(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * DecimalPos
Proofs that conversions between decimal numbers and [positive]
are bijections. *)
Require Import Decimal DecimalFacts PArith NArith.
Module Unsigned.
Local Open Scope N.
(** A direct version of [of_little_uint] *)
Fixpoint of_lu (d:uint) : N :=
match d with
| Nil => 0
| D0 d => 10 * of_lu d
| D1 d => 1 + 10 * of_lu d
| D2 d => 2 + 10 * of_lu d
| D3 d => 3 + 10 * of_lu d
| D4 d => 4 + 10 * of_lu d
| D5 d => 5 + 10 * of_lu d
| D6 d => 6 + 10 * of_lu d
| D7 d => 7 + 10 * of_lu d
| D8 d => 8 + 10 * of_lu d
| D9 d => 9 + 10 * of_lu d
end.
Definition hd d :=
match d with
| Nil => 0
| D0 _ => 0
| D1 _ => 1
| D2 _ => 2
| D3 _ => 3
| D4 _ => 4
| D5 _ => 5
| D6 _ => 6
| D7 _ => 7
| D8 _ => 8
| D9 _ => 9
end.
Definition tl d :=
match d with
| Nil => d
| D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => d
end.
Lemma of_lu_eqn d :
of_lu d = hd d + 10 * (of_lu (tl d)).
Proof.
induction d; simpl; trivial.
Qed.
Ltac simpl_of_lu :=
match goal with
| |- context [ of_lu (?f ?x) ] =>
rewrite (of_lu_eqn (f x)); simpl hd; simpl tl
end.
Fixpoint usize (d:uint) : N :=
match d with
| Nil => 0
| D0 d => N.succ (usize d)
| D1 d => N.succ (usize d)
| D2 d => N.succ (usize d)
| D3 d => N.succ (usize d)
| D4 d => N.succ (usize d)
| D5 d => N.succ (usize d)
| D6 d => N.succ (usize d)
| D7 d => N.succ (usize d)
| D8 d => N.succ (usize d)
| D9 d => N.succ (usize d)
end.
Lemma of_lu_revapp d d' :
of_lu (revapp d d') =
of_lu (rev d) + of_lu d' * 10^usize d.
Proof.
revert d'.
induction d; simpl; intro d'; [ now rewrite N.mul_1_r | .. ];
unfold rev; simpl revapp; rewrite 2 IHd;
rewrite <- N.add_assoc; f_equal; simpl_of_lu; simpl of_lu;
rewrite N.pow_succ_r'; ring.
Qed.
Definition Nadd n p :=
match n with
| N0 => p
| Npos p0 => (p0+p)%positive
end.
Lemma Nadd_simpl n p q : Npos (Nadd n (p * q)) = n + Npos p * Npos q.
Proof.
now destruct n.
Qed.
Lemma of_uint_acc_eqn d acc : d<>Nil ->
Pos.of_uint_acc d acc = Pos.of_uint_acc (tl d) (Nadd (hd d) (10*acc)).
Proof.
destruct d; simpl; trivial. now destruct 1.
Qed.
Lemma of_uint_acc_rev d acc :
Npos (Pos.of_uint_acc d acc) =
of_lu (rev d) + (Npos acc) * 10^usize d.
Proof.
revert acc.
induction d; intros; simpl usize;
[ simpl; now rewrite Pos.mul_1_r | .. ];
rewrite N.pow_succ_r';
unfold rev; simpl revapp; try rewrite of_lu_revapp; simpl of_lu;
rewrite of_uint_acc_eqn by easy; simpl tl; simpl hd;
rewrite IHd, Nadd_simpl; ring.
Qed.
Lemma of_uint_alt d : Pos.of_uint d = of_lu (rev d).
Proof.
induction d; simpl; trivial; unfold rev; simpl revapp;
rewrite of_lu_revapp; simpl of_lu; try apply of_uint_acc_rev.
rewrite IHd. ring.
Qed.
Lemma of_lu_rev d : Pos.of_uint (rev d) = of_lu d.
Proof.
rewrite of_uint_alt. now rewrite rev_rev.
Qed.
Lemma of_lu_double_gen d :
of_lu (Little.double d) = N.double (of_lu d) /\
of_lu (Little.succ_double d) = N.succ_double (of_lu d).
Proof.
rewrite N.double_spec, N.succ_double_spec.
induction d; try destruct IHd as (IH1,IH2);
simpl Little.double; simpl Little.succ_double;
repeat (simpl_of_lu; rewrite ?IH1, ?IH2); split; reflexivity || ring.
Qed.
Lemma of_lu_double d :
of_lu (Little.double d) = N.double (of_lu d).
Proof.
apply of_lu_double_gen.
Qed.
Lemma of_lu_succ_double d :
of_lu (Little.succ_double d) = N.succ_double (of_lu d).
Proof.
apply of_lu_double_gen.
Qed.
(** First bijection result *)
Lemma of_to (p:positive) : Pos.of_uint (Pos.to_uint p) = Npos p.
Proof.
unfold Pos.to_uint.
rewrite of_lu_rev.
induction p; simpl; trivial.
- now rewrite of_lu_succ_double, IHp.
- now rewrite of_lu_double, IHp.
Qed.
(** The other direction *)
Definition to_lu n :=
match n with
| N0 => Decimal.zero
| Npos p => Pos.to_little_uint p
end.
Lemma succ_double_alt d :
Little.succ_double d = Little.succ (Little.double d).
Proof.
now induction d.
Qed.
Lemma double_succ d :
Little.double (Little.succ d) =
Little.succ (Little.succ_double d).
Proof.
induction d; simpl; f_equal; auto using succ_double_alt.
Qed.
Lemma to_lu_succ n :
to_lu (N.succ n) = Little.succ (to_lu n).
Proof.
destruct n; simpl; trivial.
induction p; simpl; rewrite ?IHp;
auto using succ_double_alt, double_succ.
Qed.
Lemma nat_iter_S n {A} (f:A->A) i :
Nat.iter (S n) f i = f (Nat.iter n f i).
Proof.
reflexivity.
Qed.
Lemma nat_iter_0 {A} (f:A->A) i : Nat.iter 0 f i = i.
Proof.
reflexivity.
Qed.
Lemma to_ldec_tenfold p :
to_lu (10 * Npos p) = D0 (to_lu (Npos p)).
Proof.
induction p using Pos.peano_rect.
- trivial.
- change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
rewrite N.mul_succ_r.
change 10 at 2 with (Nat.iter 10%nat N.succ 0).
rewrite ?nat_iter_S, nat_iter_0.
rewrite !N.add_succ_r, N.add_0_r, !to_lu_succ, IHp.
destruct (to_lu (N.pos p)); simpl; auto.
Qed.
Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
Proof.
induction d; try simpl_of_lu; split; trivial; try discriminate;
try (intros H; now apply N.eq_add_0 in H).
- rewrite N.add_0_l. intros H.
apply N.eq_mul_0_r in H; [|easy]. rewrite IHd in H.
simpl. now rewrite H.
- simpl. destruct (nztail d); try discriminate.
now destruct IHd as [_ ->].
Qed.
Lemma to_of_lu_tenfold d :
to_lu (of_lu d) = lnorm d ->
to_lu (10 * of_lu d) = lnorm (D0 d).
Proof.
intro IH.
destruct (N.eq_dec (of_lu d) 0) as [H|H].
- rewrite H. simpl. rewrite of_lu_0 in H.
unfold lnorm. simpl. now rewrite H.
- destruct (of_lu d) eqn:Eq; [easy| ].
rewrite to_ldec_tenfold; auto. rewrite IH.
rewrite <- Eq in H. rewrite of_lu_0 in H.
unfold lnorm. simpl. now destruct (nztail d).
Qed.
Lemma Nadd_alt n m : n + m = Nat.iter (N.to_nat n) N.succ m.
Proof.
destruct n. trivial.
induction p using Pos.peano_rect.
- now rewrite N.add_1_l.
- change (N.pos (Pos.succ p)) with (N.succ (N.pos p)).
now rewrite N.add_succ_l, IHp, N2Nat.inj_succ.
Qed.
Ltac simpl_to_nat := simpl N.to_nat; unfold Pos.to_nat; simpl Pos.iter_op.
Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
Proof.
induction d; [reflexivity|..];
simpl_of_lu; rewrite Nadd_alt; simpl_to_nat;
rewrite ?nat_iter_S, nat_iter_0, ?to_lu_succ, to_of_lu_tenfold by assumption;
unfold lnorm; simpl; destruct nztail; auto.
Qed.
(** Second bijection result *)
Lemma to_of (d:uint) : N.to_uint (Pos.of_uint d) = unorm d.
Proof.
rewrite of_uint_alt.
unfold N.to_uint, Pos.to_uint.
destruct (of_lu (rev d)) eqn:H.
- rewrite of_lu_0 in H. rewrite <- rev_lnorm_rev.
unfold lnorm. now rewrite H.
- change (Pos.to_little_uint p) with (to_lu (N.pos p)).
rewrite <- H. rewrite to_of_lu. apply rev_lnorm_rev.
Qed.
(** Some consequences *)
Lemma to_uint_nonzero p : Pos.to_uint p <> zero.
Proof.
intro E. generalize (of_to p). now rewrite E.
Qed.
Lemma to_uint_nonnil p : Pos.to_uint p <> Nil.
Proof.
intros E. generalize (of_to p). now rewrite E.
Qed.
Lemma to_uint_inj p p' : Pos.to_uint p = Pos.to_uint p' -> p = p'.
Proof.
intro E.
assert (E' : N.pos p = N.pos p').
{ now rewrite <- (of_to p), <- (of_to p'), E. }
now injection E'.
Qed.
Lemma to_uint_pos_surj d :
unorm d<>zero -> exists p, Pos.to_uint p = unorm d.
Proof.
intros.
destruct (Pos.of_uint d) eqn:E.
- destruct H. generalize (to_of d). now rewrite E.
- exists p. generalize (to_of d). now rewrite E.
Qed.
Lemma of_uint_norm d : Pos.of_uint (unorm d) = Pos.of_uint d.
Proof.
now induction d.
Qed.
Lemma of_inj d d' :
Pos.of_uint d = Pos.of_uint d' -> unorm d = unorm d'.
Proof.
intros. rewrite <- !to_of. now f_equal.
Qed.
Lemma of_iff d d' : Pos.of_uint d = Pos.of_uint d' <-> unorm d = unorm d'.
Proof.
split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
apply of_uint_norm.
Qed.
End Unsigned.
(** Conversion from/to signed decimal numbers *)
Module Signed.
Lemma of_to (p:positive) : Pos.of_int (Pos.to_int p) = Some p.
Proof.
unfold Pos.to_int, Pos.of_int, norm.
now rewrite Unsigned.of_to.
Qed.
Lemma to_of (d:int)(p:positive) :
Pos.of_int d = Some p -> Pos.to_int p = norm d.
Proof.
unfold Pos.of_int.
destruct d; [ | intros [=]].
simpl norm. rewrite <- Unsigned.to_of.
destruct (Pos.of_uint d); now intros [= <-].
Qed.
Lemma to_int_inj p p' : Pos.to_int p = Pos.to_int p' -> p = p'.
Proof.
intro E.
assert (E' : Some p = Some p').
{ now rewrite <- (of_to p), <- (of_to p'), E. }
now injection E'.
Qed.
Lemma to_int_pos_surj d :
unorm d <> zero -> exists p, Pos.to_int p = norm (Pos d).
Proof.
simpl. unfold Pos.to_int. intros H.
destruct (Unsigned.to_uint_pos_surj d H) as (p,Hp).
exists p. now f_equal.
Qed.
Lemma of_int_norm d : Pos.of_int (norm d) = Pos.of_int d.
Proof.
unfold Pos.of_int.
destruct d.
- simpl. now rewrite Unsigned.of_uint_norm.
- simpl. now destruct (nzhead d) eqn:H.
Qed.
Lemma of_inj_pos d d' :
Pos.of_int (Pos d) = Pos.of_int (Pos d') -> unorm d = unorm d'.
Proof.
unfold Pos.of_int.
destruct (Pos.of_uint d) eqn:Hd, (Pos.of_uint d') eqn:Hd';
intros [=].
- apply Unsigned.of_inj; now rewrite Hd, Hd'.
- apply Unsigned.of_inj; rewrite Hd, Hd'; now f_equal.
Qed.
End Signed.
¤ Dauer der Verarbeitung: 0.3 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|