(* Title: HOL/Fun.thy
Author: Tobias Nipkow, Cambridge University Computer Laboratory
Author: Andrei Popescu, TU Muenchen
Copyright 1994, 2012
*)
section \<open>Notions about functions\<close>
theory Fun
imports Set
keywords "functor" :: thy_goal_defn
begin
lemma apply_inverse: "f x = u \ (\x. P x \ g (f x) = x) \ P x \ x = g u"
by auto
text \<open>Uniqueness, so NOT the axiom of choice.\<close>
lemma uniq_choice: "\x. \!y. Q x y \ \f. \x. Q x (f x)"
by (force intro: theI')
lemma b_uniq_choice: "\x\S. \!y. Q x y \ \f. \x\S. Q x (f x)"
by (force intro: theI')
subsection \<open>The Identity Function \<open>id\<close>\<close>
definition id :: "'a \ 'a"
where "id = (\x. x)"
lemma id_apply [simp]: "id x = x"
by (simp add: id_def)
lemma image_id [simp]: "image id = id"
by (simp add: id_def fun_eq_iff)
lemma vimage_id [simp]: "vimage id = id"
by (simp add: id_def fun_eq_iff)
lemma eq_id_iff: "(\x. f x = x) \ f = id"
by auto
code_printing
constant id \<rightharpoonup> (Haskell) "id"
subsection \<open>The Composition Operator \<open>f \<circ> g\<close>\<close>
definition comp :: "('b \ 'c) \ ('a \ 'b) \ 'a \ 'c" (infixl "\" 55)
where "f \ g = (\x. f (g x))"
notation (ASCII)
comp (infixl "o" 55)
lemma comp_apply [simp]: "(f \ g) x = f (g x)"
by (simp add: comp_def)
lemma comp_assoc: "(f \ g) \ h = f \ (g \ h)"
by (simp add: fun_eq_iff)
lemma id_comp [simp]: "id \ g = g"
by (simp add: fun_eq_iff)
lemma comp_id [simp]: "f \ id = f"
by (simp add: fun_eq_iff)
lemma comp_eq_dest: "a \ b = c \ d \ a (b v) = c (d v)"
by (simp add: fun_eq_iff)
lemma comp_eq_elim: "a \ b = c \ d \ ((\v. a (b v) = c (d v)) \ R) \ R"
by (simp add: fun_eq_iff)
lemma comp_eq_dest_lhs: "a \ b = c \ a (b v) = c v"
by clarsimp
lemma comp_eq_id_dest: "a \ b = id \ c \ a (b v) = c v"
by clarsimp
lemma image_comp: "f ` (g ` r) = (f \ g) ` r"
by auto
lemma vimage_comp: "f -` (g -` x) = (g \ f) -` x"
by auto
lemma image_eq_imp_comp: "f ` A = g ` B \ (h \ f) ` A = (h \ g) ` B"
by (auto simp: comp_def elim!: equalityE)
lemma image_bind: "f ` (Set.bind A g) = Set.bind A ((`) f \ g)"
by (auto simp add: Set.bind_def)
lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \ f)"
by (auto simp add: Set.bind_def)
lemma (in group_add) minus_comp_minus [simp]: "uminus \ uminus = id"
by (simp add: fun_eq_iff)
lemma (in boolean_algebra) minus_comp_minus [simp]: "uminus \ uminus = id"
by (simp add: fun_eq_iff)
code_printing
constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "."
subsection \<open>The Forward Composition Operator \<open>fcomp\<close>\<close>
definition fcomp :: "('a \ 'b) \ ('b \ 'c) \ 'a \ 'c" (infixl "\>" 60)
where "f \> g = (\x. g (f x))"
lemma fcomp_apply [simp]: "(f \> g) x = g (f x)"
by (simp add: fcomp_def)
lemma fcomp_assoc: "(f \> g) \> h = f \> (g \> h)"
by (simp add: fcomp_def)
lemma id_fcomp [simp]: "id \> g = g"
by (simp add: fcomp_def)
lemma fcomp_id [simp]: "f \> id = f"
by (simp add: fcomp_def)
lemma fcomp_comp: "fcomp f g = comp g f"
by (simp add: ext)
code_printing
constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>"
no_notation fcomp (infixl "\>" 60)
subsection \<open>Mapping functions\<close>
definition map_fun :: "('c \ 'a) \ ('b \ 'd) \ ('a \ 'b) \ 'c \ 'd"
where "map_fun f g h = g \ h \ f"
lemma map_fun_apply [simp]: "map_fun f g h x = g (h (f x))"
by (simp add: map_fun_def)
subsection \<open>Injectivity and Bijectivity\<close>
definition inj_on :: "('a \ 'b) \ 'a set \ bool" \ \injective\
where "inj_on f A \ (\x\A. \y\A. f x = f y \ x = y)"
definition bij_betw :: "('a \ 'b) \ 'a set \ 'b set \ bool" \ \bijective\
where "bij_betw f A B \ inj_on f A \ f ` A = B"
text \<open>
A common special case: functions injective, surjective or bijective over
the entire domain type.
\<close>
abbreviation inj :: "('a \ 'b) \ bool"
where "inj f \ inj_on f UNIV"
abbreviation surj :: "('a \ 'b) \ bool"
where "surj f \ range f = UNIV"
translations \<comment> \<open>The negated case:\<close>
"\ CONST surj f" \ "CONST range f \ CONST UNIV"
abbreviation bij :: "('a \ 'b) \ bool"
where "bij f \ bij_betw f UNIV UNIV"
lemma inj_def: "inj f \ (\x y. f x = f y \ x = y)"
unfolding inj_on_def by blast
lemma injI: "(\x y. f x = f y \ x = y) \ inj f"
unfolding inj_def by blast
theorem range_ex1_eq: "inj f \ b \ range f \ (\!x. b = f x)"
unfolding inj_def by blast
lemma injD: "inj f \ f x = f y \ x = y"
by (simp add: inj_def)
lemma inj_on_eq_iff: "inj_on f A \ x \ A \ y \ A \ f x = f y \ x = y"
by (auto simp: inj_on_def)
lemma inj_on_cong: "(\a. a \ A \ f a = g a) \ inj_on f A \ inj_on g A"
by (auto simp: inj_on_def)
lemma inj_on_strict_subset: "inj_on f B \ A \ B \ f ` A \ f ` B"
unfolding inj_on_def by blast
lemma inj_compose: "inj f \ inj g \ inj (f \ g)"
by (simp add: inj_def)
lemma inj_fun: "inj f \ inj (\x y. f x)"
by (simp add: inj_def fun_eq_iff)
lemma inj_eq: "inj f \ f x = f y \ x = y"
by (simp add: inj_on_eq_iff)
lemma inj_on_iff_Uniq: "inj_on f A \ (\x\A. \\<^sub>\\<^sub>1y. y\A \ f x = f y)"
by (auto simp: Uniq_def inj_on_def)
lemma inj_on_id[simp]: "inj_on id A"
by (simp add: inj_on_def)
lemma inj_on_id2[simp]: "inj_on (\x. x) A"
by (simp add: inj_on_def)
lemma inj_on_Int: "inj_on f A \ inj_on f B \ inj_on f (A \ B)"
unfolding inj_on_def by blast
lemma surj_id: "surj id"
by simp
lemma bij_id[simp]: "bij id"
by (simp add: bij_betw_def)
lemma bij_uminus: "bij (uminus :: 'a \ 'a::ab_group_add)"
unfolding bij_betw_def inj_on_def
by (force intro: minus_minus [symmetric])
lemma bij_betwE: "bij_betw f A B \ \a\A. f a \ B"
unfolding bij_betw_def by auto
lemma inj_onI [intro?]: "(\x y. x \ A \ y \ A \ f x = f y \ x = y) \ inj_on f A"
by (simp add: inj_on_def)
lemma inj_on_inverseI: "(\x. x \ A \ g (f x) = x) \ inj_on f A"
by (auto dest: arg_cong [of concl: g] simp add: inj_on_def)
lemma inj_onD: "inj_on f A \ f x = f y \ x \ A \ y \ A \ x = y"
unfolding inj_on_def by blast
lemma inj_on_subset:
assumes "inj_on f A"
and "B \ A"
shows "inj_on f B"
proof (rule inj_onI)
fix a b
assume "a \ B" and "b \ B"
with assms have "a \ A" and "b \ A"
by auto
moreover assume "f a = f b"
ultimately show "a = b"
using assms by (auto dest: inj_onD)
qed
lemma comp_inj_on: "inj_on f A \ inj_on g (f ` A) \ inj_on (g \ f) A"
by (simp add: comp_def inj_on_def)
lemma inj_on_imageI: "inj_on (g \ f) A \ inj_on g (f ` A)"
by (auto simp add: inj_on_def)
lemma inj_on_image_iff:
"\x\A. \y\A. g (f x) = g (f y) \ g x = g y \ inj_on f A \ inj_on g (f ` A) \ inj_on g A"
unfolding inj_on_def by blast
lemma inj_on_contraD: "inj_on f A \ x \ y \ x \ A \ y \ A \ f x \ f y"
unfolding inj_on_def by blast
lemma inj_singleton [simp]: "inj_on (\x. {x}) A"
by (simp add: inj_on_def)
lemma inj_on_empty[iff]: "inj_on f {}"
by (simp add: inj_on_def)
lemma subset_inj_on: "inj_on f B \ A \ B \ inj_on f A"
unfolding inj_on_def by blast
lemma inj_on_Un: "inj_on f (A \ B) \ inj_on f A \ inj_on f B \ f ` (A - B) \ f ` (B - A) = {}"
unfolding inj_on_def by (blast intro: sym)
lemma inj_on_insert [iff]: "inj_on f (insert a A) \ inj_on f A \ f a \ f ` (A - {a})"
unfolding inj_on_def by (blast intro: sym)
lemma inj_on_diff: "inj_on f A \ inj_on f (A - B)"
unfolding inj_on_def by blast
lemma comp_inj_on_iff: "inj_on f A \ inj_on f' (f ` A) \ inj_on (f' \ f) A"
by (auto simp: comp_inj_on inj_on_def)
lemma inj_on_imageI2: "inj_on (f' \ f) A \ inj_on f A"
by (auto simp: comp_inj_on inj_on_def)
lemma inj_img_insertE:
assumes "inj_on f A"
assumes "x \ B"
and "insert x B = f ` A"
obtains x' A' where "x' \ A'" and "A = insert x' A'" and "x = f x'" and "B = f ` A'"
proof -
from assms have "x \ f ` A" by auto
then obtain x' where *: "x' \<in> A" "x = f x'" by auto
then have A: "A = insert x' (A - {x'})" by auto
with assms * have B: "B = f ` (A - {x'})" by (auto dest: inj_on_contraD)
have "x' \ A - {x'}" by simp
from this A \<open>x = f x'\<close> B show ?thesis ..
qed
lemma linorder_inj_onI:
fixes A :: "'a::order set"
assumes ne: "\x y. \x < y; x\A; y\A\ \ f x \ f y" and lin: "\x y. \x\A; y\A\ \ x\y \ y\x"
shows "inj_on f A"
proof (rule inj_onI)
fix x y
assume eq: "f x = f y" and "x\A" "y\A"
then show "x = y"
using lin [of x y] ne by (force simp: dual_order.order_iff_strict)
qed
lemma linorder_injI:
assumes "\x y::'a::linorder. x < y \ f x \ f y"
shows "inj f"
\<comment> \<open>Courtesy of Stephan Merz\<close>
using assms by (auto intro: linorder_inj_onI linear)
lemma inj_on_image_Pow: "inj_on f A \inj_on (image f) (Pow A)"
unfolding Pow_def inj_on_def by blast
lemma bij_betw_image_Pow: "bij_betw f A B \ bij_betw (image f) (Pow A) (Pow B)"
by (auto simp add: bij_betw_def inj_on_image_Pow image_Pow_surj)
lemma surj_def: "surj f \ (\y. \x. y = f x)"
by auto
lemma surjI:
assumes "\x. g (f x) = x"
shows "surj g"
using assms [symmetric] by auto
lemma surjD: "surj f \ \x. y = f x"
by (simp add: surj_def)
lemma surjE: "surj f \ (\x. y = f x \ C) \ C"
by (simp add: surj_def) blast
lemma comp_surj: "surj f \ surj g \ surj (g \ f)"
using image_comp [of g f UNIV] by simp
lemma bij_betw_imageI: "inj_on f A \ f ` A = B \ bij_betw f A B"
unfolding bij_betw_def by clarify
lemma bij_betw_imp_surj_on: "bij_betw f A B \ f ` A = B"
unfolding bij_betw_def by clarify
lemma bij_betw_imp_surj: "bij_betw f A UNIV \ surj f"
unfolding bij_betw_def by auto
lemma bij_betw_empty1: "bij_betw f {} A \ A = {}"
unfolding bij_betw_def by blast
lemma bij_betw_empty2: "bij_betw f A {} \ A = {}"
unfolding bij_betw_def by blast
lemma inj_on_imp_bij_betw: "inj_on f A \ bij_betw f A (f ` A)"
unfolding bij_betw_def by simp
lemma bij_betw_apply: "\bij_betw f A B; a \ A\ \ f a \ B"
unfolding bij_betw_def by auto
lemma bij_def: "bij f \ inj f \ surj f"
by (rule bij_betw_def)
lemma bijI: "inj f \ surj f \ bij f"
by (rule bij_betw_imageI)
lemma bij_is_inj: "bij f \ inj f"
by (simp add: bij_def)
lemma bij_is_surj: "bij f \ surj f"
by (simp add: bij_def)
lemma bij_betw_imp_inj_on: "bij_betw f A B \ inj_on f A"
by (simp add: bij_betw_def)
lemma bij_betw_trans: "bij_betw f A B \ bij_betw g B C \ bij_betw (g \ f) A C"
by (auto simp add:bij_betw_def comp_inj_on)
lemma bij_comp: "bij f \ bij g \ bij (g \ f)"
by (rule bij_betw_trans)
lemma bij_betw_comp_iff: "bij_betw f A A' \ bij_betw f' A' A'' \ bij_betw (f' \ f) A A''"
by (auto simp add: bij_betw_def inj_on_def)
lemma bij_betw_comp_iff2:
assumes bij: "bij_betw f' A' A''"
and img: "f ` A \ A'"
shows "bij_betw f A A' \ bij_betw (f' \ f) A A''"
using assms
proof (auto simp add: bij_betw_comp_iff)
assume *: "bij_betw (f' \ f) A A''"
then show "bij_betw f A A'"
using img
proof (auto simp add: bij_betw_def)
assume "inj_on (f' \ f) A"
then show "inj_on f A"
using inj_on_imageI2 by blast
next
fix a'
assume **: "a' \ A'"
with bij have "f' a' \ A''"
unfolding bij_betw_def by auto
with * obtain a where 1: "a \ A \ f' (f a) = f' a'"
unfolding bij_betw_def by force
with img have "f a \ A'" by auto
with bij ** 1 have "f a = a'"
unfolding bij_betw_def inj_on_def by auto
with 1 show "a' \ f ` A" by auto
qed
qed
lemma bij_betw_inv:
assumes "bij_betw f A B"
shows "\g. bij_betw g B A"
proof -
have i: "inj_on f A" and s: "f ` A = B"
using assms by (auto simp: bij_betw_def)
let ?P = "\b a. a \ A \ f a = b"
let ?g = "\b. The (?P b)"
have g: "?g b = a" if P: "?P b a" for a b
proof -
from that s have ex1: "\a. ?P b a" by blast
then have uex1: "\!a. ?P b a" by (blast dest:inj_onD[OF i])
then show ?thesis
using the1_equality[OF uex1, OF P] P by simp
qed
have "inj_on ?g B"
proof (rule inj_onI)
fix x y
assume "x \ B" "y \ B" "?g x = ?g y"
from s \<open>x \<in> B\<close> obtain a1 where a1: "?P x a1" by blast
from s \<open>y \<in> B\<close> obtain a2 where a2: "?P y a2" by blast
from g [OF a1] a1 g [OF a2] a2 \<open>?g x = ?g y\<close> show "x = y" by simp
qed
moreover have "?g ` B = A"
proof (auto simp: image_def)
fix b
assume "b \ B"
with s obtain a where P: "?P b a" by blast
with g[OF P] show "?g b \ A" by auto
next
fix a
assume "a \ A"
with s obtain b where P: "?P b a" by blast
with s have "b \ B" by blast
with g[OF P] show "\b\B. a = ?g b" by blast
qed
ultimately show ?thesis
by (auto simp: bij_betw_def)
qed
lemma bij_betw_cong: "(\a. a \ A \ f a = g a) \ bij_betw f A A' = bij_betw g A A'"
unfolding bij_betw_def inj_on_def by safe force+ (* somewhat slow *)
lemma bij_betw_id[intro, simp]: "bij_betw id A A"
unfolding bij_betw_def id_def by auto
lemma bij_betw_id_iff: "bij_betw id A B \ A = B"
by (auto simp add: bij_betw_def)
lemma bij_betw_combine:
"bij_betw f A B \ bij_betw f C D \ B \ D = {} \ bij_betw f (A \ C) (B \ D)"
unfolding bij_betw_def inj_on_Un image_Un by auto
lemma bij_betw_subset: "bij_betw f A A' \ B \ A \ f ` B = B' \ bij_betw f B B'"
by (auto simp add: bij_betw_def inj_on_def)
lemma bij_pointE:
assumes "bij f"
obtains x where "y = f x" and "\x'. y = f x' \ x' = x"
proof -
from assms have "inj f" by (rule bij_is_inj)
moreover from assms have "surj f" by (rule bij_is_surj)
then have "y \ range f" by simp
ultimately have "\!x. y = f x" by (simp add: range_ex1_eq)
with that show thesis by blast
qed
lemma surj_image_vimage_eq: "surj f \ f ` (f -` A) = A"
by simp
lemma surj_vimage_empty:
assumes "surj f"
shows "f -` A = {} \ A = {}"
using surj_image_vimage_eq [OF \<open>surj f\<close>, of A]
by (intro iffI) fastforce+
lemma inj_vimage_image_eq: "inj f \ f -` (f ` A) = A"
unfolding inj_def by blast
lemma vimage_subsetD: "surj f \ f -` B \ A \ B \ f ` A"
by (blast intro: sym)
lemma vimage_subsetI: "inj f \ B \ f ` A \ f -` B \ A"
unfolding inj_def by blast
lemma vimage_subset_eq: "bij f \ f -` B \ A \ B \ f ` A"
unfolding bij_def by (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
lemma inj_on_image_eq_iff: "inj_on f C \ A \ C \ B \ C \ f ` A = f ` B \ A = B"
by (fastforce simp: inj_on_def)
lemma inj_on_Un_image_eq_iff: "inj_on f (A \ B) \ f ` A = f ` B \ A = B"
by (erule inj_on_image_eq_iff) simp_all
lemma inj_on_image_Int: "inj_on f C \ A \ C \ B \ C \ f ` (A \ B) = f ` A \ f ` B"
unfolding inj_on_def by blast
lemma inj_on_image_set_diff: "inj_on f C \ A - B \ C \ B \ C \ f ` (A - B) = f ` A - f ` B"
unfolding inj_on_def by blast
lemma image_Int: "inj f \ f ` (A \ B) = f ` A \ f ` B"
unfolding inj_def by blast
lemma image_set_diff: "inj f \ f ` (A - B) = f ` A - f ` B"
unfolding inj_def by blast
lemma inj_on_image_mem_iff: "inj_on f B \ a \ B \ A \ B \ f a \ f ` A \ a \ A"
by (auto simp: inj_on_def)
lemma inj_image_mem_iff: "inj f \ f a \ f ` A \ a \ A"
by (blast dest: injD)
lemma inj_image_subset_iff: "inj f \ f ` A \ f ` B \ A \ B"
by (blast dest: injD)
lemma inj_image_eq_iff: "inj f \ f ` A = f ` B \ A = B"
by (blast dest: injD)
lemma surj_Compl_image_subset: "surj f \ - (f ` A) \ f ` (- A)"
by auto
lemma inj_image_Compl_subset: "inj f \ f ` (- A) \ - (f ` A)"
by (auto simp: inj_def)
lemma bij_image_Compl_eq: "bij f \ f ` (- A) = - (f ` A)"
by (simp add: bij_def inj_image_Compl_subset surj_Compl_image_subset equalityI)
lemma inj_vimage_singleton: "inj f \ f -` {a} \ {THE x. f x = a}"
\<comment> \<open>The inverse image of a singleton under an injective function is included in a singleton.\<close>
by (simp add: inj_def) (blast intro: the_equality [symmetric])
lemma inj_on_vimage_singleton: "inj_on f A \ f -` {a} \ A \ {THE x. x \ A \ f x = a}"
by (auto simp add: inj_on_def intro: the_equality [symmetric])
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
by (auto intro!: inj_onI)
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \ inj_on f A"
by (auto intro!: inj_onI dest: strict_mono_eq)
lemma bij_betw_byWitness:
assumes left: "\a \ A. f' (f a) = a"
and right: "\a' \ A'. f (f' a') = a'"
and "f ` A \ A'"
and img2: "f' ` A' \ A"
shows "bij_betw f A A'"
using assms
unfolding bij_betw_def inj_on_def
proof safe
fix a b
assume "a \ A" "b \ A"
with left have "a = f' (f a) \ b = f' (f b)" by simp
moreover assume "f a = f b"
ultimately show "a = b" by simp
next
fix a' assume *: "a' \<in> A'"
with img2 have "f' a' \ A" by blast
moreover from * right have "a' = f (f' a')" by simp
ultimately show "a' \ f ` A" by blast
qed
corollary notIn_Un_bij_betw:
assumes "b \ A"
and "f b \ A'"
and "bij_betw f A A'"
shows "bij_betw f (A \ {b}) (A' \ {f b})"
proof -
have "bij_betw f {b} {f b}"
unfolding bij_betw_def inj_on_def by simp
with assms show ?thesis
using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast
qed
lemma notIn_Un_bij_betw3:
assumes "b \ A"
and "f b \ A'"
shows "bij_betw f A A' = bij_betw f (A \ {b}) (A' \ {f b})"
proof
assume "bij_betw f A A'"
then show "bij_betw f (A \ {b}) (A' \ {f b})"
using assms notIn_Un_bij_betw [of b A f A'] by blast
next
assume *: "bij_betw f (A \ {b}) (A' \ {f b})"
have "f ` A = A'"
proof auto
fix a
assume **: "a \ A"
then have "f a \ A' \ {f b}"
using * unfolding bij_betw_def by blast
moreover
have False if "f a = f b"
proof -
have "a = b"
using * ** that unfolding bij_betw_def inj_on_def by blast
with \<open>b \<notin> A\<close> ** show ?thesis by blast
qed
ultimately show "f a \ A'" by blast
next
fix a'
assume **: "a' \ A'"
then have "a' \ f ` (A \ {b})"
using * by (auto simp add: bij_betw_def)
then obtain a where 1: "a \ A \ {b} \ f a = a'" by blast
moreover
have False if "a = b" using 1 ** \<open>f b \<notin> A'\<close> that by blast
ultimately have "a \ A" by blast
with 1 show "a' \ f ` A" by blast
qed
then show "bij_betw f A A'"
using * bij_betw_subset[of f "A \ {b}" _ A] by blast
qed
lemma inj_on_disjoint_Un:
assumes "inj_on f A" and "inj_on g B"
and "f ` A \ g ` B = {}"
shows "inj_on (\x. if x \ A then f x else g x) (A \ B)"
using assms by (simp add: inj_on_def disjoint_iff) (blast)
lemma bij_betw_disjoint_Un:
assumes "bij_betw f A C" and "bij_betw g B D"
and "A \ B = {}"
and "C \ D = {}"
shows "bij_betw (\x. if x \ A then f x else g x) (A \ B) (C \ D)"
using assms by (auto simp: inj_on_disjoint_Un bij_betw_def)
subsubsection \<open>Important examples\<close>
context cancel_semigroup_add
begin
lemma inj_on_add [simp]:
"inj_on ((+) a) A"
by (rule inj_onI) simp
lemma inj_add_left:
\<open>inj ((+) a)\<close>
by simp
lemma inj_on_add' [simp]:
"inj_on (\b. b + a) A"
by (rule inj_onI) simp
lemma bij_betw_add [simp]:
"bij_betw ((+) a) A B \ (+) a ` A = B"
by (simp add: bij_betw_def)
end
context ab_group_add
begin
lemma surj_plus [simp]:
"surj ((+) a)"
by (auto intro!: range_eqI [of b "(+) a" "b - a" for b]) (simp add: algebra_simps)
lemma inj_diff_right [simp]:
\<open>inj (\<lambda>b. b - a)\<close>
proof -
have \<open>inj ((+) (- a))\<close>
by (fact inj_add_left)
also have \<open>(+) (- a) = (\<lambda>b. b - a)\<close>
by (simp add: fun_eq_iff)
finally show ?thesis .
qed
lemma surj_diff_right [simp]:
"surj (\x. x - a)"
using surj_plus [of "- a"] by (simp cong: image_cong_simp)
lemma translation_Compl:
"(+) a ` (- t) = - ((+) a ` t)"
proof (rule set_eqI)
fix b
show "b \ (+) a ` (- t) \ b \ - (+) a ` t"
by (auto simp: image_iff algebra_simps intro!: bexI [of _ "b - a"])
qed
lemma translation_subtract_Compl:
"(\x. x - a) ` (- t) = - ((\x. x - a) ` t)"
using translation_Compl [of "- a" t] by (simp cong: image_cong_simp)
lemma translation_diff:
"(+) a ` (s - t) = ((+) a ` s) - ((+) a ` t)"
by auto
lemma translation_subtract_diff:
"(\x. x - a) ` (s - t) = ((\x. x - a) ` s) - ((\x. x - a) ` t)"
using translation_diff [of "- a"] by (simp cong: image_cong_simp)
lemma translation_Int:
"(+) a ` (s \ t) = ((+) a ` s) \ ((+) a ` t)"
by auto
lemma translation_subtract_Int:
"(\x. x - a) ` (s \ t) = ((\x. x - a) ` s) \ ((\x. x - a) ` t)"
using translation_Int [of " -a"] by (simp cong: image_cong_simp)
end
subsection \<open>Function Updating\<close>
definition fun_upd :: "('a \ 'b) \ 'a \ 'b \ ('a \ 'b)"
where "fun_upd f a b = (\x. if x = a then b else f x)"
nonterminal updbinds and updbind
syntax
"_updbind" :: "'a \ 'a \ updbind" ("(2_ :=/ _)")
"" :: "updbind \ updbinds" ("_")
"_updbinds":: "updbind \ updbinds \ updbinds" ("_,/ _")
"_Update" :: "'a \ updbinds \ 'a" ("_/'((_)')" [1000, 0] 900)
translations
"_Update f (_updbinds b bs)" \<rightleftharpoons> "_Update (_Update f b) bs"
"f(x:=y)" \<rightleftharpoons> "CONST fun_upd f x y"
(* Hint: to define the sum of two functions (or maps), use case_sum.
A nice infix syntax could be defined by
notation
case_sum (infixr "'(+')"80)
*)
lemma fun_upd_idem_iff: "f(x:=y) = f \ f x = y"
unfolding fun_upd_def
apply safe
apply (erule subst)
apply (rule_tac [2] ext)
apply auto
done
lemma fun_upd_idem: "f x = y \ f(x := y) = f"
by (simp only: fun_upd_idem_iff)
lemma fun_upd_triv [iff]: "f(x := f x) = f"
by (simp only: fun_upd_idem)
lemma fun_upd_apply [simp]: "(f(x := y)) z = (if z = x then y else f z)"
by (simp add: fun_upd_def)
(* fun_upd_apply supersedes these two, but they are useful
if fun_upd_apply is intentionally removed from the simpset *)
lemma fun_upd_same: "(f(x := y)) x = y"
by simp
lemma fun_upd_other: "z \ x \ (f(x := y)) z = f z"
by simp
lemma fun_upd_upd [simp]: "f(x := y, x := z) = f(x := z)"
by (simp add: fun_eq_iff)
lemma fun_upd_twist: "a \ c \ (m(a := b))(c := d) = (m(c := d))(a := b)"
by auto
lemma inj_on_fun_updI: "inj_on f A \ y \ f ` A \ inj_on (f(x := y)) A"
by (auto simp: inj_on_def)
lemma fun_upd_image: "f(x := y) ` A = (if x \ A then insert y (f ` (A - {x})) else f ` A)"
by auto
lemma fun_upd_comp: "f \ (g(x := y)) = (f \ g)(x := f y)"
by auto
lemma fun_upd_eqD: "f(x := y) = g(x := z) \ y = z"
by (simp add: fun_eq_iff split: if_split_asm)
subsection \<open>\<open>override_on\<close>\<close>
definition override_on :: "('a \ 'b) \ ('a \ 'b) \ 'a set \ 'a \ 'b"
where "override_on f g A = (\a. if a \ A then g a else f a)"
lemma override_on_emptyset[simp]: "override_on f g {} = f"
by (simp add: override_on_def)
lemma override_on_apply_notin[simp]: "a \ A \ (override_on f g A) a = f a"
by (simp add: override_on_def)
lemma override_on_apply_in[simp]: "a \ A \ (override_on f g A) a = g a"
by (simp add: override_on_def)
lemma override_on_insert: "override_on f g (insert x X) = (override_on f g X)(x:=g x)"
by (simp add: override_on_def fun_eq_iff)
lemma override_on_insert': "override_on f g (insert x X) = (override_on (f(x:=g x)) g X)"
by (simp add: override_on_def fun_eq_iff)
subsection \<open>\<open>swap\<close>\<close>
definition swap :: "'a \ 'a \ ('a \ 'b) \ ('a \ 'b)"
where "swap a b f = f (a := f b, b:= f a)"
lemma swap_apply [simp]:
"swap a b f a = f b"
"swap a b f b = f a"
"c \ a \ c \ b \ swap a b f c = f c"
by (simp_all add: swap_def)
lemma swap_self [simp]: "swap a a f = f"
by (simp add: swap_def)
lemma swap_commute: "swap a b f = swap b a f"
by (simp add: fun_upd_def swap_def fun_eq_iff)
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
by (rule ext) (simp add: fun_upd_def swap_def)
lemma swap_comp_involutory [simp]: "swap a b \ swap a b = id"
by (rule ext) simp
lemma swap_triple:
assumes "a \ c" and "b \ c"
shows "swap a b (swap b c (swap a b f)) = swap a c f"
using assms by (simp add: fun_eq_iff swap_def)
lemma comp_swap: "f \ swap a b g = swap a b (f \ g)"
by (rule ext) (simp add: fun_upd_def swap_def)
lemma swap_image_eq [simp]:
assumes "a \ A" "b \ A"
shows "swap a b f ` A = f ` A"
proof -
have subset: "\f. swap a b f ` A \ f ` A"
using assms by (auto simp: image_iff swap_def)
then have "swap a b (swap a b f) ` A \ (swap a b f) ` A" .
with subset[of f] show ?thesis by auto
qed
lemma inj_on_imp_inj_on_swap: "inj_on f A \ a \ A \ b \ A \ inj_on (swap a b f) A"
by (auto simp add: inj_on_def swap_def)
lemma inj_on_swap_iff [simp]:
assumes A: "a \ A" "b \ A"
shows "inj_on (swap a b f) A \ inj_on f A"
proof
assume "inj_on (swap a b f) A"
with A have "inj_on (swap a b (swap a b f)) A"
by (iprover intro: inj_on_imp_inj_on_swap)
then show "inj_on f A" by simp
next
assume "inj_on f A"
with A show "inj_on (swap a b f) A"
by (iprover intro: inj_on_imp_inj_on_swap)
qed
lemma surj_imp_surj_swap: "surj f \ surj (swap a b f)"
by simp
lemma surj_swap_iff [simp]: "surj (swap a b f) \ surj f"
by simp
lemma bij_betw_swap_iff [simp]: "x \ A \ y \ A \ bij_betw (swap x y f) A B \ bij_betw f A B"
by (auto simp: bij_betw_def)
lemma bij_swap_iff [simp]: "bij (swap a b f) \ bij f"
by simp
hide_const (open) swap
subsection \<open>Inversion of injective functions\<close>
definition the_inv_into :: "'a set \ ('a \ 'b) \ ('b \ 'a)"
where "the_inv_into A f = (\x. THE y. y \ A \ f y = x)"
lemma the_inv_into_f_f: "inj_on f A \ x \ A \ the_inv_into A f (f x) = x"
unfolding the_inv_into_def inj_on_def by blast
lemma f_the_inv_into_f: "inj_on f A \ y \ f ` A \ f (the_inv_into A f y) = y"
unfolding the_inv_into_def
by (rule the1I2; blast dest: inj_onD)
lemma f_the_inv_into_f_bij_betw:
"bij_betw f A B \ (bij_betw f A B \ x \ B) \ f (the_inv_into A f x) = x"
unfolding bij_betw_def by (blast intro: f_the_inv_into_f)
lemma the_inv_into_into: "inj_on f A \ x \ f ` A \ A \ B \ the_inv_into A f x \ B"
unfolding the_inv_into_def
by (rule the1I2; blast dest: inj_onD)
lemma the_inv_into_onto [simp]: "inj_on f A \ the_inv_into A f ` (f ` A) = A"
by (fast intro: the_inv_into_into the_inv_into_f_f [symmetric])
lemma the_inv_into_f_eq: "inj_on f A \ f x = y \ x \ A \ the_inv_into A f y = x"
by (force simp add: the_inv_into_f_f)
lemma the_inv_into_comp:
"inj_on f (g ` A) \ inj_on g A \ x \ f ` g ` A \
the_inv_into A (f \<circ> g) x = (the_inv_into A g \<circ> the_inv_into (g ` A) f) x"
apply (rule the_inv_into_f_eq)
apply (fast intro: comp_inj_on)
apply (simp add: f_the_inv_into_f the_inv_into_into)
apply (simp add: the_inv_into_into)
done
lemma inj_on_the_inv_into: "inj_on f A \ inj_on (the_inv_into A f) (f ` A)"
by (auto intro: inj_onI simp: the_inv_into_f_f)
lemma bij_betw_the_inv_into: "bij_betw f A B \ bij_betw (the_inv_into A f) B A"
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
lemma bij_betw_iff_bijections:
"bij_betw f A B \ (\g. (\x \ A. f x \ B \ g(f x) = x) \ (\y \ B. g y \ A \ f(g y) = y))"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then show ?rhs
apply (rule_tac x="the_inv_into A f" in exI)
apply (auto simp: bij_betw_def f_the_inv_into_f the_inv_into_f_f the_inv_into_into)
done
qed (force intro: bij_betw_byWitness)
abbreviation the_inv :: "('a \ 'b) \ ('b \ 'a)"
where "the_inv f \ the_inv_into UNIV f"
lemma the_inv_f_f: "the_inv f (f x) = x" if "inj f"
using that UNIV_I by (rule the_inv_into_f_f)
subsection \<open>Cantor's Paradox\<close>
theorem Cantors_paradox: "\f. f ` A = Pow A"
proof
assume "\f. f ` A = Pow A"
then obtain f where f: "f ` A = Pow A" ..
let ?X = "{a \ A. a \ f a}"
have "?X \ Pow A" by blast
then have "?X \ f ` A" by (simp only: f)
then obtain x where "x \ A" and "f x = ?X" by blast
then show False by blast
qed
subsection \<open>Monotonic functions over a set\<close>
definition "mono_on f A \ \r s. r \ A \ s \ A \ r \ s \ f r \ f s"
lemma mono_onI:
"(\r s. r \ A \ s \ A \ r \ s \ f r \ f s) \ mono_on f A"
unfolding mono_on_def by simp
lemma mono_onD:
"\mono_on f A; r \ A; s \ A; r \ s\ \ f r \ f s"
unfolding mono_on_def by simp
lemma mono_imp_mono_on: "mono f \ mono_on f A"
unfolding mono_def mono_on_def by auto
lemma mono_on_subset: "mono_on f A \ B \ A \ mono_on f B"
unfolding mono_on_def by auto
definition "strict_mono_on f A \ \r s. r \ A \ s \ A \ r < s \ f r < f s"
lemma strict_mono_onI:
"(\r s. r \ A \ s \ A \ r < s \ f r < f s) \ strict_mono_on f A"
unfolding strict_mono_on_def by simp
lemma strict_mono_onD:
"\strict_mono_on f A; r \ A; s \ A; r < s\ \ f r < f s"
unfolding strict_mono_on_def by simp
lemma mono_on_greaterD:
assumes "mono_on g A" "x \ A" "y \ A" "g x > (g (y::_::linorder) :: _ :: linorder)"
shows "x > y"
proof (rule ccontr)
assume "\x > y"
hence "x \ y" by (simp add: not_less)
from assms(1-3) and this have "g x \ g y" by (rule mono_onD)
with assms(4) show False by simp
qed
lemma strict_mono_inv:
fixes f :: "('a::linorder) \ ('b::linorder)"
assumes "strict_mono f" and "surj f" and inv: "\x. g (f x) = x"
shows "strict_mono g"
proof
fix x y :: 'b assume "x < y"
from \<open>surj f\<close> obtain x' y' where [simp]: "x = f x'" "y = f y'" by blast
with \<open>x < y\<close> and \<open>strict_mono f\<close> have "x' < y'" by (simp add: strict_mono_less)
with inv show "g x < g y" by simp
qed
lemma strict_mono_on_imp_inj_on:
assumes "strict_mono_on (f :: (_ :: linorder) \ (_ :: preorder)) A"
shows "inj_on f A"
proof (rule inj_onI)
fix x y assume "x \ A" "y \ A" "f x = f y"
thus "x = y"
by (cases x y rule: linorder_cases)
(auto dest: strict_mono_onD[OF assms, of x y] strict_mono_onD[OF assms, of y x])
qed
lemma strict_mono_on_leD:
assumes "strict_mono_on (f :: (_ :: linorder) \ _ :: preorder) A" "x \ A" "y \ A" "x \ y"
shows "f x \ f y"
proof (insert le_less_linear[of y x], elim disjE)
assume "x < y"
with assms have "f x < f y" by (rule_tac strict_mono_onD[OF assms(1)]) simp_all
thus ?thesis by (rule less_imp_le)
qed (insert assms, simp)
lemma strict_mono_on_eqD:
fixes f :: "(_ :: linorder) \ (_ :: preorder)"
assumes "strict_mono_on f A" "f x = f y" "x \ A" "y \ A"
shows "y = x"
using assms by (rule_tac linorder_cases[of x y]) (auto dest: strict_mono_onD)
lemma strict_mono_on_imp_mono_on:
"strict_mono_on (f :: (_ :: linorder) \ _ :: preorder) A \ mono_on f A"
by (rule mono_onI, rule strict_mono_on_leD)
subsection \<open>Setup\<close>
subsubsection \<open>Proof tools\<close>
text \<open>Simplify terms of the form \<open>f(\<dots>,x:=y,\<dots>,x:=z,\<dots>)\<close> to \<open>f(\<dots>,x:=z,\<dots>)\<close>\<close>
simproc_setup fun_upd2 ("f(v := w, x := y)") = \<open>fn _ =>
let
fun gen_fun_upd NONE T _ _ = NONE
| gen_fun_upd (SOME f) T x y = SOME (Const (\<^const_name>\<open>fun_upd\<close>, T) $ f $ x $ y)
fun dest_fun_T1 (Type (_, T :: Ts)) = T
fun find_double (t as Const (\<^const_name>\<open>fun_upd\<close>,T) $ f $ x $ y) =
let
fun find (Const (\<^const_name>\<open>fun_upd\<close>,T) $ g $ v $ w) =
if v aconv x then SOME g else gen_fun_upd (find g) T v w
| find t = NONE
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
val ss = simpset_of \<^context>
fun proc ctxt ct =
let
val t = Thm.term_of ct
in
(case find_double t of
(T, NONE) => NONE
| (T, SOME rhs) =>
SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
(fn _ =>
resolve_tac ctxt [eq_reflection] 1 THEN
resolve_tac ctxt @{thms ext} 1 THEN
simp_tac (put_simpset ss ctxt) 1)))
end
in proc end
\<close>
subsubsection \<open>Functorial structure of types\<close>
ML_file \<open>Tools/functor.ML\<close>
functor map_fun: map_fun
by (simp_all add: fun_eq_iff)
functor vimage
by (simp_all add: fun_eq_iff vimage_comp)
text \<open>Legacy theorem names\<close>
lemmas o_def = comp_def
lemmas o_apply = comp_apply
lemmas o_assoc = comp_assoc [symmetric]
lemmas id_o = id_comp
lemmas o_id = comp_id
lemmas o_eq_dest = comp_eq_dest
lemmas o_eq_elim = comp_eq_elim
lemmas o_eq_dest_lhs = comp_eq_dest_lhs
lemmas o_eq_id_dest = comp_eq_id_dest
end
¤ Dauer der Verarbeitung: 0.38 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|