products/Sources/formale Sprachen/Coq/doc/tools/coqrst image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Regularity.thy   Sprache: Isabelle

(*  Title:      HOL/Analysis/Regularity.thy
    Author:     Fabian Immler, TU München
*)


section \<open>Regularity of Measures\<close>

theory Regularity (* FIX suggestion to rename  e.g. RegularityMeasures and/ or move as
this theory consists of 1 result only  *)

imports Measure_Space Borel_Space
begin

theorem
  fixes M::"'a::{second_countable_topology, complete_space} measure"
  assumes sb: "sets M = sets borel"
  assumes "emeasure M (space M) \ \"
  assumes "B \ sets borel"
  shows inner_regular: "emeasure M B =
    (SUP K \<in> {K. K \<subseteq> B \<and> compact K}. emeasure M K)" (is "?inner B")
  and outer_regular: "emeasure M B =
    (INF U \<in> {U. B \<subseteq> U \<and> open U}. emeasure M U)" (is "?outer B")
proof -
  have Us: "UNIV = space M" by (metis assms(1) sets_eq_imp_space_eq space_borel)
  hence sU: "space M = UNIV" by simp
  interpret finite_measure M by rule fact
  have approx_inner: "\A. A \ sets M \
    (\<And>e. e > 0 \<Longrightarrow> \<exists>K. K \<subseteq> A \<and> compact K \<and> emeasure M A \<le> emeasure M K + ennreal e) \<Longrightarrow> ?inner A"
    by (rule ennreal_approx_SUP)
      (force intro!: emeasure_mono simp: compact_imp_closed emeasure_eq_measure)+
  have approx_outer: "\A. A \ sets M \
    (\<And>e. e > 0 \<Longrightarrow> \<exists>B. A \<subseteq> B \<and> open B \<and> emeasure M B \<le> emeasure M A + ennreal e) \<Longrightarrow> ?outer A"
    by (rule ennreal_approx_INF)
       (force intro!: emeasure_mono simp: emeasure_eq_measure sb)+
  from countable_dense_setE guess X::"'a set"  . note X = this
  {
    fix r::real assume "r > 0" hence "\y. open (ball y r)" "\y. ball y r \ {}" by auto
    with X(2)[OF this]
    have x: "space M = (\x\X. cball x r)"
      by (auto simp add: sU) (metis dist_commute order_less_imp_le)
    let ?U = "\k. (\n\{0..k}. cball (from_nat_into X n) r)"
    have "(\k. emeasure M (\n\{0..k}. cball (from_nat_into X n) r)) \ M ?U"
      by (rule Lim_emeasure_incseq) (auto intro!: borel_closed bexI simp: incseq_def Us sb)
    also have "?U = space M"
    proof safe
      fix x from X(2)[OF open_ball[of x r]] \<open>r > 0\<close> obtain d where d: "d\<in>X" "d \<in> ball x r" by auto
      show "x \ ?U"
        using X(1) d
        by simp (auto intro!: exI [where x = "to_nat_on X d"] simp: dist_commute Bex_def)
    qed (simp add: sU)
    finally have "(\k. M (\n\{0..k}. cball (from_nat_into X n) r)) \ M (space M)" .
  } note M_space = this
  {
    fix e ::real and n :: nat assume "e > 0" "n > 0"
    hence "1/n > 0" "e * 2 powr - n > 0" by (auto)
    from M_space[OF \<open>1/n>0\<close>]
    have "(\k. measure M (\i\{0..k}. cball (from_nat_into X i) (1/real n))) \ measure M (space M)"
      unfolding emeasure_eq_measure by (auto)
    from metric_LIMSEQ_D[OF this \<open>0 < e * 2 powr -n\<close>]
    obtain k where "dist (measure M (\i\{0..k}. cball (from_nat_into X i) (1/real n))) (measure M (space M)) <
      e * 2 powr -n"
      by auto
    hence "measure M (\i\{0..k}. cball (from_nat_into X i) (1/real n)) \
      measure M (space M) - e * 2 powr -real n"
      by (auto simp: dist_real_def)
    hence "\k. measure M (\i\{0..k}. cball (from_nat_into X i) (1/real n)) \
      measure M (space M) - e * 2 powr - real n" ..
  } note k=this
  hence "\e\{0<..}. \(n::nat)\{0<..}. \k.
    measure M (\<Union>i\<in>{0..k}. cball (from_nat_into X i) (1/real n)) \<ge> measure M (space M) - e * 2 powr - real n"
    by blast
  then obtain k where k: "\e\{0<..}. \n\{0<..}. measure M (space M) - e * 2 powr - real (n::nat)
    \<le> measure M (\<Union>i\<in>{0..k e n}. cball (from_nat_into X i) (1 / n))"
    by metis
  hence k: "\e n. e > 0 \ n > 0 \ measure M (space M) - e * 2 powr - n
    \<le> measure M (\<Union>i\<in>{0..k e n}. cball (from_nat_into X i) (1 / n))"
    unfolding Ball_def by blast
  have approx_space:
    "\K \ {K. K \ space M \ compact K}. emeasure M (space M) \ emeasure M K + ennreal e"
    (is "?thesis e"if "0 < e" for e :: real
  proof -
    define B where [abs_def]:
      "B n = (\i\{0..k e (Suc n)}. cball (from_nat_into X i) (1 / Suc n))" for n
    have "\n. closed (B n)" by (auto simp: B_def)
    hence [simp]: "\n. B n \ sets M" by (simp add: sb)
    from k[OF \<open>e > 0\<close> zero_less_Suc]
    have "\n. measure M (space M) - measure M (B n) \ e * 2 powr - real (Suc n)"
      by (simp add: algebra_simps B_def finite_measure_compl)
    hence B_compl_le: "\n::nat. measure M (space M - B n) \ e * 2 powr - real (Suc n)"
      by (simp add: finite_measure_compl)
    define K where "K = (\n. B n)"
    from \<open>closed (B _)\<close> have "closed K" by (auto simp: K_def)
    hence [simp]: "K \ sets M" by (simp add: sb)
    have "measure M (space M) - measure M K = measure M (space M - K)"
      by (simp add: finite_measure_compl)
    also have "\ = emeasure M (\n. space M - B n)" by (auto simp: K_def emeasure_eq_measure)
    also have "\ \ (\n. emeasure M (space M - B n))"
      by (rule emeasure_subadditive_countably) (auto simp: summable_def)
    also have "\ \ (\n. ennreal (e*2 powr - real (Suc n)))"
      using B_compl_le by (intro suminf_le) (simp_all add: emeasure_eq_measure ennreal_leI)
    also have "\ \ (\n. ennreal (e * (1 / 2) ^ Suc n))"
      by (simp add: powr_minus powr_realpow field_simps del: of_nat_Suc)
    also have "\ = ennreal e * (\n. ennreal ((1 / 2) ^ Suc n))"
      unfolding ennreal_power[symmetric]
      using \<open>0 < e\<close>
      by (simp add: ac_simps ennreal_mult' divide_ennreal[symmetric] divide_ennreal_def
                    ennreal_power[symmetric])
    also have "\ = e"
      by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
    finally have "measure M (space M) \ measure M K + e"
      using \<open>0 < e\<close> by simp
    hence "emeasure M (space M) \ emeasure M K + e"
      using \<open>0 < e\<close> by (simp add: emeasure_eq_measure flip: ennreal_plus)
    moreover have "compact K"
      unfolding compact_eq_totally_bounded
    proof safe
      show "complete K" using \<open>closed K\<close> by (simp add: complete_eq_closed)
      fix e'::real assume "0 < e'"
      from nat_approx_posE[OF this] guess n . note n = this
      let ?k = "from_nat_into X ` {0..k e (Suc n)}"
      have "finite ?k" by simp
      moreover have "K \ (\x\?k. ball x e')" unfolding K_def B_def using n by force
      ultimately show "\k. finite k \ K \ (\x\k. ball x e')" by blast
    qed
    ultimately
    show ?thesis by (auto simp: sU)
  qed
  { fix A::"'a set" assume "closed A" hence "A \ sets borel" by (simp add: compact_imp_closed)
    hence [simp]: "A \ sets M" by (simp add: sb)
    have "?inner A"
    proof (rule approx_inner)
      fix e::real assume "e > 0"
      from approx_space[OF this] obtain K where
        K: "K \ space M" "compact K" "emeasure M (space M) \ emeasure M K + e"
        by (auto simp: emeasure_eq_measure)
      hence [simp]: "K \ sets M" by (simp add: sb compact_imp_closed)
      have "measure M A - measure M (A \ K) = measure M (A - A \ K)"
        by (subst finite_measure_Diff) auto
      also have "A - A \ K = A \ K - K" by auto
      also have "measure M \ = measure M (A \ K) - measure M K"
        by (subst finite_measure_Diff) auto
      also have "\ \ measure M (space M) - measure M K"
        by (simp add: emeasure_eq_measure sU sb finite_measure_mono)
      also have "\ \ e"
        using K \<open>0 < e\<close> by (simp add: emeasure_eq_measure flip: ennreal_plus)
      finally have "emeasure M A \ emeasure M (A \ K) + ennreal e"
        using \<open>0<e\<close> by (simp add: emeasure_eq_measure algebra_simps flip: ennreal_plus)
      moreover have "A \ K \ A" "compact (A \ K)" using \closed A\ \compact K\ by auto
      ultimately show "\K \ A. compact K \ emeasure M A \ emeasure M K + ennreal e"
        by blast
    qed simp
    have "?outer A"
    proof cases
      assume "A \ {}"
      let ?G = "\d. {x. infdist x A < d}"
      {
        fix d
        have "?G d = (\x. infdist x A) -` {..
        also have "open \"
          by (intro continuous_open_vimage) (auto intro!: continuous_infdist continuous_ident)
        finally have "open (?G d)" .
      } note open_G = this
      from in_closed_iff_infdist_zero[OF \<open>closed A\<close> \<open>A \<noteq> {}\<close>]
      have "A = {x. infdist x A = 0}" by auto
      also have "\ = (\i. ?G (1/real (Suc i)))"
      proof (auto simp del: of_nat_Suc, rule ccontr)
        fix x
        assume "infdist x A \ 0"
        hence pos: "infdist x A > 0" using infdist_nonneg[of x A] by simp
        from nat_approx_posE[OF this] guess n .
        moreover
        assume "\i. infdist x A < 1 / real (Suc i)"
        hence "infdist x A < 1 / real (Suc n)" by auto
        ultimately show False by simp
      qed
      also have "M \ = (INF n. emeasure M (?G (1 / real (Suc n))))"
      proof (rule INF_emeasure_decseq[symmetric], safe)
        fix i::nat
        from open_G[of "1 / real (Suc i)"]
        show "?G (1 / real (Suc i)) \ sets M" by (simp add: sb borel_open)
      next
        show "decseq (\i. {x. infdist x A < 1 / real (Suc i)})"
          by (auto intro: less_trans intro!: divide_strict_left_mono
            simp: decseq_def le_eq_less_or_eq)
      qed simp
      finally
      have "emeasure M A = (INF n. emeasure M {x. infdist x A < 1 / real (Suc n)})" .
      moreover
      have "\ \ (INF U\{U. A \ U \ open U}. emeasure M U)"
      proof (intro INF_mono)
        fix m
        have "?G (1 / real (Suc m)) \ {U. A \ U \ open U}" using open_G by auto
        moreover have "M (?G (1 / real (Suc m))) \ M (?G (1 / real (Suc m)))" by simp
        ultimately show "\U\{U. A \ U \ open U}.
          emeasure M U \<le> emeasure M {x. infdist x A < 1 / real (Suc m)}"
          by blast
      qed
      moreover
      have "emeasure M A \ (INF U\{U. A \ U \ open U}. emeasure M U)"
        by (rule INF_greatest) (auto intro!: emeasure_mono simp: sb)
      ultimately show ?thesis by simp
    qed (auto intro!: INF_eqI)
    note \<open>?inner A\<close> \<open>?outer A\<close> }
  note closed_in_D = this
  from \<open>B \<in> sets borel\<close>
  have "Int_stable (Collect closed)" "Collect closed \ Pow UNIV" "B \ sigma_sets UNIV (Collect closed)"
    by (auto simp: Int_stable_def borel_eq_closed)
  then show "?inner B" "?outer B"
  proof (induct B rule: sigma_sets_induct_disjoint)
    case empty
    { case 1 show ?case by (intro SUP_eqI[symmetric]) auto }
    { case 2 show ?case by (intro INF_eqI[symmetric]) (auto elim!: meta_allE[of _ "{}"]) }
  next
    case (basic B)
    { case 1 from basic closed_in_D show ?case by auto }
    { case 2 from basic closed_in_D show ?case by auto }
  next
    case (compl B)
    note inner = compl(2) and outer = compl(3)
    from compl have [simp]: "B \ sets M" by (auto simp: sb borel_eq_closed)
    case 2
    have "M (space M - B) = M (space M) - emeasure M B" by (auto simp: emeasure_compl)
    also have "\ = (INF K\{K. K \ B \ compact K}. M (space M) - M K)"
      by (subst ennreal_SUP_const_minus) (auto simp: less_top[symmetric] inner)
    also have "\ = (INF U\{U. U \ B \ compact U}. M (space M - U))"
      by (auto simp add: emeasure_compl sb compact_imp_closed)
    also have "\ \ (INF U\{U. U \ B \ closed U}. M (space M - U))"
      by (rule INF_superset_mono) (auto simp add: compact_imp_closed)
    also have "(INF U\{U. U \ B \ closed U}. M (space M - U)) =
        (INF U\<in>{U. space M - B \<subseteq> U \<and> open U}. emeasure M U)"
      apply (rule arg_cong [of _ _ Inf])
      using sU
      apply (auto simp add: image_iff)
      apply (rule exI [of _ "UNIV - y" for y])
      apply safe
        apply (auto simp add: double_diff)
      done
    finally have
      "(INF U\{U. space M - B \ U \ open U}. emeasure M U) \ emeasure M (space M - B)" .
    moreover have
      "(INF U\{U. space M - B \ U \ open U}. emeasure M U) \ emeasure M (space M - B)"
      by (auto simp: sb sU intro!: INF_greatest emeasure_mono)
    ultimately show ?case by (auto intro!: antisym simp: sets_eq_imp_space_eq[OF sb])

    case 1
    have "M (space M - B) = M (space M) - emeasure M B" by (auto simp: emeasure_compl)
    also have "\ = (SUP U\ {U. B \ U \ open U}. M (space M) - M U)"
      unfolding outer by (subst ennreal_INF_const_minus) auto
    also have "\ = (SUP U\{U. B \ U \ open U}. M (space M - U))"
      by (auto simp add: emeasure_compl sb compact_imp_closed)
    also have "\ = (SUP K\{K. K \ space M - B \ closed K}. emeasure M K)"
      unfolding SUP_image [of _ "\u. space M - u" _, symmetric, unfolded comp_def]
      apply (rule arg_cong [of _ _ Sup])
      using sU apply (auto intro!: imageI)
      done
    also have "\ = (SUP K\{K. K \ space M - B \ compact K}. emeasure M K)"
    proof (safe intro!: antisym SUP_least)
      fix K assume "closed K" "K \ space M - B"
      from closed_in_D[OF \<open>closed K\<close>]
      have K_inner: "emeasure M K = (SUP K\{Ka. Ka \ K \ compact Ka}. emeasure M K)" by simp
      show "emeasure M K \ (SUP K\{K. K \ space M - B \ compact K}. emeasure M K)"
        unfolding K_inner using \<open>K \<subseteq> space M - B\<close>
        by (auto intro!: SUP_upper SUP_least)
    qed (fastforce intro!: SUP_least SUP_upper simp: compact_imp_closed)
    finally show ?case by (auto intro!: antisym simp: sets_eq_imp_space_eq[OF sb])
  next
    case (union D)
    then have "range D \ sets M" by (auto simp: sb borel_eq_closed)
    with union have M[symmetric]: "(\i. M (D i)) = M (\i. D i)" by (intro suminf_emeasure)
    also have "(\n. \i (\i. M (D i))"
      by (intro summable_LIMSEQ) auto
    finally have measure_LIMSEQ: "(\n. \i measure M (\i. D i)"
      by (simp add: emeasure_eq_measure sum_nonneg)
    have "(\i. D i) \ sets M" using \range D \ sets M\ by auto

    case 1
    show ?case
    proof (rule approx_inner)
      fix e::real assume "e > 0"
      with measure_LIMSEQ
      have "\no. \n\no. \(\ix. D x)\ < e/2"
        by (auto simp: lim_sequentially dist_real_def simp del: less_divide_eq_numeral1)
      hence "\n0. \(\ix. D x)\ < e/2" by auto
      then obtain n0 where n0: "\(\ii. D i)\ < e/2"
        unfolding choice_iff by blast
      have "ennreal (\ii
        by (auto simp add: emeasure_eq_measure)
      also have "\ \ (\i. M (D i))" by (rule sum_le_suminf) auto
      also have "\ = M (\i. D i)" by (simp add: M)
      also have "\ = measure M (\i. D i)" by (simp add: emeasure_eq_measure)
      finally have n0: "measure M (\i. D i) - (\i
        using n0 by (auto simp: sum_nonneg)
      have "\i. \K. K \ D i \ compact K \ emeasure M (D i) \ emeasure M K + e/(2*Suc n0)"
      proof
        fix i
        from \<open>0 < e\<close> have "0 < e/(2*Suc n0)" by simp
        have "emeasure M (D i) = (SUP K\{K. K \ (D i) \ compact K}. emeasure M K)"
          using union by blast
        from SUP_approx_ennreal[OF \<open>0 < e/(2*Suc n0)\<close> _ this]
        show "\K. K \ D i \ compact K \ emeasure M (D i) \ emeasure M K + e/(2*Suc n0)"
          by (auto simp: emeasure_eq_measure intro: less_imp_le compact_empty)
      qed
      then obtain K where K: "\i. K i \ D i" "\i. compact (K i)"
        "\i. emeasure M (D i) \ emeasure M (K i) + e/(2*Suc n0)"
        unfolding choice_iff by blast
      let ?K = "\i\{..
      have "disjoint_family_on K {.. using K \<open>disjoint_family D\<close>
        unfolding disjoint_family_on_def by blast
      hence mK: "measure M ?K = (\i
        by (intro finite_measure_finite_Union) (auto simp: sb compact_imp_closed)
      have "measure M (\i. D i) < (\i
      also have "(\i (\i
        using K \<open>0 < e\<close>
        by (auto intro: sum_mono simp: emeasure_eq_measure simp flip: ennreal_plus)
      also have "\ = (\ii
        by (simp add: sum.distrib)
      also have "\ \ (\i0 < e\
        by (auto simp: field_simps intro!: mult_left_mono)
      finally
      have "measure M (\i. D i) < (\i
        by auto
      hence "M (\i. D i) < M ?K + e"
        using \<open>0<e\<close> by (auto simp: mK emeasure_eq_measure sum_nonneg ennreal_less_iff simp flip: ennreal_plus)
      moreover
      have "?K \ (\i. D i)" using K by auto
      moreover
      have "compact ?K" using K by auto
      ultimately
      have "?K\(\i. D i) \ compact ?K \ emeasure M (\i. D i) \ emeasure M ?K + ennreal e" by simp
      thus "\K\\i. D i. compact K \ emeasure M (\i. D i) \ emeasure M K + ennreal e" ..
    qed fact
    case 2
    show ?case
    proof (rule approx_outer[OF \<open>(\<Union>i. D i) \<in> sets M\<close>])
      fix e::real assume "e > 0"
      have "\i::nat. \U. D i \ U \ open U \ e/(2 powr Suc i) > emeasure M U - emeasure M (D i)"
      proof
        fix i::nat
        from \<open>0 < e\<close> have "0 < e/(2 powr Suc i)" by simp
        have "emeasure M (D i) = (INF U\{U. (D i) \ U \ open U}. emeasure M U)"
          using union by blast
        from INF_approx_ennreal[OF \<open>0 < e/(2 powr Suc i)\<close> this]
        show "\U. D i \ U \ open U \ e/(2 powr Suc i) > emeasure M U - emeasure M (D i)"
          using \<open>0<e\<close>
          by (auto simp: emeasure_eq_measure sum_nonneg ennreal_less_iff ennreal_minus
                         finite_measure_mono sb
                   simp flip: ennreal_plus)
      qed
      then obtain U where U: "\i. D i \ U i" "\i. open (U i)"
        "\i. e/(2 powr Suc i) > emeasure M (U i) - emeasure M (D i)"
        unfolding choice_iff by blast
      let ?U = "\i. U i"
      have "ennreal (measure M ?U - measure M (\i. D i)) = M ?U - M (\i. D i)"
        using U(1,2)
        by (subst ennreal_minus[symmetric])
           (auto intro!: finite_measure_mono simp: sb emeasure_eq_measure)
      also have "\ = M (?U - (\i. D i))" using U \(\i. D i) \ sets M\
        by (subst emeasure_Diff) (auto simp: sb)
      also have "\ \ M (\i. U i - D i)" using U \range D \ sets M\
        by (intro emeasure_mono) (auto simp: sb intro!: sets.countable_nat_UN sets.Diff)
      also have "\ \ (\i. M (U i - D i))" using U \range D \ sets M\
        by (intro emeasure_subadditive_countably) (auto intro!: sets.Diff simp: sb)
      also have "\ \ (\i. ennreal e/(2 powr Suc i))" using U \range D \ sets M\
        using \<open>0<e\<close>
        by (intro suminf_le, subst emeasure_Diff)
           (auto simp: emeasure_Diff emeasure_eq_measure sb ennreal_minus
                       finite_measure_mono divide_ennreal ennreal_less_iff
                 intro: less_imp_le)
      also have "\ \ (\n. ennreal (e * (1 / 2) ^ Suc n))"
        using \<open>0<e\<close>
        by (simp add: powr_minus powr_realpow field_simps divide_ennreal del: of_nat_Suc)
      also have "\ = ennreal e * (\n. ennreal ((1 / 2) ^ Suc n))"
        unfolding ennreal_power[symmetric]
        using \<open>0 < e\<close>
        by (simp add: ac_simps ennreal_mult' divide_ennreal[symmetric] divide_ennreal_def
                      ennreal_power[symmetric])
      also have "\ = ennreal e"
        by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
      finally have "emeasure M ?U \ emeasure M (\i. D i) + ennreal e"
        using \<open>0<e\<close> by (simp add: emeasure_eq_measure flip: ennreal_plus)
      moreover
      have "(\i. D i) \ ?U" using U by auto
      moreover
      have "open ?U" using U by auto
      ultimately
      have "(\i. D i) \ ?U \ open ?U \ emeasure M ?U \ emeasure M (\i. D i) + ennreal e" by simp
      thus "\B. (\i. D i) \ B \ open B \ emeasure M B \ emeasure M (\i. D i) + ennreal e" ..
    qed
  qed
qed

end


[ Dauer der Verarbeitung: 0.22 Sekunden  (vorverarbeitet)  ]