASSERT_RANGE_IS_MARKED_WITH(ptrs[i], sizes[i], canary(i));
  }

  // realloc all of them
  for (int i = 0; i < num_allocs; i ++) {
    size_t new_size = os::random() % (avg_alloc_size * 2);  // Note: 0 is possible and should work
    void* p2 = ar.Arealloc(ptrs[i], sizes[i], new_size);
    if (new_size > 0) {
      ASSERT_NOT_NULL(p2);
      ASSERT_CONTAINS(ar, p2);
      ASSERT_ALIGN(p2, alignments[i]); // Realloc guarantees at least the original alignment
      ASSERT_RANGE_IS_MARKED_WITH(p2, MIN2(sizes[i], new_size), canary(i)); // old content should have been preserved

      GtestUtils::mark_range_with(p2, new_size, canary(i)); // mark new range with canary
    } else {
      ASSERT_NULL(p2);
    }
    ptrs[i] = p2; sizes[i] = new_size;
    LOG(("[%d]: realloc " PTR_FORMAT ", size " SIZE_FORMAT ", aligned " SIZE_FORMAT,
         i, p2i(p2), new_size, alignments[i]));
  }

  // Check test pattern again
  //  Note that we don't check the gap pattern anymore since if allocations had been shrunk in place
  //  this now gets difficult.
  for (int i = 0; i < num_allocs; i ++) {
    ASSERT_RANGE_IS_MARKED_WITH(ptrs[i], sizes[i], canary(i));
  }

  // Randomly free a bunch of allocations.
  for (int i = 0; i < num_allocs; i ++) {
    if (os::random() % 10 == 0) {
      ar.Afree(ptrs[i], sizes[i]);
      // In debug builds the freed space should be filled the space with badResourceValue
      DEBUG_ONLY(ASSERT_RANGE_IS_MARKED_WITH(ptrs[i], sizes[i], badResourceValue));
      ptrs[i] = NULL;
    }
  }

  // Check test pattern again
  for (int i = 0; i < num_allocs; i ++) {
    ASSERT_RANGE_IS_MARKED_WITH(ptrs[i], sizes[i], canary(i));
  }

  // Free temp data
  FREE_C_HEAP_ARRAY(char*, ptrs);
  FREE_C_HEAP_ARRAY(size_t, sizes);
  FREE_C_HEAP_ARRAY(size_t, alignments);
}

#ifndef LP64
// These tests below are about alignment issues when mixing Amalloc and AmallocWords.
// Since on 64-bit these APIs offer the same alignment, they only matter for 32-bit.

TEST_VM(Arena, mixed_alignment_allocation) {
  // Test that mixed alignment allocations work and provide allocations with the correct
  // alignment
  Arena ar(mtTest);
  void* p1 = ar.AmallocWords(BytesPerWord);
  void* p2 = ar.Amalloc(BytesPerLong);
  ASSERT_TRUE(is_aligned(p1, BytesPerWord));
  ASSERT_TRUE(is_aligned(p2, ARENA_AMALLOC_ALIGNMENT));
}

TEST_VM(Arena, Arena_with_crooked_initial_size) {
  // Test that an arena with a crooked, not 64-bit aligned initial size
  // works
  Arena ar(mtTest, 4097);
  void* p1 = ar.AmallocWords(BytesPerWord);
  void* p2 = ar.Amalloc(BytesPerLong);
  ASSERT_TRUE(is_aligned(p1, BytesPerWord));
  ASSERT_TRUE(is_aligned(p2, ARENA_AMALLOC_ALIGNMENT));
}

TEST_VM(Arena, Arena_grows_large_unaligned) {
  // Test that if the arena grows with a large unaligned value, nothing bad happens.
  // We trigger allocation of a new, large, unaligned chunk with a non-standard size
  // (only possible on 32-bit when allocating with word alignment).
  // Then we alloc some more. If Arena::grow() does not correctly align, on 32-bit
  // something should assert at some point.
  Arena ar(mtTest, 100); // first chunk is small
  void* p = ar.AmallocWords(Chunk::size + BytesPerWord); // if Arena::grow() misaligns, this asserts
  // some more allocations for good measure
  for (int i = 0; i < 100; i ++) {
    ar.Amalloc(1);
  }
}

#endif //  LP64

static size_t random_arena_chunk_size() {
  // Return with a 50% rate a standard size, otherwise some random size
  if (os::random() % 10 < 5) {
    static const size_t standard_sizes[4] = {
        Chunk::tiny_size, Chunk::init_size, Chunk::size, Chunk::medium_size
    };
    return standard_sizes[os::random() % 4];
  }
  return ARENA_ALIGN(os::random() % 1024);
}

TEST_VM(Arena, different_chunk_sizes) {
  // Test the creation/pooling of chunks; since ChunkPool is hidden, the
  //  only way to test this is to create/destroy arenas with different init sizes,
  //  which determines the initial chunk size.
  // Note that since the chunk pools are global and get cleaned out periodically,
  //  there is no safe way to actually test their occupancy here.
  for (int i = 0; i < 1000; i ++) {
    // Unfortunately, Arenas cannot be newed,
    // so we are left with awkwardly placing a few on the stack.
    Arena ar0(mtTest, random_arena_chunk_size());
    Arena ar1(mtTest, random_arena_chunk_size());
    Arena ar2(mtTest, random_arena_chunk_size());
    Arena ar3(mtTest, random_arena_chunk_size());
    Arena ar4(mtTest, random_arena_chunk_size());
    Arena ar5(mtTest, random_arena_chunk_size());
    Arena ar6(mtTest, random_arena_chunk_size());
    Arena ar7(mtTest, random_arena_chunk_size());
  }
}

¤ Dauer der Verarbeitung: 0.33 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff