(* Title: HOL/BNF_Least_Fixpoint.thy
Author: Dmitriy Traytel, TU Muenchen
Author: Lorenz Panny, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2012, 2013, 2014
Least fixpoint (datatype) operation on bounded natural functors.
*)
section \<open>Least Fixpoint (Datatype) Operation on Bounded Natural Functors\<close>
theory BNF_Least_Fixpoint
imports BNF_Fixpoint_Base
keywords
"datatype" :: thy_defn and
"datatype_compat" :: thy_defn
begin
lemma subset_emptyI: "(\x. x \ A \ False) \ A \ {}"
by blast
lemma image_Collect_subsetI: "(\x. P x \ f x \ B) \ f ` {x. P x} \ B"
by blast
lemma Collect_restrict: "{x. x \ X \ P x} \ X"
by auto
lemma prop_restrict: "\x \ Z; Z \ {x. x \ X \ P x}\ \ P x"
by auto
lemma underS_I: "\i \ j; (i, j) \ R\ \ i \ underS R j"
unfolding underS_def by simp
lemma underS_E: "i \ underS R j \ i \ j \ (i, j) \ R"
unfolding underS_def by simp
lemma underS_Field: "i \ underS R j \ i \ Field R"
unfolding underS_def Field_def by auto
lemma ex_bij_betw: "|A| \o (r :: 'b rel) \ \f B :: 'b set. bij_betw f B A"
by (subst (asm) internalize_card_of_ordLeq) (auto dest!: iffD2[OF card_of_ordIso ordIso_symmetric])
lemma bij_betwI':
"\\x y. \x \ X; y \ X\ \ (f x = f y) = (x = y);
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"
unfolding bij_betw_def inj_on_def by blast
lemma surj_fun_eq:
assumes surj_on: "f ` X = UNIV" and eq_on: "\x \ X. (g1 \ f) x = (g2 \ f) x"
shows "g1 = g2"
proof (rule ext)
fix y
from surj_on obtain x where "x \ X" and "y = f x" by blast
thus "g1 y = g2 y" using eq_on by simp
qed
lemma Card_order_wo_rel: "Card_order r \ wo_rel r"
unfolding wo_rel_def card_order_on_def by blast
lemma Cinfinite_limit: "\x \ Field r; Cinfinite r\ \ \y \ Field r. x \ y \ (x, y) \ r"
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)
lemma Card_order_trans:
"\Card_order r; x \ y; (x, y) \ r; y \ z; (y, z) \ r\ \ x \ z \ (x, z) \ r"
unfolding card_order_on_def well_order_on_def linear_order_on_def
partial_order_on_def preorder_on_def trans_def antisym_def by blast
lemma Cinfinite_limit2:
assumes x1: "x1 \ Field r" and x2: "x2 \ Field r" and r: "Cinfinite r"
shows "\y \ Field r. (x1 \ y \ (x1, y) \ r) \ (x2 \ y \ (x2, y) \ r)"
proof -
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"
unfolding card_order_on_def well_order_on_def linear_order_on_def
partial_order_on_def preorder_on_def by auto
obtain y1 where y1: "y1 \ Field r" "x1 \ y1" "(x1, y1) \ r"
using Cinfinite_limit[OF x1 r] by blast
obtain y2 where y2: "y2 \ Field r" "x2 \ y2" "(x2, y2) \ r"
using Cinfinite_limit[OF x2 r] by blast
show ?thesis
proof (cases "y1 = y2")
case True with y1 y2 show ?thesis by blast
next
case False
with y1(1) y2(1) total have "(y1, y2) \ r \ (y2, y1) \ r"
unfolding total_on_def by auto
thus ?thesis
proof
assume *: "(y1, y2) \ r"
with trans y1(3) have "(x1, y2) \ r" unfolding trans_def by blast
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)
next
assume *: "(y2, y1) \ r"
with trans y2(3) have "(x2, y1) \ r" unfolding trans_def by blast
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)
qed
qed
qed
lemma Cinfinite_limit_finite:
"\finite X; X \ Field r; Cinfinite r\ \ \y \ Field r. \x \ X. (x \ y \ (x, y) \ r)"
proof (induct X rule: finite_induct)
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto
next
case (insert x X)
then obtain y where y: "y \ Field r" "\x \ X. (x \ y \ (x, y) \ r)" by blast
then obtain z where z: "z \ Field r" "x \ z \ (x, z) \ r" "y \ z \ (y, z) \ r"
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast
show ?case
apply (intro bexI ballI)
apply (erule insertE)
apply hypsubst
apply (rule z(2))
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3)
apply blast
apply (rule z(1))
done
qed
lemma insert_subsetI: "\x \ A; X \ A\ \ insert x X \ A"
by auto
lemmas well_order_induct_imp = wo_rel.well_order_induct[of r "\x. x \ Field r \ P x" for r P]
lemma meta_spec2:
assumes "(\x y. PROP P x y)"
shows "PROP P x y"
by (rule assms)
lemma nchotomy_relcomppE:
assumes "\y. \x. y = f x" "(r OO s) a c" "\b. r a (f b) \ s (f b) c \ P"
shows P
proof (rule relcompp.cases[OF assms(2)], hypsubst)
fix b assume "r a b" "s b c"
moreover from assms(1) obtain b' where "b = f b'" by blast
ultimately show P by (blast intro: assms(3))
qed
lemma predicate2D_vimage2p: "\R \ vimage2p f g S; R x y\ \ S (f x) (g y)"
unfolding vimage2p_def by auto
lemma ssubst_Pair_rhs: "\(r, s) \ R; s' = s\ \ (r, s') \ R"
by (rule ssubst)
lemma all_mem_range1:
"(\y. y \ range f \ P y) \ (\x. P (f x)) "
by (rule equal_intr_rule) fast+
lemma all_mem_range2:
"(\fa y. fa \ range f \ y \ range fa \ P y) \ (\x xa. P (f x xa))"
by (rule equal_intr_rule) fast+
lemma all_mem_range3:
"(\fa fb y. fa \ range f \ fb \ range fa \ y \ range fb \ P y) \ (\x xa xb. P (f x xa xb))"
by (rule equal_intr_rule) fast+
lemma all_mem_range4:
"(\fa fb fc y. fa \ range f \ fb \ range fa \ fc \ range fb \ y \ range fc \ P y) \
(\<And>x xa xb xc. P (f x xa xb xc))"
by (rule equal_intr_rule) fast+
lemma all_mem_range5:
"(\fa fb fc fd y. fa \ range f \ fb \ range fa \ fc \ range fb \ fd \ range fc \
y \<in> range fd \<Longrightarrow> P y) \<equiv>
(\<And>x xa xb xc xd. P (f x xa xb xc xd))"
by (rule equal_intr_rule) fast+
lemma all_mem_range6:
"(\fa fb fc fd fe ff y. fa \ range f \ fb \ range fa \ fc \ range fb \ fd \ range fc \
fe \<in> range fd \<Longrightarrow> ff \<in> range fe \<Longrightarrow> y \<in> range ff \<Longrightarrow> P y) \<equiv>
(\<And>x xa xb xc xd xe xf. P (f x xa xb xc xd xe xf))"
by (rule equal_intr_rule) (fastforce, fast)
lemma all_mem_range7:
"(\fa fb fc fd fe ff fg y. fa \ range f \ fb \ range fa \ fc \ range fb \ fd \ range fc \
fe \<in> range fd \<Longrightarrow> ff \<in> range fe \<Longrightarrow> fg \<in> range ff \<Longrightarrow> y \<in> range fg \<Longrightarrow> P y) \<equiv>
(\<And>x xa xb xc xd xe xf xg. P (f x xa xb xc xd xe xf xg))"
by (rule equal_intr_rule) (fastforce, fast)
lemma all_mem_range8:
"(\fa fb fc fd fe ff fg fh y. fa \ range f \ fb \ range fa \ fc \ range fb \ fd \ range fc \
fe \<in> range fd \<Longrightarrow> ff \<in> range fe \<Longrightarrow> fg \<in> range ff \<Longrightarrow> fh \<in> range fg \<Longrightarrow> y \<in> range fh \<Longrightarrow> P y) \<equiv>
(\<And>x xa xb xc xd xe xf xg xh. P (f x xa xb xc xd xe xf xg xh))"
by (rule equal_intr_rule) (fastforce, fast)
lemmas all_mem_range = all_mem_range1 all_mem_range2 all_mem_range3 all_mem_range4 all_mem_range5
all_mem_range6 all_mem_range7 all_mem_range8
lemma pred_fun_True_id: "NO_MATCH id p \ pred_fun (\x. True) p f = pred_fun (\x. True) id (p \ f)"
unfolding fun.pred_map unfolding comp_def id_def ..
ML_file \<open>Tools/BNF/bnf_lfp_util.ML\<close>
ML_file \<open>Tools/BNF/bnf_lfp_tactics.ML\<close>
ML_file \<open>Tools/BNF/bnf_lfp.ML\<close>
ML_file \<open>Tools/BNF/bnf_lfp_compat.ML\<close>
ML_file \<open>Tools/BNF/bnf_lfp_rec_sugar_more.ML\<close>
ML_file \<open>Tools/BNF/bnf_lfp_size.ML\<close>
ML_file \<open>Tools/datatype_simprocs.ML\<close>
simproc_setup datatype_no_proper_subterm
("(x :: 'a :: size) = y") = \<open>K Datatype_Simprocs.no_proper_subterm_simproc\<close>
end
¤ Dauer der Verarbeitung: 0.21 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|