(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import R_sqrt.
Local Open Scope R_scope.
(** * Distance *)
Definition dist_euc (x0 y0 x1 y1:R) : R :=
sqrt (Rsqr (x0 - x1) + Rsqr (y0 - y1)).
Lemma distance_refl : forall x0 y0:R, dist_euc x0 y0 x0 y0 = 0.
Proof.
intros x0 y0; unfold dist_euc; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat;
[ apply Rle_0_sqr | apply Rle_0_sqr ]
| right; reflexivity
| rewrite Rsqr_0; rewrite Rsqr_sqrt;
[ unfold Rsqr; ring
| apply Rplus_le_le_0_compat; [ apply Rle_0_sqr | apply Rle_0_sqr ] ] ].
Qed.
Lemma distance_symm :
forall x0 y0 x1 y1:R, dist_euc x0 y0 x1 y1 = dist_euc x1 y1 x0 y0.
Proof.
intros x0 y0 x1 y1; unfold dist_euc; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat
| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;
[ unfold Rsqr; ring
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ] ]; apply Rle_0_sqr.
Qed.
Lemma law_cosines :
forall x0 y0 x1 y1 x2 y2 ac:R,
let a := dist_euc x1 y1 x0 y0 in
let b := dist_euc x2 y2 x0 y0 in
let c := dist_euc x2 y2 x1 y1 in
a * c * cos ac = (x0 - x1) * (x2 - x1) + (y0 - y1) * (y2 - y1) ->
Rsqr b = Rsqr c + Rsqr a - 2 * (a * c * cos ac).
Proof.
unfold dist_euc; intros; repeat rewrite Rsqr_sqrt;
[ rewrite H; unfold Rsqr; ring
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ]; apply Rle_0_sqr.
Qed.
Lemma triangle :
forall x0 y0 x1 y1 x2 y2:R,
dist_euc x0 y0 x1 y1 <= dist_euc x0 y0 x2 y2 + dist_euc x2 y2 x1 y1.
Proof.
intros; unfold dist_euc; apply Rsqr_incr_0;
[ rewrite Rsqr_plus; repeat rewrite Rsqr_sqrt;
[ replace (Rsqr (x0 - x1)) with
(Rsqr (x0 - x2) + Rsqr (x2 - x1) + 2 * (x0 - x2) * (x2 - x1));
[ replace (Rsqr (y0 - y1)) with
(Rsqr (y0 - y2) + Rsqr (y2 - y1) + 2 * (y0 - y2) * (y2 - y1));
[ apply Rplus_le_reg_l with
(- Rsqr (x0 - x2) - Rsqr (x2 - x1) - Rsqr (y0 - y2) -
Rsqr (y2 - y1));
replace
(- Rsqr (x0 - x2) - Rsqr (x2 - x1) - Rsqr (y0 - y2) -
Rsqr (y2 - y1) +
(Rsqr (x0 - x2) + Rsqr (x2 - x1) + 2 * (x0 - x2) * (x2 - x1) +
(Rsqr (y0 - y2) + Rsqr (y2 - y1) + 2 * (y0 - y2) * (y2 - y1))))
with (2 * ((x0 - x2) * (x2 - x1) + (y0 - y2) * (y2 - y1)));
[ replace
(- Rsqr (x0 - x2) - Rsqr (x2 - x1) - Rsqr (y0 - y2) -
Rsqr (y2 - y1) +
(Rsqr (x0 - x2) + Rsqr (y0 - y2) +
(Rsqr (x2 - x1) + Rsqr (y2 - y1)) +
2 * sqrt (Rsqr (x0 - x2) + Rsqr (y0 - y2)) *
sqrt (Rsqr (x2 - x1) + Rsqr (y2 - y1)))) with
(2 *
(sqrt (Rsqr (x0 - x2) + Rsqr (y0 - y2)) *
sqrt (Rsqr (x2 - x1) + Rsqr (y2 - y1))));
[ apply Rmult_le_compat_l;
[ left; cut (0%nat <> 2%nat);
[ intros; generalize (lt_INR_0 2 (neq_O_lt 2 H));
intro H0; assumption
| discriminate ]
| apply sqrt_cauchy ]
| ring ]
| ring ]
| ring_Rsqr ]
| ring_Rsqr ]
| apply Rplus_le_le_0_compat; apply Rle_0_sqr
| apply Rplus_le_le_0_compat; apply Rle_0_sqr
| apply Rplus_le_le_0_compat; apply Rle_0_sqr ]
| apply sqrt_positivity; apply Rplus_le_le_0_compat; apply Rle_0_sqr
| apply Rplus_le_le_0_compat; apply sqrt_positivity;
apply Rplus_le_le_0_compat; apply Rle_0_sqr ].
Qed.
(******************************************************************)
(** * Translation *)
(******************************************************************)
Definition xt (x tx:R) : R := x + tx.
Definition yt (y ty:R) : R := y + ty.
Lemma translation_0 : forall x y:R, xt x 0 = x /\ yt y 0 = y.
Proof.
intros x y; split; [ unfold xt | unfold yt ]; ring.
Qed.
Lemma isometric_translation :
forall x1 x2 y1 y2 tx ty:R,
Rsqr (x1 - x2) + Rsqr (y1 - y2) =
Rsqr (xt x1 tx - xt x2 tx) + Rsqr (yt y1 ty - yt y2 ty).
Proof.
intros; unfold Rsqr, xt, yt; ring.
Qed.
(******************************************************************)
(** * Rotation *)
(******************************************************************)
Definition xr (x y theta:R) : R := x * cos theta + y * sin theta.
Definition yr (x y theta:R) : R := - x * sin theta + y * cos theta.
Lemma rotation_0 : forall x y:R, xr x y 0 = x /\ yr x y 0 = y.
Proof.
intros x y; unfold xr, yr; split; rewrite cos_0; rewrite sin_0; ring.
Qed.
Lemma rotation_PI2 :
forall x y:R, xr x y (PI / 2) = y /\ yr x y (PI / 2) = - x.
Proof.
intros x y; unfold xr, yr; split; rewrite cos_PI2; rewrite sin_PI2;
ring.
Qed.
Lemma isometric_rotation_0 :
forall x1 y1 x2 y2 theta:R,
Rsqr (x1 - x2) + Rsqr (y1 - y2) =
Rsqr (xr x1 y1 theta - xr x2 y2 theta) +
Rsqr (yr x1 y1 theta - yr x2 y2 theta).
Proof.
intros; unfold xr, yr;
replace
(x1 * cos theta + y1 * sin theta - (x2 * cos theta + y2 * sin theta)) with
(cos theta * (x1 - x2) + sin theta * (y1 - y2));
[ replace
(- x1 * sin theta + y1 * cos theta - (- x2 * sin theta + y2 * cos theta))
with (cos theta * (y1 - y2) + sin theta * (x2 - x1));
[ repeat rewrite Rsqr_plus; repeat rewrite Rsqr_mult; repeat rewrite cos2;
ring_simplify; replace (x2 - x1) with (- (x1 - x2));
[ rewrite <- Rsqr_neg; ring | ring ]
| ring ]
| ring ].
Qed.
Lemma isometric_rotation :
forall x1 y1 x2 y2 theta:R,
dist_euc x1 y1 x2 y2 =
dist_euc (xr x1 y1 theta) (yr x1 y1 theta) (xr x2 y2 theta)
(yr x2 y2 theta).
Proof.
unfold dist_euc; intros; apply Rsqr_inj;
[ apply sqrt_positivity; apply Rplus_le_le_0_compat
| apply sqrt_positivity; apply Rplus_le_le_0_compat
| repeat rewrite Rsqr_sqrt;
[ apply isometric_rotation_0
| apply Rplus_le_le_0_compat
| apply Rplus_le_le_0_compat ] ]; apply Rle_0_sqr.
Qed.
(******************************************************************)
(** * Similarity *)
(******************************************************************)
Lemma isometric_rot_trans :
forall x1 y1 x2 y2 tx ty theta:R,
Rsqr (x1 - x2) + Rsqr (y1 - y2) =
Rsqr (xr (xt x1 tx) (yt y1 ty) theta - xr (xt x2 tx) (yt y2 ty) theta) +
Rsqr (yr (xt x1 tx) (yt y1 ty) theta - yr (xt x2 tx) (yt y2 ty) theta).
Proof.
intros; rewrite <- isometric_rotation_0; apply isometric_translation.
Qed.
Lemma isometric_trans_rot :
forall x1 y1 x2 y2 tx ty theta:R,
Rsqr (x1 - x2) + Rsqr (y1 - y2) =
Rsqr (xt (xr x1 y1 theta) tx - xt (xr x2 y2 theta) tx) +
Rsqr (yt (yr x1 y1 theta) ty - yt (yr x2 y2 theta) ty).
Proof.
intros; rewrite <- isometric_translation; apply isometric_rotation_0.
Qed.
¤ Dauer der Verarbeitung: 0.2 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|