(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
Require Export Ensembles.
Require Export Constructive_sets.
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Partial_Order.
Require Export Cpo.
Require Export Powerset.
Section Sets_as_an_algebra.
Variable U : Type.
Theorem Empty_set_zero : forall X:Ensemble U, Union U (Empty_set U) X = X.
Proof.
auto 6 with sets.
Qed.
Theorem Empty_set_zero_right : forall X:Ensemble U, Union U X (Empty_set U) = X.
Proof.
auto 6 with sets.
Qed.
Theorem Empty_set_zero' : forall x:U, Add U (Empty_set U) x = Singleton U x.
Proof.
unfold Add at 1; auto using Empty_set_zero with sets.
Qed.
Lemma less_than_empty :
forall X:Ensemble U, Included U X (Empty_set U) -> X = Empty_set U.
Proof.
auto with sets.
Qed.
Theorem Union_commutative : forall A B:Ensemble U, Union U A B = Union U B A.
Proof.
auto with sets.
Qed.
Theorem Union_associative :
forall A B C:Ensemble U, Union U (Union U A B) C = Union U A (Union U B C).
Proof.
auto 9 with sets.
Qed.
Theorem Union_idempotent : forall A:Ensemble U, Union U A A = A.
Proof.
auto 7 with sets.
Qed.
Lemma Union_absorbs :
forall A B:Ensemble U, Included U B A -> Union U A B = A.
Proof.
auto 7 with sets.
Qed.
Theorem Couple_as_union :
forall x y:U, Union U (Singleton U x) (Singleton U y) = Couple U x y.
Proof.
intros x y; apply Extensionality_Ensembles; split; red.
- intros x0 H'; elim H'; (intros x1 H'0; elim H'0; auto with sets).
- intros x0 H'; elim H'; auto with sets.
Qed.
Theorem Triple_as_union :
forall x y z:U,
Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z) =
Triple U x y z.
Proof.
intros x y z; apply Extensionality_Ensembles; split; red.
- intros x0 H'; elim H'.
+ intros x1 H'0; elim H'0; (intros x2 H'1; elim H'1; auto with sets).
+ intros x1 H'0; elim H'0; auto with sets.
- intros x0 H'; elim H'; auto with sets.
Qed.
Theorem Triple_as_Couple : forall x y:U, Couple U x y = Triple U x x y.
Proof.
intros x y.
rewrite <- (Couple_as_union x y).
rewrite <- (Union_idempotent (Singleton U x)).
apply Triple_as_union.
Qed.
Theorem Triple_as_Couple_Singleton :
forall x y z:U, Triple U x y z = Union U (Couple U x y) (Singleton U z).
Proof.
intros x y z.
rewrite <- (Triple_as_union x y z).
rewrite <- (Couple_as_union x y); auto with sets.
Qed.
Theorem Intersection_commutative :
forall A B:Ensemble U, Intersection U A B = Intersection U B A.
Proof.
intros A B.
apply Extensionality_Ensembles.
split; red; intros x H'; elim H'; auto with sets.
Qed.
Theorem Distributivity :
forall A B C:Ensemble U,
Intersection U A (Union U B C) =
Union U (Intersection U A B) (Intersection U A C).
Proof.
intros A B C.
apply Extensionality_Ensembles.
split; red; intros x H'.
- elim H'.
intros x0 H'0 H'1; generalize H'0.
elim H'1; auto with sets.
- elim H'; intros x0 H'0; elim H'0; auto with sets.
Qed.
Lemma Distributivity_l
: forall (A B C : Ensemble U),
Intersection U (Union U A B) C =
Union U (Intersection U A C) (Intersection U B C).
Proof.
intros A B C.
rewrite Intersection_commutative.
rewrite Distributivity.
f_equal; apply Intersection_commutative.
Qed.
Theorem Distributivity' :
forall A B C:Ensemble U,
Union U A (Intersection U B C) =
Intersection U (Union U A B) (Union U A C).
Proof.
intros A B C.
apply Extensionality_Ensembles.
split; red; intros x H'.
- elim H'; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
- elim H'.
intros x0 H'0; elim H'0; auto with sets.
intros x1 H'1 H'2; try exact H'2.
generalize H'1.
elim H'2; auto with sets.
Qed.
Theorem Union_add :
forall (A B:Ensemble U) (x:U), Add U (Union U A B) x = Union U A (Add U B x).
Proof.
unfold Add; auto using Union_associative with sets.
Qed.
Theorem Non_disjoint_union :
forall (X:Ensemble U) (x:U), In U X x -> Add U X x = X.
Proof.
intros X x H'; unfold Add.
apply Extensionality_Ensembles; red.
split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros t H'1; elim H'1; auto with sets.
Qed.
Theorem Non_disjoint_union' :
forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X.
Proof.
intros X x H'; unfold Subtract.
apply Extensionality_Ensembles.
split; red; auto with sets.
- intros x0 H'0; elim H'0; auto with sets.
- intros x0 H'0; apply Setminus_intro; auto with sets.
red; intro H'1; elim H'1.
lapply (Singleton_inv U x x0); auto with sets.
intro H'4; apply H'; rewrite H'4; auto with sets.
Qed.
Lemma singlx : forall x y:U, In U (Add U (Empty_set U) x) y -> x = y.
Proof.
intro x; rewrite (Empty_set_zero' x); auto with sets.
Qed.
Lemma incl_add :
forall (A B:Ensemble U) (x:U),
Included U A B -> Included U (Add U A x) (Add U B x).
Proof.
intros A B x H'; red; auto with sets.
intros x0 H'0.
lapply (Add_inv U A x x0); auto with sets.
intro H'1; elim H'1;
[ intro H'2; clear H'1 | intro H'2; rewrite <- H'2; clear H'1 ];
auto with sets.
Qed.
Lemma incl_add_x :
forall (A B:Ensemble U) (x:U),
~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B.
Proof.
unfold Included.
intros A B x H' H'0 x0 H'1.
lapply (H'0 x0); auto with sets.
intro H'2; lapply (Add_inv U B x x0); auto with sets.
intro H'3; elim H'3;
[ intro H'4; try exact H'4; clear H'3 | intro H'4; clear H'3 ].
absurd (In U A x0); auto with sets.
rewrite <- H'4; auto with sets.
Qed.
Lemma Add_commutative :
forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x.
Proof.
intros A x y.
unfold Add.
rewrite (Union_associative A (Singleton U x) (Singleton U y)).
rewrite (Union_commutative (Singleton U x) (Singleton U y)).
rewrite <- (Union_associative A (Singleton U y) (Singleton U x));
auto with sets.
Qed.
Lemma Add_commutative' :
forall (A:Ensemble U) (x y z:U),
Add U (Add U (Add U A x) y) z = Add U (Add U (Add U A z) x) y.
Proof.
intros A x y z.
rewrite (Add_commutative (Add U A x) y z).
rewrite (Add_commutative A x z); auto with sets.
Qed.
Lemma Add_distributes :
forall (A B:Ensemble U) (x y:U),
Included U B A -> Add U (Add U A x) y = Union U (Add U A x) (Add U B y).
Proof.
intros A B x y H'; try assumption.
rewrite <- (Union_add (Add U A x) B y).
unfold Add at 4.
rewrite (Union_commutative A (Singleton U x)).
rewrite Union_associative.
rewrite (Union_absorbs A B H').
rewrite (Union_commutative (Singleton U x) A).
auto with sets.
Qed.
Lemma setcover_intro :
forall (U:Type) (A x y:Ensemble U),
Strict_Included U x y ->
~ (exists z : _, Strict_Included U x z /\ Strict_Included U z y) ->
covers (Ensemble U) (Power_set_PO U A) y x.
Proof.
intros; apply Definition_of_covers; auto with sets.
Qed.
Lemma Disjoint_Intersection:
forall A s1 s2, Disjoint A s1 s2 -> Intersection A s1 s2 = Empty_set A.
Proof.
intros. apply Extensionality_Ensembles. split.
* destruct H.
intros x H1. unfold In in *. exfalso. intuition. apply (H _ H1).
* intuition.
Qed.
Lemma Intersection_Empty_set_l:
forall A s, Intersection A (Empty_set A) s = Empty_set A.
Proof.
intros. auto with sets.
Qed.
Lemma Intersection_Empty_set_r:
forall A s, Intersection A s (Empty_set A) = Empty_set A.
Proof.
intros. auto with sets.
Qed.
Lemma Seminus_Empty_set_l:
forall A s, Setminus A (Empty_set A) s = Empty_set A.
Proof.
intros. apply Extensionality_Ensembles. split.
* intros x H1. destruct H1. unfold In in *. assumption.
* intuition.
Qed.
Lemma Seminus_Empty_set_r:
forall A s, Setminus A s (Empty_set A) = s.
Proof.
intros. apply Extensionality_Ensembles. split.
* intros x H1. destruct H1. unfold In in *. assumption.
* intuition.
Qed.
Lemma Setminus_Union_l:
forall A s1 s2 s3,
Setminus A (Union A s1 s2) s3 = Union A (Setminus A s1 s3) (Setminus A s2 s3).
Proof.
intros. apply Extensionality_Ensembles. split.
* intros x H. inversion H. inversion H0; intuition.
* intros x H. constructor; inversion H; inversion H0; intuition.
Qed.
Lemma Setminus_Union_r:
forall A s1 s2 s3,
Setminus A s1 (Union A s2 s3) = Setminus A (Setminus A s1 s2) s3.
Proof.
intros. apply Extensionality_Ensembles. split.
* intros x H. inversion H. constructor.
-- intuition.
-- contradict H1. intuition.
* intros x H. inversion H. inversion H0. constructor; intuition. inversion H4; intuition.
Qed.
Lemma Setminus_Disjoint_noop:
forall A s1 s2,
Intersection A s1 s2 = Empty_set A -> Setminus A s1 s2 = s1.
Proof.
intros. apply Extensionality_Ensembles. split.
* intros x H1. inversion_clear H1. intuition.
* intros x H1. constructor; intuition. contradict H.
apply Inhabited_not_empty.
exists x. intuition.
Qed.
Lemma Setminus_Included_empty:
forall A s1 s2,
Included A s1 s2 -> Setminus A s1 s2 = Empty_set A.
Proof.
intros. apply Extensionality_Ensembles. split.
* intros x H1. inversion_clear H1. contradiction H2. intuition.
* intuition.
Qed.
End Sets_as_an_algebra.
Hint Resolve Empty_set_zero Empty_set_zero' Union_associative Union_add
singlx incl_add: sets.
¤ Dauer der Verarbeitung: 0.17 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|