(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open Util
open Names
open Nameops
open Libnames
open Namegen
open Glob_term
open Constrexpr
open Notation
open Decl_kinds
(***********************)
(* For binders parsing *)
let binding_kind_eq bk1 bk2 = match bk1, bk2 with
| Explicit, Explicit -> true
| Implicit, Implicit -> true
| _ -> false
let abstraction_kind_eq ak1 ak2 = match ak1, ak2 with
| AbsLambda, AbsLambda -> true
| AbsPi, AbsPi -> true
| _ -> false
let binder_kind_eq b1 b2 = match b1, b2 with
| Default bk1, Default bk2 -> binding_kind_eq bk1 bk2
| Generalized (ck1, b1), Generalized (ck2, b2) ->
binding_kind_eq ck1 ck2 &&
(if b1 then b2 else not b2)
| _ -> false
let default_binder_kind = Default Explicit
let names_of_local_assums bl =
List.flatten (List.map (function CLocalAssum(l,_,_)->l|_->[]) bl)
let names_of_local_binders bl =
List.flatten (List.map (function CLocalAssum(l,_,_)->l|CLocalDef(l,_,_)->[l]|CLocalPattern _ -> assert false) bl)
(**********************************************************************)
(* Functions on constr_expr *)
(* Note: redundant Numeral representations, such as -0 and +0 (and others),
are considered different here. *)
let prim_token_eq t1 t2 = match t1, t2 with
| Numeral (SPlus,n1), Numeral (SPlus,n2)
| Numeral (SMinus,n1), Numeral (SMinus,n2) -> NumTok.equal n1 n2
| String s1, String s2 -> String.equal s1 s2
| (Numeral ((SPlus|SMinus),_) | String _), _ -> false
let explicitation_eq ex1 ex2 = match ex1, ex2 with
| ExplByPos (i1, id1), ExplByPos (i2, id2) ->
Int.equal i1 i2 && Option.equal Id.equal id1 id2
| ExplByName id1, ExplByName id2 ->
Id.equal id1 id2
| _ -> false
let eq_ast f { CAst.v = x } { CAst.v = y } = f x y
let rec cases_pattern_expr_eq p1 p2 =
if CAst.(p1.v == p2.v) then true
else match CAst.(p1.v, p2.v) with
| CPatAlias(a1,i1), CPatAlias(a2,i2) ->
eq_ast Name.equal i1 i2 && cases_pattern_expr_eq a1 a2
| CPatCstr(c1,a1,b1), CPatCstr(c2,a2,b2) ->
qualid_eq c1 c2 &&
Option.equal (List.equal cases_pattern_expr_eq) a1 a2 &&
List.equal cases_pattern_expr_eq b1 b2
| CPatAtom(r1), CPatAtom(r2) ->
Option.equal qualid_eq r1 r2
| CPatOr a1, CPatOr a2 ->
List.equal cases_pattern_expr_eq a1 a2
| CPatNotation (n1, s1, l1), CPatNotation (n2, s2, l2) ->
notation_eq n1 n2 &&
cases_pattern_notation_substitution_eq s1 s2 &&
List.equal cases_pattern_expr_eq l1 l2
| CPatPrim i1, CPatPrim i2 ->
prim_token_eq i1 i2
| CPatRecord l1, CPatRecord l2 ->
let equal (r1, e1) (r2, e2) =
qualid_eq r1 r2 && cases_pattern_expr_eq e1 e2
in
List.equal equal l1 l2
| CPatDelimiters(s1,e1), CPatDelimiters(s2,e2) ->
String.equal s1 s2 && cases_pattern_expr_eq e1 e2
| _ -> false
and cases_pattern_notation_substitution_eq (s1, n1) (s2, n2) =
List.equal cases_pattern_expr_eq s1 s2 &&
List.equal (List.equal cases_pattern_expr_eq) n1 n2
let eq_universes u1 u2 =
match u1, u2 with
| None, None -> true
| Some l, Some l' -> l = l'
| _, _ -> false
let rec constr_expr_eq e1 e2 =
if CAst.(e1.v == e2.v) then true
else match CAst.(e1.v, e2.v) with
| CRef (r1,u1), CRef (r2,u2) -> qualid_eq r1 r2 && eq_universes u1 u2
| CFix(id1,fl1), CFix(id2,fl2) ->
eq_ast Id.equal id1 id2 &&
List.equal fix_expr_eq fl1 fl2
| CCoFix(id1,fl1), CCoFix(id2,fl2) ->
eq_ast Id.equal id1 id2 &&
List.equal cofix_expr_eq fl1 fl2
| CProdN(bl1,a1), CProdN(bl2,a2) ->
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2
| CLambdaN(bl1,a1), CLambdaN(bl2,a2) ->
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2
| CLetIn(na1,a1,t1,b1), CLetIn(na2,a2,t2,b2) ->
eq_ast Name.equal na1 na2 &&
constr_expr_eq a1 a2 &&
Option.equal constr_expr_eq t1 t2 &&
constr_expr_eq b1 b2
| CAppExpl((proj1,r1,_),al1), CAppExpl((proj2,r2,_),al2) ->
Option.equal Int.equal proj1 proj2 &&
qualid_eq r1 r2 &&
List.equal constr_expr_eq al1 al2
| CApp((proj1,e1),al1), CApp((proj2,e2),al2) ->
Option.equal Int.equal proj1 proj2 &&
constr_expr_eq e1 e2 &&
List.equal args_eq al1 al2
| CRecord l1, CRecord l2 ->
let field_eq (r1, e1) (r2, e2) =
qualid_eq r1 r2 && constr_expr_eq e1 e2
in
List.equal field_eq l1 l2
| CCases(_,r1,a1,brl1), CCases(_,r2,a2,brl2) ->
(* Don't care about the case_style *)
Option.equal constr_expr_eq r1 r2 &&
List.equal case_expr_eq a1 a2 &&
List.equal branch_expr_eq brl1 brl2
| CLetTuple (n1, (m1, e1), t1, b1), CLetTuple (n2, (m2, e2), t2, b2) ->
List.equal (eq_ast Name.equal) n1 n2 &&
Option.equal (eq_ast Name.equal) m1 m2 &&
Option.equal constr_expr_eq e1 e2 &&
constr_expr_eq t1 t2 &&
constr_expr_eq b1 b2
| CIf (e1, (n1, r1), t1, f1), CIf (e2, (n2, r2), t2, f2) ->
constr_expr_eq e1 e2 &&
Option.equal (eq_ast Name.equal) n1 n2 &&
Option.equal constr_expr_eq r1 r2 &&
constr_expr_eq t1 t2 &&
constr_expr_eq f1 f2
| CHole _, CHole _ -> true
| CPatVar i1, CPatVar i2 ->
Id.equal i1 i2
| CEvar (id1, c1), CEvar (id2, c2) ->
Id.equal id1 id2 && List.equal instance_eq c1 c2
| CSort s1, CSort s2 ->
Glob_ops.glob_sort_eq s1 s2
| CCast(t1,c1), CCast(t2,c2) ->
constr_expr_eq t1 t2 && cast_expr_eq c1 c2
| CNotation(n1, s1), CNotation(n2, s2) ->
notation_eq n1 n2 &&
constr_notation_substitution_eq s1 s2
| CPrim i1, CPrim i2 ->
prim_token_eq i1 i2
| CGeneralization (bk1, ak1, e1), CGeneralization (bk2, ak2, e2) ->
binding_kind_eq bk1 bk2 &&
Option.equal abstraction_kind_eq ak1 ak2 &&
constr_expr_eq e1 e2
| CDelimiters(s1,e1), CDelimiters(s2,e2) ->
String.equal s1 s2 &&
constr_expr_eq e1 e2
| (CRef _ | CFix _ | CCoFix _ | CProdN _ | CLambdaN _ | CLetIn _ | CAppExpl _
| CApp _ | CRecord _ | CCases _ | CLetTuple _ | CIf _ | CHole _
| CPatVar _ | CEvar _ | CSort _ | CCast _ | CNotation _ | CPrim _
| CGeneralization _ | CDelimiters _ ), _ -> false
and args_eq (a1,e1) (a2,e2) =
Option.equal (eq_ast explicitation_eq) e1 e2 &&
constr_expr_eq a1 a2
and case_expr_eq (e1, n1, p1) (e2, n2, p2) =
constr_expr_eq e1 e2 &&
Option.equal (eq_ast Name.equal) n1 n2 &&
Option.equal cases_pattern_expr_eq p1 p2
and branch_expr_eq {CAst.v=(p1, e1)} {CAst.v=(p2, e2)} =
List.equal (List.equal cases_pattern_expr_eq) p1 p2 &&
constr_expr_eq e1 e2
and fix_expr_eq (id1,r1,bl1,a1,b1) (id2,r2,bl2,a2,b2) =
(eq_ast Id.equal id1 id2) &&
Option.equal recursion_order_expr_eq r1 r2 &&
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2 &&
constr_expr_eq b1 b2
and cofix_expr_eq (id1,bl1,a1,b1) (id2,bl2,a2,b2) =
(eq_ast Id.equal id1 id2) &&
List.equal local_binder_eq bl1 bl2 &&
constr_expr_eq a1 a2 &&
constr_expr_eq b1 b2
and recursion_order_expr_eq_r r1 r2 = match r1, r2 with
| CStructRec i1, CStructRec i2 -> eq_ast Id.equal i1 i2
| CWfRec (i1,e1), CWfRec (i2,e2) ->
constr_expr_eq e1 e2
| CMeasureRec (i1, e1, o1), CMeasureRec (i2, e2, o2) ->
Option.equal (eq_ast Id.equal) i1 i2 &&
constr_expr_eq e1 e2 && Option.equal constr_expr_eq o1 o2
| _ -> false
and recursion_order_expr_eq r1 r2 = eq_ast recursion_order_expr_eq_r r1 r2
and local_binder_eq l1 l2 = match l1, l2 with
| CLocalDef (n1, e1, t1), CLocalDef (n2, e2, t2) ->
eq_ast Name.equal n1 n2 && constr_expr_eq e1 e2 && Option.equal constr_expr_eq t1 t2
| CLocalAssum (n1, _, e1), CLocalAssum (n2, _, e2) ->
(* Don't care about the [binder_kind] *)
List.equal (eq_ast Name.equal) n1 n2 && constr_expr_eq e1 e2
| _ -> false
and constr_notation_substitution_eq (e1, el1, b1, bl1) (e2, el2, b2, bl2) =
List.equal constr_expr_eq e1 e2 &&
List.equal (List.equal constr_expr_eq) el1 el2 &&
List.equal cases_pattern_expr_eq b1 b2 &&
List.equal (List.equal local_binder_eq) bl1 bl2
and instance_eq (x1,c1) (x2,c2) =
Id.equal x1 x2 && constr_expr_eq c1 c2
and cast_expr_eq c1 c2 = match c1, c2 with
| CastConv t1, CastConv t2
| CastVM t1, CastVM t2
| CastNative t1, CastNative t2 -> constr_expr_eq t1 t2
| CastCoerce, CastCoerce -> true
| CastConv _, _
| CastVM _, _
| CastNative _, _
| CastCoerce, _ -> false
let constr_loc c = CAst.(c.loc)
let cases_pattern_expr_loc cp = CAst.(cp.loc)
let local_binder_loc = let open CAst in function
| CLocalAssum ({ loc } ::_,_,t)
| CLocalDef ( { loc },t,None) -> Loc.merge_opt loc (constr_loc t)
| CLocalDef ( { loc },b,Some t) -> Loc.merge_opt loc (Loc.merge_opt (constr_loc b) (constr_loc t))
| CLocalAssum ([],_,_) -> assert false
| CLocalPattern { loc } -> loc
let local_binders_loc bll = match bll with
| [] -> None
| h :: l -> Loc.merge_opt (local_binder_loc h) (local_binder_loc (List.last bll))
(** Folds and maps *)
let is_constructor id =
try Globnames.isConstructRef
(Smartlocate.global_of_extended_global
(Nametab.locate_extended (qualid_of_ident id)))
with Not_found -> false
let rec cases_pattern_fold_names f a pt = match CAst.(pt.v) with
| CPatRecord l ->
List.fold_left (fun acc (r, cp) -> cases_pattern_fold_names f acc cp) a l
| CPatAlias (pat,{CAst.v=na}) -> Name.fold_right f na (cases_pattern_fold_names f a pat)
| CPatOr (patl) ->
List.fold_left (cases_pattern_fold_names f) a patl
| CPatCstr (_,patl1,patl2) ->
List.fold_left (cases_pattern_fold_names f)
(Option.fold_left (List.fold_left (cases_pattern_fold_names f)) a patl1) patl2
| CPatNotation (_,(patl,patll),patl') ->
List.fold_left (cases_pattern_fold_names f)
(List.fold_left (cases_pattern_fold_names f) a (patl@List.flatten patll)) patl'
| CPatDelimiters (_,pat) -> cases_pattern_fold_names f a pat
| CPatAtom (Some qid)
when qualid_is_ident qid && not (is_constructor @@ qualid_basename qid) ->
f (qualid_basename qid) a
| CPatPrim _ | CPatAtom _ -> a
| CPatCast ({CAst.loc},_) ->
CErrors.user_err ?loc ~hdr:"cases_pattern_fold_names"
(Pp.strbrk "Casts are not supported here.")
let ids_of_pattern =
cases_pattern_fold_names Id.Set.add Id.Set.empty
let ids_of_pattern_list =
List.fold_left
(List.fold_left (cases_pattern_fold_names Id.Set.add))
Id.Set.empty
let ids_of_cases_tomatch tms =
List.fold_right
(fun (_, ona, indnal) l ->
Option.fold_right (fun t ids -> cases_pattern_fold_names Id.Set.add ids t)
indnal
(Option.fold_right (CAst.with_val (Name.fold_right Id.Set.add)) ona l))
tms Id.Set.empty
let rec fold_local_binders g f n acc b = let open CAst in function
| CLocalAssum (nal,bk,t)::l ->
let nal = List.(map (fun {v} -> v) nal) in
let n' = List.fold_right (Name.fold_right g) nal n in
f n (fold_local_binders g f n' acc b l) t
| CLocalDef ( { v = na },c,t)::l ->
Option.fold_left (f n) (f n (fold_local_binders g f (Name.fold_right g na n) acc b l) c) t
| CLocalPattern { v = pat,t }::l ->
let acc = fold_local_binders g f (cases_pattern_fold_names g n pat) acc b l in
Option.fold_left (f n) acc t
| [] ->
f n acc b
let fold_constr_expr_with_binders g f n acc = CAst.with_val (function
| CAppExpl ((_,_,_),l) -> List.fold_left (f n) acc l
| CApp ((_,t),l) -> List.fold_left (f n) (f n acc t) (List.map fst l)
| CProdN (l,b) | CLambdaN (l,b) -> fold_local_binders g f n acc b l
| CLetIn (na,a,t,b) ->
f (Name.fold_right g (na.CAst.v) n) (Option.fold_left (f n) (f n acc a) t) b
| CCast (a,(CastConv b|CastVM b|CastNative b)) -> f n (f n acc a) b
| CCast (a,CastCoerce) -> f n acc a
| CNotation (_,(l,ll,bl,bll)) ->
(* The following is an approximation: we don't know exactly if
an ident is binding nor to which subterms bindings apply *)
let acc = List.fold_left (f n) acc (l@List.flatten ll) in
List.fold_left (fun acc bl -> fold_local_binders g f n acc (CAst.make @@ CHole (None,IntroAnonymous,None)) bl) acc bll
| CGeneralization (_,_,c) -> f n acc c
| CDelimiters (_,a) -> f n acc a
| CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CRef _ ->
acc
| CRecord l -> List.fold_left (fun acc (id, c) -> f n acc c) acc l
| CCases (sty,rtnpo,al,bl) ->
let ids = ids_of_cases_tomatch al in
let acc = Option.fold_left (f (Id.Set.fold g ids n)) acc rtnpo in
let acc = List.fold_left (f n) acc (List.map (fun (fst,_,_) -> fst) al) in
List.fold_right (fun {CAst.v=(patl,rhs)} acc ->
let ids = ids_of_pattern_list patl in
f (Id.Set.fold g ids n) acc rhs) bl acc
| CLetTuple (nal,(ona,po),b,c) ->
let n' = List.fold_right (CAst.with_val (Name.fold_right g)) nal n in
f (Option.fold_right (CAst.with_val (Name.fold_right g)) ona n') (f n acc b) c
| CIf (c,(ona,po),b1,b2) ->
let acc = f n (f n (f n acc b1) b2) c in
Option.fold_left
(f (Option.fold_right (CAst.with_val (Name.fold_right g)) ona n)) acc po
| CFix (_,l) ->
let n' = List.fold_right (fun ( { CAst.v = id },_,_,_,_) -> g id) l n in
List.fold_right (fun (_,ro,lb,t,c) acc ->
fold_local_binders g f n'
(fold_local_binders g f n acc t lb) c lb) l acc
| CCoFix (_,_) ->
Feedback.msg_warning (strbrk "Capture check in multiple binders not done"); acc
)
let free_vars_of_constr_expr c =
let rec aux bdvars l = function
| { CAst.v = CRef (qid, _) } when qualid_is_ident qid ->
let id = qualid_basename qid in
if Id.List.mem id bdvars then l else Id.Set.add id l
| c -> fold_constr_expr_with_binders (fun a l -> a::l) aux bdvars l c
in aux [] Id.Set.empty c
let names_of_constr_expr c =
let vars = ref Id.Set.empty in
let rec aux () () = function
| { CAst.v = CRef (qid, _) } when qualid_is_ident qid ->
let id = qualid_basename qid in vars := Id.Set.add id !vars
| c -> fold_constr_expr_with_binders (fun a () -> vars := Id.Set.add a !vars) aux () () c
in aux () () c; !vars
let occur_var_constr_expr id c = Id.Set.mem id (free_vars_of_constr_expr c)
(* Used in correctness and interface *)
let map_binder g e nal = List.fold_right (CAst.with_val (Name.fold_right g)) nal e
let map_local_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let open CAst in
let h (e,bl) = function
CLocalAssum(nal,k,ty) ->
(map_binder g e nal, CLocalAssum(nal,k,f e ty)::bl)
| CLocalDef( { loc ; v = na } as cna ,c,ty) ->
(Name.fold_right g na e, CLocalDef(cna,f e c,Option.map (f e) ty)::bl)
| CLocalPattern { loc; v = pat,t } ->
let ids = ids_of_pattern pat in
(Id.Set.fold g ids e, CLocalPattern (make ?loc (pat,Option.map (f e) t))::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_constr_expr_with_binders g f e = CAst.map (function
| CAppExpl (r,l) -> CAppExpl (r,List.map (f e) l)
| CApp ((p,a),l) ->
CApp ((p,f e a),List.map (fun (a,i) -> (f e a,i)) l)
| CProdN (bl,b) ->
let (e,bl) = map_local_binders f g e bl in CProdN (bl,f e b)
| CLambdaN (bl,b) ->
let (e,bl) = map_local_binders f g e bl in CLambdaN (bl,f e b)
| CLetIn (na,a,t,b) ->
CLetIn (na,f e a,Option.map (f e) t,f (Name.fold_right g (na.CAst.v) e) b)
| CCast (a,c) -> CCast (f e a, Glob_ops.map_cast_type (f e) c)
| CNotation (n,(l,ll,bl,bll)) ->
(* This is an approximation because we don't know what binds what *)
CNotation (n,(List.map (f e) l,List.map (List.map (f e)) ll, bl,
List.map (fun bl -> snd (map_local_binders f g e bl)) bll))
| CGeneralization (b,a,c) -> CGeneralization (b,a,f e c)
| CDelimiters (s,a) -> CDelimiters (s,f e a)
| CHole _ | CEvar _ | CPatVar _ | CSort _
| CPrim _ | CRef _ as x -> x
| CRecord l -> CRecord (List.map (fun (id, c) -> (id, f e c)) l)
| CCases (sty,rtnpo,a,bl) ->
let bl = List.map (fun {CAst.v=(patl,rhs);loc} ->
let ids = ids_of_pattern_list patl in
CAst.make ?loc (patl,f (Id.Set.fold g ids e) rhs)) bl in
let ids = ids_of_cases_tomatch a in
let po = Option.map (f (Id.Set.fold g ids e)) rtnpo in
CCases (sty, po, List.map (fun (tm,x,y) -> f e tm,x,y) a,bl)
| CLetTuple (nal,(ona,po),b,c) ->
let e' = List.fold_right (CAst.with_val (Name.fold_right g)) nal e in
let e'' = Option.fold_right (CAst.with_val (Name.fold_right g)) ona e in
CLetTuple (nal,(ona,Option.map (f e'') po),f e b,f e' c)
| CIf (c,(ona,po),b1,b2) ->
let e' = Option.fold_right (CAst.with_val (Name.fold_right g)) ona e in
CIf (f e c,(ona,Option.map (f e') po),f e b1,f e b2)
| CFix (id,dl) ->
CFix (id,List.map (fun (id,n,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
(* Note: fix names should be inserted before the arguments... *)
let e'' = List.fold_left (fun e ({ CAst.v = id },_,_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,n,bl',t',d')) dl)
| CCoFix (id,dl) ->
CCoFix (id,List.map (fun (id,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
let e'' = List.fold_left (fun e ({ CAst.v = id },_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,bl',t',d')) dl)
)
(* Used in constrintern *)
let rec replace_vars_constr_expr l r =
match r with
| { CAst.loc; v = CRef (qid,us) } as x when qualid_is_ident qid ->
let id = qualid_basename qid in
(try CAst.make ?loc @@ CRef (qualid_of_ident ?loc (Id.Map.find id l),us)
with Not_found -> x)
| cn -> map_constr_expr_with_binders Id.Map.remove replace_vars_constr_expr l cn
(* Returns the ranges of locs of the notation that are not occupied by args *)
(* and which are then occupied by proper symbols of the notation (or spaces) *)
let locs_of_notation ?loc locs ntn =
let unloc loc = Option.cata Loc.unloc (0,0) loc in
let (bl, el) = unloc loc in
let locs = List.map unloc locs in
let rec aux pos = function
| [] -> if Int.equal pos el then [] else [(pos,el)]
| (ba,ea)::l -> if Int.equal pos ba then aux ea l else (pos,ba)::aux ea l
in aux bl (List.sort (fun l1 l2 -> fst l1 - fst l2) locs)
let ntn_loc ?loc (args,argslist,binders,binderslist) =
locs_of_notation ?loc
(List.map constr_loc (args@List.flatten argslist)@
List.map cases_pattern_expr_loc binders@
List.map local_binders_loc binderslist)
let patntn_loc ?loc (args,argslist) =
locs_of_notation ?loc
(List.map cases_pattern_expr_loc (args@List.flatten argslist))
let error_invalid_pattern_notation ?loc () =
CErrors.user_err ?loc (str "Invalid notation for pattern.")
(* Interpret the index of a recursion order annotation *)
let split_at_annot bl na =
let open CAst in
let names = List.map (fun { v } -> v) (names_of_local_assums bl) in
match na with
| None ->
begin match names with
| [] -> CErrors.user_err (Pp.str "A fixpoint needs at least one parameter.")
| _ -> ([], bl)
end
| Some { loc; v = id } ->
let rec aux acc = function
| CLocalAssum (bls, k, t) as x :: rest ->
let test { CAst.v = na } = match na with
| Name id' -> Id.equal id id'
| Anonymous -> false
in
let l, r = List.split_when test bls in
begin match r with
| [] -> aux (x :: acc) rest
| _ ->
let ans = match l with
| [] -> acc
| _ -> CLocalAssum (l, k, t) :: acc
in
(List.rev ans, CLocalAssum (r, k, t) :: rest)
end
| CLocalDef ({ CAst.v = na },_,_) as x :: rest ->
if Name.equal (Name id) na then
CErrors.user_err ?loc
(Id.print id ++ str" must be a proper parameter and not a local definition.")
else
aux (x :: acc) rest
| CLocalPattern _ :: rest ->
Loc.raise ?loc (Stream.Error "pattern with quote not allowed after fix")
| [] ->
CErrors.user_err ?loc
(str "No parameter named " ++ Id.print id ++ str".")
in aux [] bl
(** Pseudo-constructors *)
let mkIdentC id = CAst.make @@ CRef (qualid_of_ident id,None)
let mkRefC r = CAst.make @@ CRef (r,None)
let mkCastC (a,k) = CAst.make @@ CCast (a,k)
let mkLambdaC (idl,bk,a,b) = CAst.make @@ CLambdaN ([CLocalAssum (idl,bk,a)],b)
let mkLetInC (id,a,t,b) = CAst.make @@ CLetIn (id,a,t,b)
let mkProdC (idl,bk,a,b) = CAst.make @@ CProdN ([CLocalAssum (idl,bk,a)],b)
let mkAppC (f,l) =
let l = List.map (fun x -> (x,None)) l in
match CAst.(f.v) with
| CApp (g,l') -> CAst.make @@ CApp (g, l' @ l)
| _ -> CAst.make @@ CApp ((None, f), l)
let mkProdCN ?loc bll c =
if bll = [] then c else
CAst.make ?loc @@ CProdN (bll,c)
let mkLambdaCN ?loc bll c =
if bll = [] then c else
CAst.make ?loc @@ CLambdaN (bll,c)
let mkCProdN ?loc bll c =
CAst.make ?loc @@ CProdN (bll,c)
let mkCLambdaN ?loc bll c =
CAst.make ?loc @@ CLambdaN (bll,c)
let coerce_reference_to_id qid =
if qualid_is_ident qid then qualid_basename qid
else
CErrors.user_err ?loc:qid.CAst.loc ~hdr:"coerce_reference_to_id"
(str "This expression should be a simple identifier.")
let coerce_to_id = function
| { CAst.loc; v = CRef (qid,None) } when qualid_is_ident qid ->
CAst.make ?loc @@ qualid_basename qid
| { CAst.loc; _ } -> CErrors.user_err ?loc
~hdr:"coerce_to_id"
(str "This expression should be a simple identifier.")
let coerce_to_name = function
| { CAst.loc; v = CRef (qid,None) } when qualid_is_ident qid ->
CAst.make ?loc @@ Name (qualid_basename qid)
| { CAst.loc; v = CHole (None,IntroAnonymous,None) } -> CAst.make ?loc Anonymous
| { CAst.loc; _ } -> CErrors.user_err ?loc ~hdr:"coerce_to_name"
(str "This expression should be a name.")
let mkCPatOr ?loc = function
| [pat] -> pat
| disjpat -> CAst.make ?loc @@ (CPatOr disjpat)
let mkAppPattern ?loc p lp =
let open CAst in
make ?loc @@ (match p.v with
| CPatAtom (Some r) -> CPatCstr (r, None, lp)
| CPatCstr (r, None, l2) ->
CErrors.user_err ?loc:p.loc ~hdr:"compound_pattern"
(Pp.str "Nested applications not supported.")
| CPatCstr (r, l1, l2) -> CPatCstr (r, l1 , l2@lp)
| CPatNotation (n, s, l) -> CPatNotation (n , s, l@lp)
| _ -> CErrors.user_err
?loc:p.loc ~hdr:"compound_pattern"
(Pp.str "Such pattern cannot have arguments."))
let rec coerce_to_cases_pattern_expr c = CAst.map_with_loc (fun ?loc -> function
| CRef (r,None) ->
CPatAtom (Some r)
| CHole (None,IntroAnonymous,None) ->
CPatAtom None
| CLetIn ({CAst.loc;v=Name id},b,None,{ CAst.v = CRef (qid,None) })
when qualid_is_ident qid && Id.equal id (qualid_basename qid) ->
CPatAlias (coerce_to_cases_pattern_expr b, CAst.(make ?loc @@ Name id))
| CApp ((None,p),args) when List.for_all (fun (_,e) -> e=None) args ->
(mkAppPattern (coerce_to_cases_pattern_expr p) (List.map (fun (a,_) -> coerce_to_cases_pattern_expr a) args)).CAst.v
| CAppExpl ((None,r,i),args) ->
CPatCstr (r,Some (List.map coerce_to_cases_pattern_expr args),[])
| CNotation (ntn,(c,cl,[],[])) ->
CPatNotation (ntn,(List.map coerce_to_cases_pattern_expr c,
List.map (List.map coerce_to_cases_pattern_expr) cl),[])
| CPrim p ->
CPatPrim p
| CRecord l ->
CPatRecord (List.map (fun (r,p) -> (r,coerce_to_cases_pattern_expr p)) l)
| CDelimiters (s,p) ->
CPatDelimiters (s,coerce_to_cases_pattern_expr p)
| CCast (p,CastConv t) ->
CPatCast (coerce_to_cases_pattern_expr p,t)
| _ ->
CErrors.user_err ?loc ~hdr:"coerce_to_cases_pattern_expr"
(str "This expression should be coercible to a pattern.")) c
(** Local universe and constraint declarations. *)
let interp_univ_constraints env evd cstrs =
let interp (evd,cstrs) (u, d, u') =
let ul = Pretyping.interp_known_glob_level evd u in
let u'l = Pretyping.interp_known_glob_level evd u' in
let cstr = (ul,d,u'l) in
let cstrs' = Univ.Constraint.add cstr cstrs in
try let evd = Evd.add_constraints evd (Univ.Constraint.singleton cstr) in
evd, cstrs'
with Univ.UniverseInconsistency e ->
CErrors.user_err ~hdr:"interp_constraint"
(Univ.explain_universe_inconsistency (Termops.pr_evd_level evd) e)
in
List.fold_left interp (evd,Univ.Constraint.empty) cstrs
let interp_univ_decl env decl =
let open UState in
let pl : lident list = decl.univdecl_instance in
let evd = Evd.from_ctx (UState.make_with_initial_binders ~lbound:(Environ.universes_lbound env)
(Environ.universes env) pl) in
let evd, cstrs = interp_univ_constraints env evd decl.univdecl_constraints in
let decl = { univdecl_instance = pl;
univdecl_extensible_instance = decl.univdecl_extensible_instance;
univdecl_constraints = cstrs;
univdecl_extensible_constraints = decl.univdecl_extensible_constraints }
in evd, decl
let interp_univ_decl_opt env l =
match l with
| None -> Evd.from_env env, UState.default_univ_decl
| Some decl -> interp_univ_decl env decl
¤ Dauer der Verarbeitung: 0.29 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|