(* Title: HOL/Decision_Procs/Polynomial_List.thy
Author: Amine Chaieb
*)
section \<open>Univariate Polynomials as lists\<close>
theory Polynomial_List
imports Complex_Main
begin
text \<open>Application of polynomial as a function.\<close>
primrec (in semiring_0) poly :: "'a list \ 'a \ 'a"
where
poly_Nil: "poly [] x = 0"
| poly_Cons: "poly (h # t) x = h + x * poly t x"
subsection \<open>Arithmetic Operations on Polynomials\<close>
text \<open>Addition\<close>
primrec (in semiring_0) padd :: "'a list \ 'a list \ 'a list" (infixl \+++\ 65)
where
padd_Nil: "[] +++ l2 = l2"
| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))"
text \<open>Multiplication by a constant\<close>
primrec (in semiring_0) cmult :: "'a \ 'a list \ 'a list" (infixl \%*\ 70) where
cmult_Nil: "c %* [] = []"
| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)"
text \<open>Multiplication by a polynomial\<close>
primrec (in semiring_0) pmult :: "'a list \ 'a list \ 'a list" (infixl \***\ 70)
where
pmult_Nil: "[] *** l2 = []"
| pmult_Cons: "(h # t) *** l2 = (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))"
text \<open>Repeated multiplication by a polynomial\<close>
primrec (in semiring_0) mulexp :: "nat \ 'a list \ 'a list \ 'a list"
where
mulexp_zero: "mulexp 0 p q = q"
| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q"
text \<open>Exponential\<close>
primrec (in semiring_1) pexp :: "'a list \ nat \ 'a list" (infixl \%^\ 80)
where
pexp_0: "p %^ 0 = [1]"
| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)"
text \<open>Quotient related value of dividing a polynomial by x + a.
Useful for divisor properties in inductive proofs.\<close>
primrec (in field) "pquot" :: "'a list \ 'a \ 'a list"
where
pquot_Nil: "pquot [] a = []"
| pquot_Cons: "pquot (h # t) a =
(if t = [] then [h] else (inverse a * (h - hd( pquot t a))) # pquot t a)"
text \<open>Normalization of polynomials (remove extra 0 coeff).\<close>
primrec (in semiring_0) pnormalize :: "'a list \ 'a list"
where
pnormalize_Nil: "pnormalize [] = []"
| pnormalize_Cons: "pnormalize (h # p) =
(if pnormalize p = [] then (if h = 0 then [] else [h]) else h # pnormalize p)"
definition (in semiring_0) "pnormal p \ pnormalize p = p \ p \ []"
definition (in semiring_0) "nonconstant p \ pnormal p \ (\x. p \ [x])"
text \<open>Other definitions.\<close>
definition (in ring_1) poly_minus :: "'a list \ 'a list" (\-- _\ [80] 80)
where "-- p = (- 1) %* p"
definition (in semiring_0) divides :: "'a list \ 'a list \ bool" (infixl \divides\ 70)
where "p1 divides p2 \ (\q. poly p2 = poly(p1 *** q))"
lemma (in semiring_0) dividesI: "poly p2 = poly (p1 *** q) \ p1 divides p2"
by (auto simp add: divides_def)
lemma (in semiring_0) dividesE:
assumes "p1 divides p2"
obtains q where "poly p2 = poly (p1 *** q)"
using assms by (auto simp add: divides_def)
\<comment> \<open>order of a polynomial\<close>
definition (in ring_1) order :: "'a \ 'a list \ nat"
where "order a p = (SOME n. ([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ (Suc n)) divides p))"
\<comment> \<open>degree of a polynomial\<close>
definition (in semiring_0) degree :: "'a list \ nat"
where "degree p = length (pnormalize p) - 1"
\<comment> \<open>squarefree polynomials --- NB with respect to real roots only\<close>
definition (in ring_1) rsquarefree :: "'a list \ bool"
where "rsquarefree p \ poly p \ poly [] \ (\a. order a p = 0 \ order a p = 1)"
context semiring_0
begin
lemma padd_Nil2[simp]: "p +++ [] = p"
by (induct p) auto
lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"
by auto
lemma pminus_Nil: "-- [] = []"
by (simp add: poly_minus_def)
lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp
end
lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t"
by (induct t) auto
lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ (0 # t) = a # t"
by simp
text \<open>Handy general properties.\<close>
lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b"
proof (induct b arbitrary: a)
case Nil
then show ?case
by auto
next
case (Cons b bs a)
then show ?case
by (cases a) (simp_all add: add.commute)
qed
lemma (in comm_semiring_0) padd_assoc: "(a +++ b) +++ c = a +++ (b +++ c)"
proof (induct a arbitrary: b c)
case Nil
then show ?case
by simp
next
case Cons
then show ?case
by (cases b) (simp_all add: ac_simps)
qed
lemma (in semiring_0) poly_cmult_distr: "a %* (p +++ q) = a %* p +++ a %* q"
proof (induct p arbitrary: q)
case Nil
then show ?case
by simp
next
case Cons
then show ?case
by (cases q) (simp_all add: distrib_left)
qed
lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = 0 # t"
proof (induct t)
case Nil
then show ?case
by simp
next
case (Cons a t)
then show ?case
by (cases t) (auto simp add: padd_commut)
qed
text \<open>Properties of evaluation of polynomials.\<close>
lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x"
proof (induct p1 arbitrary: p2)
case Nil
then show ?case
by simp
next
case (Cons a as p2)
then show ?case
by (cases p2) (simp_all add: ac_simps distrib_left)
qed
lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x"
proof (induct p)
case Nil
then show ?case
by simp
next
case Cons
then show ?case
by (cases "x = zero") (auto simp add: distrib_left ac_simps)
qed
lemma (in comm_semiring_0) poly_cmult_map: "poly (map ((*) c) p) x = c * poly p x"
by (induct p) (auto simp add: distrib_left ac_simps)
lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)"
by (simp add: poly_minus_def) (auto simp add: poly_cmult)
lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x"
proof (induct p1 arbitrary: p2)
case Nil
then show ?case
by simp
next
case (Cons a as)
then show ?case
by (cases as) (simp_all add: poly_cmult poly_add distrib_right distrib_left ac_simps)
qed
class idom_char_0 = idom + ring_char_0
subclass (in field_char_0) idom_char_0 ..
lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n"
by (induct n) (auto simp add: poly_cmult poly_mult)
text \<open>More Polynomial Evaluation lemmas.\<close>
lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x"
by simp
lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x"
by (simp add: poly_mult mult.assoc)
lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0"
by (induct p) auto
lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly (p %^ n *** p %^ d) x"
by (induct n) (auto simp add: poly_mult mult.assoc)
subsection \<open>Key Property: if \<^term>\<open>f a = 0\<close> then \<^term>\<open>(x - a)\<close> divides \<^term>\<open>p(x)\<close>.\<close>
lemma (in comm_ring_1) lemma_poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q"
proof (induct t arbitrary: h)
case Nil
have "[h] = [h] +++ [- a, 1] *** []" by simp
then show ?case by blast
next
case (Cons x xs)
have "\q r. h # x # xs = [r] +++ [-a, 1] *** q"
proof -
from Cons obtain q r where qr: "x # xs = [r] +++ [- a, 1] *** q"
by blast
have "h # x # xs = [a * r + h] +++ [-a, 1] *** (r # q)"
using qr by (cases q) (simp_all add: algebra_simps)
then show ?thesis by blast
qed
then show ?case by blast
qed
lemma (in comm_ring_1) poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q"
using lemma_poly_linear_rem [where t = t and a = a] by auto
lemma (in comm_ring_1) poly_linear_divides: "poly p a = 0 \ p = [] \ (\q. p = [-a, 1] *** q)"
proof (cases p)
case Nil
then show ?thesis by simp
next
case (Cons x xs)
have "poly p a = 0" if "p = [-a, 1] *** q" for q
using that by (simp add: poly_add poly_cmult)
moreover
have "\q. p = [- a, 1] *** q" if p0: "poly p a = 0"
proof -
from poly_linear_rem[of x xs a] obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q"
by blast
have "r = 0"
using p0 by (simp only: Cons qr poly_mult poly_add) simp
with Cons qr show ?thesis
apply -
apply (rule exI[where x = q])
apply auto
apply (cases q)
apply auto
done
qed
ultimately show ?thesis using Cons by blast
qed
lemma (in semiring_0) lemma_poly_length_mult[simp]:
"length (k %* p +++ (h # (a %* p))) = Suc (length p)"
by (induct p arbitrary: h k a) auto
lemma (in semiring_0) lemma_poly_length_mult2[simp]:
"length (k %* p +++ (h # p)) = Suc (length p)"
by (induct p arbitrary: h k) auto
lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)"
by auto
subsection \<open>Polynomial length\<close>
lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p"
by (induct p) auto
lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)"
by (induct p1 arbitrary: p2) auto
lemma (in semiring_0) poly_root_mult_length[simp]: "length ([a, b] *** p) = Suc (length p)"
by (simp add: poly_add_length)
lemma (in idom) poly_mult_not_eq_poly_Nil[simp]:
"poly (p *** q) x \ poly [] x \ poly p x \ poly [] x \ poly q x \ poly [] x"
by (auto simp add: poly_mult)
lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \ poly p x = 0 \ poly q x = 0"
by (auto simp add: poly_mult)
text \<open>Normalisation Properties.\<close>
lemma (in semiring_0) poly_normalized_nil: "pnormalize p = [] \ poly p x = 0"
by (induct p) auto
text \<open>A nontrivial polynomial of degree n has no more than n roots.\<close>
lemma (in idom) poly_roots_index_lemma:
assumes "poly p x \ poly [] x"
and "length p = n"
shows "\i. \x. poly p x = 0 \ (\m\n. x = i m)"
using assms
proof (induct n arbitrary: p x)
case 0
then show ?case by simp
next
case (Suc n)
have False if C: "\i. \x. poly p x = 0 \ (\m\Suc n. x \ i m)"
proof -
from Suc.prems have p0: "poly p x \ 0" "p \ []"
by auto
from p0(1)[unfolded poly_linear_divides[of p x]]
have "\q. p \ [- x, 1] *** q"
by blast
from C obtain a where a: "poly p a = 0"
by blast
from a[unfolded poly_linear_divides[of p a]] p0(2) obtain q where q: "p = [-a, 1] *** q"
by blast
have lg: "length q = n"
using q Suc.prems(2) by simp
from q p0 have qx: "poly q x \ poly [] x"
by (auto simp add: poly_mult poly_add poly_cmult)
from Suc.hyps[OF qx lg] obtain i where i: "\x. poly q x = 0 \ (\m\n. x = i m)"
by blast
let ?i = "\m. if m = Suc n then a else i m"
from C[of ?i] obtain y where y: "poly p y = 0" "\m\ Suc n. y \ ?i m"
by blast
from y have "y = a \ poly q y = 0"
by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps)
with i[of y] y(1) y(2) show ?thesis
apply auto
apply (erule_tac x = "m" in allE)
apply auto
done
qed
then show ?case by blast
qed
lemma (in idom) poly_roots_index_length:
"poly p x \ poly [] x \ \i. \x. poly p x = 0 \ (\n. n \ length p \ x = i n)"
by (blast intro: poly_roots_index_lemma)
lemma (in idom) poly_roots_finite_lemma1:
"poly p x \ poly [] x \ \N i. \x. poly p x = 0 \ (\n::nat. n < N \ x = i n)"
apply (drule poly_roots_index_length)
apply safe
apply (rule_tac x = "Suc (length p)" in exI)
apply (rule_tac x = i in exI)
apply (simp add: less_Suc_eq_le)
done
lemma (in idom) idom_finite_lemma:
assumes "\x. P x \ (\n. n < length j \ x = j!n)"
shows "finite {x. P x}"
proof -
from assms have "{x. P x} \ set j"
by auto
then show ?thesis
using finite_subset by auto
qed
lemma (in idom) poly_roots_finite_lemma2:
"poly p x \ poly [] x \ \i. \x. poly p x = 0 \ x \ set i"
apply (drule poly_roots_index_length)
apply safe
apply (rule_tac x = "map (\n. i n) [0 ..< Suc (length p)]" in exI)
apply (auto simp add: image_iff)
apply (erule_tac x="x" in allE)
apply clarsimp
apply (case_tac "n = length p")
apply (auto simp add: order_le_less)
done
lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\ finite (UNIV :: 'a set)"
proof
assume F: "finite (UNIV :: 'a set)"
have "finite (UNIV :: nat set)"
proof (rule finite_imageD)
have "of_nat ` UNIV \ UNIV"
by simp
then show "finite (of_nat ` UNIV :: 'a set)"
using F by (rule finite_subset)
show "inj (of_nat :: nat \ 'a)"
by (simp add: inj_on_def)
qed
with infinite_UNIV_nat show False ..
qed
lemma (in idom_char_0) poly_roots_finite: "poly p \ poly [] \ finite {x. poly p x = 0}"
(is "?lhs \ ?rhs")
proof
show ?rhs if ?lhs
using that
apply -
apply (erule contrapos_np)
apply (rule ext)
apply (rule ccontr)
apply (clarify dest!: poly_roots_finite_lemma2)
using finite_subset
proof -
fix x i
assume F: "\ finite {x. poly p x = 0}"
and P: "\x. poly p x = 0 \ x \ set i"
from P have "{x. poly p x = 0} \ set i"
by auto
with finite_subset F show False
by auto
qed
show ?lhs if ?rhs
using UNIV_ring_char_0_infinte that by auto
qed
text \<open>Entirety and Cancellation for polynomials\<close>
lemma (in idom_char_0) poly_entire_lemma2:
assumes p0: "poly p \ poly []"
and q0: "poly q \ poly []"
shows "poly (p***q) \ poly []"
proof -
let ?S = "\p. {x. poly p x = 0}"
have "?S (p *** q) = ?S p \ ?S q"
by (auto simp add: poly_mult)
with p0 q0 show ?thesis
unfolding poly_roots_finite by auto
qed
lemma (in idom_char_0) poly_entire:
"poly (p *** q) = poly [] \ poly p = poly [] \ poly q = poly []"
using poly_entire_lemma2[of p q]
by (auto simp add: fun_eq_iff poly_mult)
lemma (in idom_char_0) poly_entire_neg:
"poly (p *** q) \ poly [] \ poly p \ poly [] \ poly q \ poly []"
by (simp add: poly_entire)
lemma (in comm_ring_1) poly_add_minus_zero_iff:
"poly (p +++ -- q) = poly [] \ poly p = poly q"
by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq_iff poly_cmult)
lemma (in comm_ring_1) poly_add_minus_mult_eq:
"poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"
by (auto simp add: poly_add poly_minus_def fun_eq_iff poly_mult poly_cmult algebra_simps)
subclass (in idom_char_0) comm_ring_1 ..
lemma (in idom_char_0) poly_mult_left_cancel:
"poly (p *** q) = poly (p *** r) \ poly p = poly [] \ poly q = poly r"
proof -
have "poly (p *** q) = poly (p *** r) \ poly (p *** q +++ -- (p *** r)) = poly []"
by (simp only: poly_add_minus_zero_iff)
also have "\ \ poly p = poly [] \ poly q = poly r"
by (auto intro: simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff)
finally show ?thesis .
qed
lemma (in idom) poly_exp_eq_zero[simp]: "poly (p %^ n) = poly [] \ poly p = poly [] \ n \ 0"
apply (simp only: fun_eq_iff add: HOL.all_simps [symmetric])
apply (rule arg_cong [where f = All])
apply (rule ext)
apply (induct n)
apply (auto simp add: poly_exp poly_mult)
done
lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a, 1] \ poly []"
apply (simp add: fun_eq_iff)
apply (rule_tac x = "minus one a" in exI)
apply (simp add: add.commute [of a])
done
lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \ poly []"
by auto
text \<open>A more constructive notion of polynomials being trivial.\<close>
lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] \ h = 0 \ poly t = poly []"
apply (simp add: fun_eq_iff)
apply (case_tac "h = zero")
apply (drule_tac [2] x = zero in spec)
apply auto
apply (cases "poly t = poly []")
apply simp
proof -
fix x
assume H: "\x. x = 0 \ poly t x = 0"
assume pnz: "poly t \ poly []"
let ?S = "{x. poly t x = 0}"
from H have "\x. x \ 0 \ poly t x = 0"
by blast
then have th: "?S \ UNIV - {0}"
by auto
from poly_roots_finite pnz have th': "finite ?S"
by blast
from finite_subset[OF th th'] UNIV_ring_char_0_infinte show "poly t x = 0"
by simp
qed
lemma (in idom_char_0) poly_zero: "poly p = poly [] \ (\c \ set p. c = 0)"
proof (induct p)
case Nil
then show ?case by simp
next
case Cons
show ?case
apply (rule iffI)
apply (drule poly_zero_lemma')
using Cons
apply auto
done
qed
lemma (in idom_char_0) poly_0: "\c \ set p. c = 0 \ poly p x = 0"
unfolding poly_zero[symmetric] by simp
text \<open>Basics of divisibility.\<close>
lemma (in idom) poly_primes: "[a, 1] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q"
apply (auto simp add: divides_def fun_eq_iff poly_mult poly_add poly_cmult distrib_right [symmetric])
apply (drule_tac x = "uminus a" in spec)
apply (simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric])
apply (cases "p = []")
apply (rule exI[where x="[]"])
apply simp
apply (cases "q = []")
apply (erule allE[where x="[]"])
apply simp
apply clarsimp
apply (cases "\q. p = a %* q +++ (0 # q)")
apply (clarsimp simp add: poly_add poly_cmult)
apply (rule_tac x = qa in exI)
apply (simp add: distrib_right [symmetric])
apply clarsimp
apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric])
apply (rule_tac x = "pmult qa q" in exI)
apply (rule_tac [2] x = "pmult p qa" in exI)
apply (auto simp add: poly_add poly_mult poly_cmult ac_simps)
done
lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p"
apply (simp add: divides_def)
apply (rule_tac x = "[one]" in exI)
apply (auto simp add: poly_mult fun_eq_iff)
done
lemma (in comm_semiring_1) poly_divides_trans: "p divides q \ q divides r \ p divides r"
apply (simp add: divides_def)
apply safe
apply (rule_tac x = "pmult qa qaa" in exI)
apply (auto simp add: poly_mult fun_eq_iff mult.assoc)
done
lemma (in comm_semiring_1) poly_divides_exp: "m \ n \ (p %^ m) divides (p %^ n)"
by (auto simp: le_iff_add divides_def poly_exp_add fun_eq_iff)
lemma (in comm_semiring_1) poly_exp_divides: "(p %^ n) divides q \ m \ n \ (p %^ m) divides q"
by (blast intro: poly_divides_exp poly_divides_trans)
lemma (in comm_semiring_0) poly_divides_add: "p divides q \ p divides r \ p divides (q +++ r)"
apply (auto simp add: divides_def)
apply (rule_tac x = "padd qa qaa" in exI)
apply (auto simp add: poly_add fun_eq_iff poly_mult distrib_left)
done
lemma (in comm_ring_1) poly_divides_diff: "p divides q \ p divides (q +++ r) \ p divides r"
apply (auto simp add: divides_def)
apply (rule_tac x = "padd qaa (poly_minus qa)" in exI)
apply (auto simp add: poly_add fun_eq_iff poly_mult poly_minus algebra_simps)
done
lemma (in comm_ring_1) poly_divides_diff2: "p divides r \ p divides (q +++ r) \ p divides q"
apply (erule poly_divides_diff)
apply (auto simp add: poly_add fun_eq_iff poly_mult divides_def ac_simps)
done
lemma (in semiring_0) poly_divides_zero: "poly p = poly [] \ q divides p"
apply (simp add: divides_def)
apply (rule exI[where x = "[]"])
apply (auto simp add: fun_eq_iff poly_mult)
done
lemma (in semiring_0) poly_divides_zero2 [simp]: "q divides []"
apply (simp add: divides_def)
apply (rule_tac x = "[]" in exI)
apply (auto simp add: fun_eq_iff)
done
text \<open>At last, we can consider the order of a root.\<close>
lemma (in idom_char_0) poly_order_exists_lemma:
assumes "length p = d"
and "poly p \ poly []"
shows "\n q. p = mulexp n [-a, 1] q \ poly q a \ 0"
using assms
proof (induct d arbitrary: p)
case 0
then show ?case by simp
next
case (Suc n p)
show ?case
proof (cases "poly p a = 0")
case True
from Suc.prems have h: "length p = Suc n" "poly p \ poly []"
by auto
then have pN: "p \ []"
by auto
from True[unfolded poly_linear_divides] pN obtain q where q: "p = [-a, 1] *** q"
by blast
from q h True have qh: "length q = n" "poly q \ poly []"
apply simp_all
apply (simp only: fun_eq_iff)
apply (rule ccontr)
apply (simp add: fun_eq_iff poly_add poly_cmult)
done
from Suc.hyps[OF qh] obtain m r where mr: "q = mulexp m [-a,1] r" "poly r a \ 0"
by blast
from mr q have "p = mulexp (Suc m) [-a,1] r \ poly r a \ 0"
by simp
then show ?thesis by blast
next
case False
then show ?thesis
using Suc.prems
apply simp
apply (rule exI[where x="0::nat"])
apply simp
done
qed
qed
lemma (in comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x"
by (induct n) (auto simp add: poly_mult ac_simps)
lemma (in comm_semiring_1) divides_left_mult:
assumes "(p *** q) divides r"
shows "p divides r \ q divides r"
proof-
from assms obtain t where "poly r = poly (p *** q *** t)"
unfolding divides_def by blast
then have "poly r = poly (p *** (q *** t))" and "poly r = poly (q *** (p *** t))"
by (auto simp add: fun_eq_iff poly_mult ac_simps)
then show ?thesis
unfolding divides_def by blast
qed
(* FIXME: Tidy up *)
lemma (in semiring_1) zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)"
by (induct n) simp_all
lemma (in idom_char_0) poly_order_exists:
assumes "length p = d"
and "poly p \ poly []"
shows "\n. [- a, 1] %^ n divides p \ \ [- a, 1] %^ Suc n divides p"
proof -
from assms have "\n q. p = mulexp n [- a, 1] q \ poly q a \ 0"
by (rule poly_order_exists_lemma)
then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \ 0"
by blast
have "[- a, 1] %^ n divides mulexp n [- a, 1] q"
proof (rule dividesI)
show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)"
by (induct n) (simp_all add: poly_add poly_cmult poly_mult algebra_simps)
qed
moreover have "\ [- a, 1] %^ Suc n divides mulexp n [- a, 1] q"
proof
assume "[- a, 1] %^ Suc n divides mulexp n [- a, 1] q"
then obtain m where "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ Suc n *** m)"
by (rule dividesE)
moreover have "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** m)"
proof (induct n)
case 0
show ?case
proof (rule ccontr)
assume "\ ?thesis"
then have "poly q a = 0"
by (simp add: poly_add poly_cmult)
with \<open>poly q a \<noteq> 0\<close> show False
by simp
qed
next
case (Suc n)
show ?case
by (rule pexp_Suc [THEN ssubst])
(simp add: poly_mult_left_cancel poly_mult_assoc Suc del: pmult_Cons pexp_Suc)
qed
ultimately show False by simp
qed
ultimately show ?thesis
by (auto simp add: p)
qed
lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p"
by (auto simp add: divides_def)
lemma (in idom_char_0) poly_order:
"poly p \ poly [] \ \!n. ([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p)"
apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc)
apply (cut_tac x = y and y = n in less_linear)
apply (drule_tac m = n in poly_exp_divides)
apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides]
simp del: pmult_Cons pexp_Suc)
done
text \<open>Order\<close>
lemma some1_equalityD: "n = (SOME n. P n) \ \!n. P n \ P n"
by (blast intro: someI2)
lemma (in idom_char_0) order:
"([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p) \
n = order a p \<and> poly p \<noteq> poly []"
unfolding order_def
apply (rule iffI)
apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order)
apply (blast intro!: poly_order [THEN [2] some1_equalityD])
done
lemma (in idom_char_0) order2:
"poly p \ poly [] \
([-a, 1] %^ (order a p)) divides p \<and> \<not> ([-a, 1] %^ Suc (order a p)) divides p"
by (simp add: order del: pexp_Suc)
lemma (in idom_char_0) order_unique:
"poly p \ poly [] \ ([-a, 1] %^ n) divides p \ \ ([-a, 1] %^ (Suc n)) divides p \
n = order a p"
using order [of a n p] by auto
lemma (in idom_char_0) order_unique_lemma:
"poly p \ poly [] \ ([-a, 1] %^ n) divides p \ \ ([-a, 1] %^ (Suc n)) divides p \
n = order a p"
by (blast intro: order_unique)
lemma (in ring_1) order_poly: "poly p = poly q \ order a p = order a q"
by (auto simp add: fun_eq_iff divides_def poly_mult order_def)
lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p"
by (induct p) auto
lemma (in comm_ring_1) lemma_order_root:
"0 < n \ [- a, 1] %^ n divides p \ \ [- a, 1] %^ (Suc n) divides p \ poly p a = 0"
by (induct n arbitrary: a p) (auto simp add: divides_def poly_mult simp del: pmult_Cons)
lemma (in idom_char_0) order_root: "poly p a = 0 \ poly p = poly [] \ order a p \ 0"
apply (cases "poly p = poly []")
apply auto
apply (simp add: poly_linear_divides del: pmult_Cons)
apply safe
apply (drule_tac [!] a = a in order2)
apply (rule ccontr)
apply (simp add: divides_def poly_mult fun_eq_iff del: pmult_Cons)
apply blast
using neq0_conv apply (blast intro: lemma_order_root)
done
lemma (in idom_char_0) order_divides:
"([-a, 1] %^ n) divides p \ poly p = poly [] \ n \ order a p"
apply (cases "poly p = poly []")
apply auto
apply (simp add: divides_def fun_eq_iff poly_mult)
apply (rule_tac x = "[]" in exI)
apply (auto dest!: order2 [where a=a] intro: poly_exp_divides simp del: pexp_Suc)
done
lemma (in idom_char_0) order_decomp:
"poly p \ poly [] \ \q. poly p = poly (([-a, 1] %^ order a p) *** q) \ \ [-a, 1] divides q"
unfolding divides_def
apply (drule order2 [where a = a])
apply (simp add: divides_def del: pexp_Suc pmult_Cons)
apply safe
apply (rule_tac x = q in exI)
apply safe
apply (drule_tac x = qa in spec)
apply (auto simp add: poly_mult fun_eq_iff poly_exp ac_simps simp del: pmult_Cons)
done
text \<open>Important composition properties of orders.\<close>
lemma order_mult:
fixes a :: "'a::idom_char_0"
shows "poly (p *** q) \ poly [] \ order a (p *** q) = order a p + order a q"
apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order)
apply (auto simp add: poly_entire simp del: pmult_Cons)
apply (drule_tac a = a in order2)+
apply safe
apply (simp add: divides_def fun_eq_iff poly_exp_add poly_mult del: pmult_Cons, safe)
apply (rule_tac x = "qa *** qaa" in exI)
apply (simp add: poly_mult ac_simps del: pmult_Cons)
apply (drule_tac a = a in order_decomp)+
apply safe
apply (subgoal_tac "[-a, 1] divides (qa *** qaa) ")
apply (simp add: poly_primes del: pmult_Cons)
apply (auto simp add: divides_def simp del: pmult_Cons)
apply (rule_tac x = qb in exI)
apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) =
poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))")
apply (drule poly_mult_left_cancel [THEN iffD1])
apply force
apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) =
poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ")
apply (drule poly_mult_left_cancel [THEN iffD1])
apply force
apply (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons)
done
lemma (in idom_char_0) order_mult:
assumes "poly (p *** q) \ poly []"
shows "order a (p *** q) = order a p + order a q"
using assms
apply (cut_tac a = a and p = "pmult p q" and n = "order a p + order a q" in order)
apply (auto simp add: poly_entire simp del: pmult_Cons)
apply (drule_tac a = a in order2)+
apply safe
apply (simp add: divides_def fun_eq_iff poly_exp_add poly_mult del: pmult_Cons)
apply safe
apply (rule_tac x = "pmult qa qaa" in exI)
apply (simp add: poly_mult ac_simps del: pmult_Cons)
apply (drule_tac a = a in order_decomp)+
apply safe
apply (subgoal_tac "[uminus a, one] divides pmult qa qaa")
apply (simp add: poly_primes del: pmult_Cons)
apply (auto simp add: divides_def simp del: pmult_Cons)
apply (rule_tac x = qb in exI)
apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa)) =
poly (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb))")
apply (drule poly_mult_left_cancel [THEN iffD1], force)
apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a q))
(pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa))) =
poly (pmult (pexp [uminus a, one] (order a q))
(pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb)))")
apply (drule poly_mult_left_cancel [THEN iffD1], force)
apply (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons)
done
lemma (in idom_char_0) order_root2: "poly p \ poly [] \ poly p a = 0 \ order a p \ 0"
by (rule order_root [THEN ssubst]) auto
lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p"
by auto
lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]"
by (simp add: fun_eq_iff)
lemma (in idom_char_0) rsquarefree_decomp:
"rsquarefree p \ poly p a = 0 \ \q. poly p = poly ([-a, 1] *** q) \ poly q a \ 0"
apply (simp add: rsquarefree_def)
apply safe
apply (frule_tac a = a in order_decomp)
apply (drule_tac x = a in spec)
apply (drule_tac a = a in order_root2 [symmetric])
apply (auto simp del: pmult_Cons)
apply (rule_tac x = q in exI, safe)
apply (simp add: poly_mult fun_eq_iff)
apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1])
apply (simp add: divides_def del: pmult_Cons, safe)
apply (drule_tac x = "[]" in spec)
apply (auto simp add: fun_eq_iff)
done
text \<open>Normalization of a polynomial.\<close>
lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p"
by (induct p) (auto simp add: fun_eq_iff)
text \<open>The degree of a polynomial.\<close>
lemma (in semiring_0) lemma_degree_zero: "(\c \ set p. c = 0) \ pnormalize p = []"
by (induct p) auto
lemma (in idom_char_0) degree_zero:
assumes "poly p = poly []"
shows "degree p = 0"
using assms
by (cases "pnormalize p = []") (auto simp add: degree_def poly_zero lemma_degree_zero)
lemma (in semiring_0) pnormalize_sing: "pnormalize [x] = [x] \ x \ 0"
by simp
lemma (in semiring_0) pnormalize_pair: "y \ 0 \ pnormalize [x, y] = [x, y]"
by simp
lemma (in semiring_0) pnormal_cons: "pnormal p \ pnormal (c # p)"
unfolding pnormal_def by simp
lemma (in semiring_0) pnormal_tail: "p \ [] \ pnormal (c # p) \ pnormal p"
unfolding pnormal_def by (auto split: if_split_asm)
lemma (in semiring_0) pnormal_last_nonzero: "pnormal p \ last p \ 0"
by (induct p) (simp_all add: pnormal_def split: if_split_asm)
lemma (in semiring_0) pnormal_length: "pnormal p \ 0 < length p"
unfolding pnormal_def length_greater_0_conv by blast
lemma (in semiring_0) pnormal_last_length: "0 < length p \ last p \ 0 \ pnormal p"
by (induct p) (auto simp: pnormal_def split: if_split_asm)
lemma (in semiring_0) pnormal_id: "pnormal p \ 0 < length p \ last p \ 0"
using pnormal_last_length pnormal_length pnormal_last_nonzero by blast
lemma (in idom_char_0) poly_Cons_eq: "poly (c # cs) = poly (d # ds) \ c = d \ poly cs = poly ds"
(is "?lhs \ ?rhs")
proof
show ?rhs if ?lhs
proof -
from that have "poly ((c # cs) +++ -- (d # ds)) x = 0" for x
by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps)
then have "poly ((c # cs) +++ -- (d # ds)) = poly []"
by (simp add: fun_eq_iff)
then have "c = d" and "\x \ set (cs +++ -- ds). x = 0"
unfolding poly_zero by (simp_all add: poly_minus_def algebra_simps)
from this(2) have "poly (cs +++ -- ds) x = 0" for x
unfolding poly_zero[symmetric] by simp
with \<open>c = d\<close> show ?thesis
by (simp add: poly_minus poly_add algebra_simps fun_eq_iff)
qed
show ?lhs if ?rhs
using that by (simp add:fun_eq_iff)
qed
lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \ pnormalize p = pnormalize q"
proof (induct q arbitrary: p)
case Nil
then show ?case
by (simp only: poly_zero lemma_degree_zero) simp
next
case (Cons c cs p)
then show ?case
proof (induct p)
case Nil
then have "poly [] = poly (c # cs)"
by blast
then have "poly (c#cs) = poly []"
by simp
then show ?case
by (simp only: poly_zero lemma_degree_zero) simp
next
case (Cons d ds)
then have eq: "poly (d # ds) = poly (c # cs)"
by blast
then have eq': "\x. poly (d # ds) x = poly (c # cs) x"
by simp
then have "poly (d # ds) 0 = poly (c # cs) 0"
by blast
then have dc: "d = c"
by auto
with eq have "poly ds = poly cs"
unfolding poly_Cons_eq by simp
with Cons.prems have "pnormalize ds = pnormalize cs"
by blast
with dc show ?case
by simp
qed
qed
lemma (in idom_char_0) degree_unique:
assumes pq: "poly p = poly q"
shows "degree p = degree q"
using pnormalize_unique[OF pq] unfolding degree_def by simp
lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \ length p"
by (induct p) auto
lemma (in semiring_0) last_linear_mul_lemma:
"last ((a %* p) +++ (x # (b %* p))) = (if p = [] then x else b * last p)"
apply (induct p arbitrary: a x b)
apply auto
subgoal for a p c x b
apply (subgoal_tac "padd (cmult c p) (times b a # cmult b p) \ []")
apply simp
apply (induct p)
apply auto
done
done
lemma (in semiring_1) last_linear_mul:
assumes p: "p \ []"
shows "last ([a, 1] *** p) = last p"
proof -
from p obtain c cs where cs: "p = c # cs"
by (cases p) auto
from cs have eq: "[a, 1] *** p = (a %* (c # cs)) +++ (0 # (1 %* (c # cs)))"
by (simp add: poly_cmult_distr)
show ?thesis
using cs unfolding eq last_linear_mul_lemma by simp
qed
lemma (in semiring_0) pnormalize_eq: "last p \ 0 \ pnormalize p = p"
by (induct p) (auto split: if_split_asm)
lemma (in semiring_0) last_pnormalize: "pnormalize p \ [] \ last (pnormalize p) \ 0"
by (induct p) auto
lemma (in semiring_0) pnormal_degree: "last p \ 0 \ degree p = length p - 1"
using pnormalize_eq[of p] unfolding degree_def by simp
lemma (in semiring_0) poly_Nil_ext: "poly [] = (\x. 0)"
by auto
lemma (in idom_char_0) linear_mul_degree:
assumes p: "poly p \ poly []"
shows "degree ([a, 1] *** p) = degree p + 1"
proof -
from p have pnz: "pnormalize p \ []"
unfolding poly_zero lemma_degree_zero .
from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz]
have l0: "last ([a, 1] *** pnormalize p) \ 0" by simp
from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a]
pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz
have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1"
by simp
have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)"
by (rule ext) (simp add: poly_mult poly_add poly_cmult)
from degree_unique[OF eqs] th show ?thesis
by (simp add: degree_unique[OF poly_normalize])
qed
lemma (in idom_char_0) linear_pow_mul_degree:
"degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)"
proof (induct n arbitrary: a p)
case (0 a p)
show ?case
proof (cases "poly p = poly []")
case True
then show ?thesis
using degree_unique[OF True] by (simp add: degree_def)
next
case False
then show ?thesis
by (auto simp add: poly_Nil_ext)
qed
next
case (Suc n a p)
have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1] %^ n *** ([a, 1] *** p))"
apply (rule ext)
apply (simp add: poly_mult poly_add poly_cmult)
apply (simp add: ac_simps distrib_left)
done
note deq = degree_unique[OF eq]
show ?case
proof (cases "poly p = poly []")
case True
with eq have eq': "poly ([a, 1] %^(Suc n) *** p) = poly []"
by (auto simp add: poly_mult poly_cmult poly_add)
from degree_unique[OF eq'] True show ?thesis
by (simp add: degree_def)
next
case False
then have ap: "poly ([a,1] *** p) \ poly []"
using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto
have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1]%^n *** ([a, 1] *** p))"
by (auto simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps)
from ap have ap': "poly ([a, 1] *** p) = poly [] \ False"
by blast
have th0: "degree ([a, 1]%^n *** ([a, 1] *** p)) = degree ([a, 1] *** p) + n"
apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap')
apply simp
done
from degree_unique[OF eq] ap False th0 linear_mul_degree[OF False, of a]
show ?thesis
by (auto simp del: poly.simps)
qed
qed
lemma (in idom_char_0) order_degree:
assumes p0: "poly p \ poly []"
shows "order a p \ degree p"
proof -
from order2[OF p0, unfolded divides_def]
obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)"
by blast
with q p0 have "poly q \ poly []"
by (simp add: poly_mult poly_entire)
with degree_unique[OF q, unfolded linear_pow_mul_degree] show ?thesis
by auto
qed
text \<open>Tidier versions of finiteness of roots.\<close>
lemma (in idom_char_0) poly_roots_finite_set:
"poly p \ poly [] \ finite {x. poly p x = 0}"
unfolding poly_roots_finite .
text \<open>Bound for polynomial.\<close>
lemma poly_mono:
fixes x :: "'a::linordered_idom"
shows "\x\ \ k \ \poly p x\ \ poly (map abs p) k"
proof (induct p)
case Nil
then show ?case by simp
next
case (Cons a p)
then show ?case
apply auto
apply (rule_tac y = "\a\ + \x * poly p x\" in order_trans)
apply (rule abs_triangle_ineq)
apply (auto intro!: mult_mono simp add: abs_mult)
done
qed
lemma (in semiring_0) poly_Sing: "poly [c] x = c"
by simp
end
¤ Dauer der Verarbeitung: 0.17 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|