(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Bool Morphisms Setoid Bvector BinPos BinNat PeanoNat Pnat Nnat
Basics ByteVector.
Local Open Scope N_scope.
Local Open Scope program_scope.
(** This file is mostly obsolete, see directly [BinNat] now. *)
(** Compatibility names for some bitwise operations *)
Notation Pxor := Pos.lxor (only parsing).
Notation Nxor := N.lxor (only parsing).
Notation Pbit := Pos.testbit_nat (only parsing).
Notation Nbit := N.testbit_nat (only parsing).
Notation Nxor_eq := N.lxor_eq (only parsing).
Notation Nxor_comm := N.lxor_comm (only parsing).
Notation Nxor_assoc := N.lxor_assoc (only parsing).
Notation Nxor_neutral_left := N.lxor_0_l (only parsing).
Notation Nxor_neutral_right := N.lxor_0_r (only parsing).
Notation Nxor_nilpotent := N.lxor_nilpotent (only parsing).
(** Equivalence of bit-testing functions,
either with index in [N] or in [nat]. *)
Lemma Ptestbit_Pbit :
forall p n, Pos.testbit p (N.of_nat n) = Pos.testbit_nat p n.
Proof.
induction p as [p IH|p IH| ]; intros [|n]; simpl; trivial;
rewrite <- IH; f_equal; rewrite (pred_Sn n) at 2; now rewrite Nat2N.inj_pred.
Qed.
Lemma Ntestbit_Nbit : forall a n, N.testbit a (N.of_nat n) = N.testbit_nat a n.
Proof.
destruct a. trivial. apply Ptestbit_Pbit.
Qed.
Lemma Pbit_Ptestbit :
forall p n, Pos.testbit_nat p (N.to_nat n) = Pos.testbit p n.
Proof.
intros; now rewrite <- Ptestbit_Pbit, N2Nat.id.
Qed.
Lemma Nbit_Ntestbit :
forall a n, N.testbit_nat a (N.to_nat n) = N.testbit a n.
Proof.
destruct a. trivial. apply Pbit_Ptestbit.
Qed.
(** Equivalence of shifts, index in [N] or [nat] *)
Lemma Nshiftr_nat_S : forall a n,
N.shiftr_nat a (S n) = N.div2 (N.shiftr_nat a n).
Proof.
reflexivity.
Qed.
Lemma Nshiftl_nat_S : forall a n,
N.shiftl_nat a (S n) = N.double (N.shiftl_nat a n).
Proof.
reflexivity.
Qed.
Lemma Nshiftr_nat_equiv :
forall a n, N.shiftr_nat a (N.to_nat n) = N.shiftr a n.
Proof.
intros a [|n]; simpl. unfold N.shiftr_nat.
trivial.
symmetry. apply Pos2Nat.inj_iter.
Qed.
Lemma Nshiftr_equiv_nat :
forall a n, N.shiftr a (N.of_nat n) = N.shiftr_nat a n.
Proof.
intros. now rewrite <- Nshiftr_nat_equiv, Nat2N.id.
Qed.
Lemma Nshiftl_nat_equiv :
forall a n, N.shiftl_nat a (N.to_nat n) = N.shiftl a n.
Proof.
intros [|a] [|n]; simpl; unfold N.shiftl_nat; trivial.
induction (Pos.to_nat n) as [|? H]; simpl; now try rewrite H.
rewrite <- Pos2Nat.inj_iter. symmetry. now apply Pos.iter_swap_gen.
Qed.
Lemma Nshiftl_equiv_nat :
forall a n, N.shiftl a (N.of_nat n) = N.shiftl_nat a n.
Proof.
intros. now rewrite <- Nshiftl_nat_equiv, Nat2N.id.
Qed.
(** Correctness proofs for shifts, nat version *)
Lemma Nshiftr_nat_spec : forall a n m,
N.testbit_nat (N.shiftr_nat a n) m = N.testbit_nat a (m+n).
Proof.
induction n; intros m.
now rewrite <- plus_n_O.
simpl. rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn.
destruct (N.shiftr_nat a n) as [|[p|p|]]; simpl; trivial.
Qed.
Lemma Nshiftl_nat_spec_high : forall a n m, (n<=m)%nat ->
N.testbit_nat (N.shiftl_nat a n) m = N.testbit_nat a (m-n).
Proof.
induction n; intros m H.
- now rewrite Nat.sub_0_r.
- destruct m.
+ inversion H.
+ apply le_S_n in H.
simpl. rewrite <- IHn; trivial.
destruct (N.shiftl_nat a n) as [|[p|p|]]; simpl; trivial.
Qed.
Lemma Nshiftl_nat_spec_low : forall a n m, (m<n)%nat ->
N.testbit_nat (N.shiftl_nat a n) m = false.
Proof.
induction n; intros m H. inversion H.
rewrite Nshiftl_nat_S.
destruct m.
- destruct (N.shiftl_nat a n); trivial.
- apply Lt.lt_S_n in H.
specialize (IHn m H).
destruct (N.shiftl_nat a n); trivial.
Qed.
(** A left shift for positive numbers (used in BigN) *)
Lemma Pshiftl_nat_0 : forall p, Pos.shiftl_nat p 0 = p.
Proof. reflexivity. Qed.
Lemma Pshiftl_nat_S :
forall p n, Pos.shiftl_nat p (S n) = xO (Pos.shiftl_nat p n).
Proof. reflexivity. Qed.
Lemma Pshiftl_nat_N :
forall p n, Npos (Pos.shiftl_nat p n) = N.shiftl_nat (Npos p) n.
Proof.
unfold Pos.shiftl_nat, N.shiftl_nat.
induction n; simpl; auto. now rewrite <- IHn.
Qed.
Lemma Pshiftl_nat_plus : forall n m p,
Pos.shiftl_nat p (m + n) = Pos.shiftl_nat (Pos.shiftl_nat p n) m.
Proof.
induction m; simpl; intros. reflexivity.
now f_equal.
Qed.
(** Semantics of bitwise operations with respect to [N.testbit_nat] *)
Lemma Pxor_semantics p p' n :
N.testbit_nat (Pos.lxor p p') n = xorb (Pos.testbit_nat p n) (Pos.testbit_nat p' n).
Proof.
rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_lxor_spec.
Qed.
Lemma Nxor_semantics a a' n :
N.testbit_nat (N.lxor a a') n = xorb (N.testbit_nat a n) (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.lxor_spec.
Qed.
Lemma Por_semantics p p' n :
Pos.testbit_nat (Pos.lor p p') n = (Pos.testbit_nat p n) || (Pos.testbit_nat p' n).
Proof.
rewrite <- !Ptestbit_Pbit. apply N.pos_lor_spec.
Qed.
Lemma Nor_semantics a a' n :
N.testbit_nat (N.lor a a') n = (N.testbit_nat a n) || (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.lor_spec.
Qed.
Lemma Pand_semantics p p' n :
N.testbit_nat (Pos.land p p') n = (Pos.testbit_nat p n) && (Pos.testbit_nat p' n).
Proof.
rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_land_spec.
Qed.
Lemma Nand_semantics a a' n :
N.testbit_nat (N.land a a') n = (N.testbit_nat a n) && (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.land_spec.
Qed.
Lemma Pdiff_semantics p p' n :
N.testbit_nat (Pos.ldiff p p') n = (Pos.testbit_nat p n) && negb (Pos.testbit_nat p' n).
Proof.
rewrite <- Ntestbit_Nbit, <- !Ptestbit_Pbit. apply N.pos_ldiff_spec.
Qed.
Lemma Ndiff_semantics a a' n :
N.testbit_nat (N.ldiff a a') n = (N.testbit_nat a n) && negb (N.testbit_nat a' n).
Proof.
rewrite <- !Ntestbit_Nbit. apply N.ldiff_spec.
Qed.
(** Equality over functional streams of bits *)
Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n.
Program Instance eqf_equiv : Equivalence eqf.
Local Infix "==" := eqf (at level 70, no associativity).
(** If two numbers produce the same stream of bits, they are equal. *)
Local Notation Step H := (fun n => H (S n)).
Lemma Pbit_faithful_0 : forall p, ~(Pos.testbit_nat p == (fun _ => false)).
Proof.
induction p as [p IHp|p IHp| ]; intros H; try discriminate (H O).
apply (IHp (Step H)).
Qed.
Lemma Pbit_faithful : forall p p', Pos.testbit_nat p == Pos.testbit_nat p' -> p = p'.
Proof.
induction p as [p IHp|p IHp| ]; intros [p'|p'|] H; trivial;
try discriminate (H O).
f_equal. apply (IHp _ (Step H)).
destruct (Pbit_faithful_0 _ (Step H)).
f_equal. apply (IHp _ (Step H)).
symmetry in H. destruct (Pbit_faithful_0 _ (Step H)).
Qed.
Lemma Nbit_faithful : forall n n', N.testbit_nat n == N.testbit_nat n' -> n = n'.
Proof.
intros [|p] [|p'] H; trivial.
symmetry in H. destruct (Pbit_faithful_0 _ H).
destruct (Pbit_faithful_0 _ H).
f_equal. apply Pbit_faithful, H.
Qed.
Lemma Nbit_faithful_iff : forall n n', N.testbit_nat n == N.testbit_nat n' <-> n = n'.
Proof.
split. apply Nbit_faithful. intros; now subst.
Qed.
Local Close Scope N_scope.
(** Checking whether a number is odd, i.e.
if its lower bit is set. *)
Notation Nbit0 := N.odd (only parsing).
Definition Nodd (n:N) := N.odd n = true.
Definition Neven (n:N) := N.odd n = false.
Lemma Nbit0_correct : forall n:N, N.testbit_nat n 0 = N.odd n.
Proof.
destruct n; trivial.
destruct p; trivial.
Qed.
Lemma Ndouble_bit0 : forall n:N, N.odd (N.double n) = false.
Proof.
destruct n; trivial.
Qed.
Lemma Ndouble_plus_one_bit0 :
forall n:N, N.odd (N.succ_double n) = true.
Proof.
destruct n; trivial.
Qed.
Lemma Ndiv2_double :
forall n:N, Neven n -> N.double (N.div2 n) = n.
Proof.
destruct n. trivial. destruct p. intro H. discriminate H.
intros. reflexivity.
intro H. discriminate H.
Qed.
Lemma Ndiv2_double_plus_one :
forall n:N, Nodd n -> N.succ_double (N.div2 n) = n.
Proof.
destruct n. intro. discriminate H.
destruct p. intros. reflexivity.
intro H. discriminate H.
intro. reflexivity.
Qed.
Lemma Ndiv2_correct :
forall (a:N) (n:nat), N.testbit_nat (N.div2 a) n = N.testbit_nat a (S n).
Proof.
destruct a; trivial.
destruct p; trivial.
Qed.
Lemma Nxor_bit0 :
forall a a':N, N.odd (N.lxor a a') = xorb (N.odd a) (N.odd a').
Proof.
intros. rewrite <- Nbit0_correct, (Nxor_semantics a a' O).
rewrite Nbit0_correct, Nbit0_correct. reflexivity.
Qed.
Lemma Nxor_div2 :
forall a a':N, N.div2 (N.lxor a a') = N.lxor (N.div2 a) (N.div2 a').
Proof.
intros. apply Nbit_faithful. unfold eqf. intro.
rewrite (Nxor_semantics (N.div2 a) (N.div2 a') n), Ndiv2_correct, (Nxor_semantics a a' (S n)).
rewrite 2! Ndiv2_correct.
reflexivity.
Qed.
Lemma Nneg_bit0 :
forall a a':N,
N.odd (N.lxor a a') = true -> N.odd a = negb (N.odd a').
Proof.
intros.
rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc,
xorb_nilpotent, xorb_false.
reflexivity.
Qed.
Lemma Nneg_bit0_1 :
forall a a':N, N.lxor a a' = Npos 1 -> N.odd a = negb (N.odd a').
Proof.
intros. apply Nneg_bit0. rewrite H. reflexivity.
Qed.
Lemma Nneg_bit0_2 :
forall (a a':N) (p:positive),
N.lxor a a' = Npos (xI p) -> N.odd a = negb (N.odd a').
Proof.
intros. apply Nneg_bit0. rewrite H. reflexivity.
Qed.
Lemma Nsame_bit0 :
forall (a a':N) (p:positive),
N.lxor a a' = Npos (xO p) -> N.odd a = N.odd a'.
Proof.
intros. rewrite <- (xorb_false (N.odd a)).
assert (H0: N.odd (Npos (xO p)) = false) by reflexivity.
rewrite <- H0, <- H, Nxor_bit0, <- xorb_assoc, xorb_nilpotent, false_xorb.
reflexivity.
Qed.
(** a lexicographic order on bits, starting from the lowest bit *)
Fixpoint Nless_aux (a a':N) (p:positive) : bool :=
match p with
| xO p' => Nless_aux (N.div2 a) (N.div2 a') p'
| _ => andb (negb (N.odd a)) (N.odd a')
end.
Definition Nless (a a':N) :=
match N.lxor a a' with
| N0 => false
| Npos p => Nless_aux a a' p
end.
Lemma Nbit0_less :
forall a a',
N.odd a = false -> N.odd a' = true -> Nless a a' = true.
Proof.
intros. destruct (N.discr (N.lxor a a')) as [(p,H2)|H1]. unfold Nless.
rewrite H2. destruct p. simpl. rewrite H, H0. reflexivity.
assert (H1: N.odd (N.lxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
assert (H2: N.odd (N.lxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
Lemma Nbit0_gt :
forall a a',
N.odd a = true -> N.odd a' = false -> Nless a a' = false.
Proof.
intros. destruct (N.discr (N.lxor a a')) as [(p,H2)|H1]. unfold Nless.
rewrite H2. destruct p. simpl. rewrite H, H0. reflexivity.
assert (H1: N.odd (N.lxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
assert (H2: N.odd (N.lxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
Lemma Nless_not_refl : forall a, Nless a a = false.
Proof.
intro. unfold Nless. rewrite (N.lxor_nilpotent a). reflexivity.
Qed.
Lemma Nless_def_1 :
forall a a', Nless (N.double a) (N.double a') = Nless a a'.
Proof.
destruct a; destruct a'. reflexivity.
trivial.
unfold Nless. simpl. destruct p; trivial.
unfold Nless. simpl. destruct (Pos.lxor p p0). reflexivity.
trivial.
Qed.
Lemma Nless_def_2 :
forall a a',
Nless (N.succ_double a) (N.succ_double a') = Nless a a'.
Proof.
destruct a; destruct a'. reflexivity.
trivial.
unfold Nless. simpl. destruct p; trivial.
unfold Nless. simpl. destruct (Pos.lxor p p0). reflexivity.
trivial.
Qed.
Lemma Nless_def_3 :
forall a a', Nless (N.double a) (N.succ_double a') = true.
Proof.
intros. apply Nbit0_less. apply Ndouble_bit0.
apply Ndouble_plus_one_bit0.
Qed.
Lemma Nless_def_4 :
forall a a', Nless (N.succ_double a) (N.double a') = false.
Proof.
intros. apply Nbit0_gt. apply Ndouble_plus_one_bit0.
apply Ndouble_bit0.
Qed.
Lemma Nless_z : forall a, Nless a N0 = false.
Proof.
induction a. reflexivity.
unfold Nless. rewrite (N.lxor_0_r (Npos p)). induction p; trivial.
Qed.
Lemma N0_less_1 :
forall a, Nless N0 a = true -> {p : positive | a = Npos p}.
Proof.
destruct a. discriminate.
intros. exists p. reflexivity.
Qed.
Lemma N0_less_2 : forall a, Nless N0 a = false -> a = N0.
Proof.
induction a as [|p]; intro H. trivial.
exfalso. induction p as [|p IHp|]; discriminate || simpl; auto using IHp.
Qed.
Lemma Nless_trans :
forall a a' a'',
Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true.
Proof.
induction a as [|a IHa|a IHa] using N.binary_ind; intros a' a'' H H0.
- case_eq (Nless N0 a'') ; intros Heqn.
+ trivial.
+ rewrite (N0_less_2 a'' Heqn), (Nless_z a') in H0. discriminate H0.
- induction a' as [|a' _|a' _] using N.binary_ind.
+ rewrite (Nless_z (N.double a)) in H. discriminate H.
+ rewrite (Nless_def_1 a a') in H.
induction a'' using N.binary_ind.
* rewrite (Nless_z (N.double a')) in H0. discriminate H0.
* rewrite (Nless_def_1 a' a'') in H0. rewrite (Nless_def_1 a a'').
exact (IHa _ _ H H0).
* apply Nless_def_3.
+ induction a'' as [|a'' _|a'' _] using N.binary_ind.
* rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
* rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
* apply Nless_def_3.
- induction a' as [|a' _|a' _] using N.binary_ind.
+ rewrite (Nless_z (N.succ_double a)) in H. discriminate H.
+ rewrite (Nless_def_4 a a') in H. discriminate H.
+ induction a'' using N.binary_ind.
* rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
* rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
* rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H.
rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0).
Qed.
Lemma Nless_total :
forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
Proof.
induction a using N.binary_rec; intro a'.
- case_eq (Nless N0 a') ; intros Heqb.
+ left. left. auto.
+ right. rewrite (N0_less_2 a' Heqb). reflexivity.
- induction a' as [|a' _|a' _] using N.binary_rec.
+ case_eq (Nless N0 (N.double a)) ; intros Heqb.
* left. right. auto.
* right. exact (N0_less_2 _ Heqb).
+ rewrite 2!Nless_def_1. destruct (IHa a') as [ | ->].
* left. assumption.
* right. reflexivity.
+ left. left. apply Nless_def_3.
- induction a' as [|a' _|a' _] using N.binary_rec.
+ left. right. destruct a; reflexivity.
+ left. right. apply Nless_def_3.
+ rewrite 2!Nless_def_2. destruct (IHa a') as [ | ->].
* left. assumption.
* right. reflexivity.
Qed.
(** Number of digits in a number *)
Notation Nsize := N.size_nat (only parsing).
(** conversions between N and bit vectors. *)
Fixpoint P2Bv (p:positive) : Bvector (Pos.size_nat p) :=
match p return Bvector (Pos.size_nat p) with
| xH => Bvect_true 1%nat
| xO p => Bcons false (Pos.size_nat p) (P2Bv p)
| xI p => Bcons true (Pos.size_nat p) (P2Bv p)
end.
Definition N2Bv (n:N) : Bvector (N.size_nat n) :=
match n as n0 return Bvector (N.size_nat n0) with
| N0 => Bnil
| Npos p => P2Bv p
end.
Fixpoint P2Bv_sized (m : nat) (p : positive) : Bvector m :=
match m with
| O => []
| S m =>
match p with
| xI p => true :: P2Bv_sized m p
| xO p => false :: P2Bv_sized m p
| xH => true :: Bvect_false m
end
end.
Definition N2Bv_sized (m : nat) (n : N) : Bvector m :=
match n with
| N0 => Bvect_false m
| Npos p => P2Bv_sized m p
end.
Definition N2ByteV_sized (m : nat) : N -> ByteVector m :=
of_Bvector ∘ N2Bv_sized (m * 8).
Fixpoint Bv2N (n:nat)(bv:Bvector n) : N :=
match bv with
| Vector.nil _ => N0
| Vector.cons _ false n bv => N.double (Bv2N n bv)
| Vector.cons _ true n bv => N.succ_double (Bv2N n bv)
end.
Arguments Bv2N {n} bv, n bv.
Definition ByteV2N {n : nat} : ByteVector n -> N :=
Bv2N ∘ to_Bvector.
Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
Proof.
destruct n.
simpl; auto.
induction p; simpl in *; auto; rewrite IHp; simpl; auto.
Qed.
(** The opposite composition is not so simple: if the considered
bit vector has some zeros on its right, they will disappear during
the return [Bv2N] translation: *)
Lemma Bv2N_Nsize : forall n (bv:Bvector n), N.size_nat (Bv2N n bv) <= n.
Proof.
induction bv; intros.
auto.
simpl.
destruct h;
destruct (Bv2N n bv);
simpl ; auto with arith.
Qed.
(** In the previous lemma, we can only replace the inequality by
an equality whenever the highest bit is non-null. *)
Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
Bsign _ bv = true <->
N.size_nat (Bv2N _ bv) = (S n).
Proof.
apply Vector.rectS ; intros ; simpl.
destruct a ; compute ; split ; intros x ; now inversion x.
destruct a, (Bv2N (S n) v) ;
simpl ;intuition ; try discriminate.
Qed.
Lemma Bv2N_upper_bound (n : nat) (bv : Bvector n) :
(Bv2N bv < N.shiftl_nat 1 n)%N.
Proof with simpl; auto.
induction bv...
- constructor.
- destruct h.
+ apply N.succ_double_lt...
+ apply N.double_lt_mono...
Qed.
Corollary ByteV2N_upper_bound (n : nat) (v : ByteVector n) :
(ByteV2N v < N.shiftl_nat 1 (n * 8))%N.
Proof.
unfold ByteV2N, compose.
apply Bv2N_upper_bound.
Qed.
(** To state nonetheless a second result about composition of
conversions, we define a conversion on a given number of bits : *)
#[deprecated(since = "8.9.0", note = "Use N2Bv_sized instead.")]
Fixpoint N2Bv_gen (n:nat)(a:N) : Bvector n :=
match n return Bvector n with
| 0 => Bnil
| S n => match a with
| N0 => Bvect_false (S n)
| Npos xH => Bcons true _ (Bvect_false n)
| Npos (xO p) => Bcons false _ (N2Bv_gen n (Npos p))
| Npos (xI p) => Bcons true _ (N2Bv_gen n (Npos p))
end
end.
(** The first [N2Bv] is then a special case of [N2Bv_gen] *)
Lemma N2Bv_N2Bv_gen : forall (a:N), N2Bv a = N2Bv_gen (N.size_nat a) a.
Proof.
destruct a; simpl.
auto.
induction p; simpl; intros; auto; congruence.
Qed.
(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of
[a] plus some zeros. *)
Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
N2Bv_gen (N.size_nat a + k) a = Vector.append (N2Bv a) (Bvect_false k).
Proof.
destruct a; simpl.
destruct k; simpl; auto.
induction p; simpl; intros;unfold Bcons; f_equal; auto.
Qed.
(** Here comes now the second composition result. *)
Lemma N2Bv_Bv2N : forall n (bv:Bvector n),
N2Bv_gen n (Bv2N n bv) = bv.
Proof.
induction bv; intros.
auto.
simpl.
generalize IHbv; clear IHbv.
unfold Bcons.
destruct (Bv2N _ bv);
destruct h; intro H; rewrite <- H; simpl; trivial;
induction n; simpl; auto.
Qed.
(** accessing some precise bits. *)
Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
N.odd (Bv2N _ bv) = Blow _ bv.
Proof.
apply Vector.caseS.
intros.
unfold Blow.
simpl.
destruct (Bv2N n t); simpl;
destruct h; auto.
Qed.
Notation Bnth := (@Vector.nth_order bool).
Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
Bnth bv H = N.testbit_nat (Bv2N _ bv) p.
Proof.
induction bv; intros.
inversion H.
destruct p ; simpl.
destruct (Bv2N n bv); destruct h; simpl in *; auto.
specialize IHbv with p (Lt.lt_S_n _ _ H).
simpl in * ; destruct (Bv2N n bv); destruct h; simpl in *; auto.
Qed.
Lemma Nbit_Nsize : forall n p, N.size_nat n <= p -> N.testbit_nat n p = false.
Proof.
destruct n as [|n].
simpl; auto.
induction n; simpl in *; intros; destruct p; auto with arith.
inversion H.
inversion H.
Qed.
Lemma Nbit_Bth: forall n p (H:p < N.size_nat n),
N.testbit_nat n p = Bnth (N2Bv n) H.
Proof.
destruct n as [|n].
inversion H.
induction n ; destruct p ; unfold Vector.nth_order in *; simpl in * ; auto.
intros H ; destruct (Lt.lt_n_O _ (Lt.lt_S_n _ _ H)).
Qed.
(** Binary bitwise operations are the same in the two worlds. *)
Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
Bv2N _ (BVxor _ bv bv') = N.lxor (Bv2N _ bv) (Bv2N _ bv').
Proof.
apply Vector.rect2 ; intros.
now simpl.
simpl.
destruct a, b, (Bv2N n v1), (Bv2N n v2); simpl in *; rewrite H ; now simpl.
Qed.
Lemma Nand_BVand : forall n (bv bv' : Bvector n),
Bv2N _ (BVand _ bv bv') = N.land (Bv2N _ bv) (Bv2N _ bv').
Proof.
refine (@Vector.rect2 _ _ _ _ _); simpl; intros; auto.
rewrite H.
destruct a, b, (Bv2N n v1), (Bv2N n v2);
simpl; auto.
Qed.
Lemma N2Bv_sized_Nsize (n : N) :
N2Bv_sized (N.size_nat n) n = N2Bv n.
Proof with simpl; auto.
destruct n...
induction p...
all: rewrite IHp...
Qed.
Lemma N2Bv_sized_Bv2N (n : nat) (v : Bvector n) :
N2Bv_sized n (Bv2N n v) = v.
Proof with simpl; auto.
induction v...
destruct h;
unfold N2Bv_sized;
destruct (Bv2N n v) as [|[]];
rewrite <- IHv...
Qed.
Lemma N2Bv_N2Bv_sized_above (a : N) (k : nat) :
N2Bv_sized (N.size_nat a + k) a = N2Bv a ++ Bvect_false k.
Proof with auto.
destruct a...
induction p; simpl; f_equal...
Qed.
¤ Dauer der Verarbeitung: 0.24 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|