(* Title: HOL/HOLCF/Fix.thy
Author: Franz Regensburger
Author: Brian Huffman
*)
section \<open>Fixed point operator and admissibility\<close>
theory Fix
imports Cfun
begin
default_sort pcpo
subsection \<open>Iteration\<close>
primrec iterate :: "nat \ ('a::cpo \ 'a) \ ('a \ 'a)"
where
"iterate 0 = (\ F x. x)"
| "iterate (Suc n) = (\ F x. F\(iterate n\F\x))"
text \<open>Derive inductive properties of iterate from primitive recursion\<close>
lemma iterate_0 [simp]: "iterate 0\F\x = x"
by simp
lemma iterate_Suc [simp]: "iterate (Suc n)\F\x = F\(iterate n\F\x)"
by simp
declare iterate.simps [simp del]
lemma iterate_Suc2: "iterate (Suc n)\F\x = iterate n\F\(F\x)"
by (induct n) simp_all
lemma iterate_iterate: "iterate m\F\(iterate n\F\x) = iterate (m + n)\F\x"
by (induct m) simp_all
text \<open>The sequence of function iterations is a chain.\<close>
lemma chain_iterate [simp]: "chain (\i. iterate i\F\\)"
by (rule chainI, unfold iterate_Suc2, rule monofun_cfun_arg, rule minimal)
subsection \<open>Least fixed point operator\<close>
definition "fix" :: "('a \ 'a) \ 'a"
where "fix = (\ F. \i. iterate i\F\\)"
text \<open>Binder syntax for \<^term>\<open>fix\<close>\<close>
abbreviation fix_syn :: "('a \ 'a) \ 'a" (binder "\ " 10)
where "fix_syn (\x. f x) \ fix\(\ x. f x)"
notation (ASCII)
fix_syn (binder "FIX " 10)
text \<open>Properties of \<^term>\<open>fix\<close>\<close>
text \<open>direct connection between \<^term>\<open>fix\<close> and iteration\<close>
lemma fix_def2: "fix\F = (\i. iterate i\F\\)"
by (simp add: fix_def)
lemma iterate_below_fix: "iterate n\f\\ \ fix\f"
unfolding fix_def2
using chain_iterate by (rule is_ub_thelub)
text \<open>
Kleene's fixed point theorems for continuous functions in pointed
omega cpo's
\<close>
lemma fix_eq: "fix\F = F\(fix\F)"
apply (simp add: fix_def2)
apply (subst lub_range_shift [of _ 1, symmetric])
apply (rule chain_iterate)
apply (subst contlub_cfun_arg)
apply (rule chain_iterate)
apply simp
done
lemma fix_least_below: "F\x \ x \ fix\F \ x"
apply (simp add: fix_def2)
apply (rule lub_below)
apply (rule chain_iterate)
apply (induct_tac i)
apply simp
apply simp
apply (erule rev_below_trans)
apply (erule monofun_cfun_arg)
done
lemma fix_least: "F\x = x \ fix\F \ x"
by (rule fix_least_below) simp
lemma fix_eqI:
assumes fixed: "F\x = x"
and least: "\z. F\z = z \ x \ z"
shows "fix\F = x"
apply (rule below_antisym)
apply (rule fix_least [OF fixed])
apply (rule least [OF fix_eq [symmetric]])
done
lemma fix_eq2: "f \ fix\F \ f = F\f"
by (simp add: fix_eq [symmetric])
lemma fix_eq3: "f \ fix\F \ f\x = F\f\x"
by (erule fix_eq2 [THEN cfun_fun_cong])
lemma fix_eq4: "f = fix\F \ f = F\f"
by (erule ssubst) (rule fix_eq)
lemma fix_eq5: "f = fix\F \ f\x = F\f\x"
by (erule fix_eq4 [THEN cfun_fun_cong])
text \<open>strictness of \<^term>\<open>fix\<close>\<close>
lemma fix_bottom_iff: "fix\F = \ \ F\\ = \"
apply (rule iffI)
apply (erule subst)
apply (rule fix_eq [symmetric])
apply (erule fix_least [THEN bottomI])
done
lemma fix_strict: "F\\ = \ \ fix\F = \"
by (simp add: fix_bottom_iff)
lemma fix_defined: "F\\ \ \ \ fix\F \ \"
by (simp add: fix_bottom_iff)
text \<open>\<^term>\<open>fix\<close> applied to identity and constant functions\<close>
lemma fix_id: "(\ x. x) = \"
by (simp add: fix_strict)
lemma fix_const: "(\ x. c) = c"
by (subst fix_eq) simp
subsection \<open>Fixed point induction\<close>
lemma fix_ind: "adm P \ P \ \ (\x. P x \ P (F\x)) \ P (fix\F)"
unfolding fix_def2
apply (erule admD)
apply (rule chain_iterate)
apply (rule nat_induct, simp_all)
done
lemma cont_fix_ind: "cont F \ adm P \ P \ \ (\x. P x \ P (F x)) \ P (fix\(Abs_cfun F))"
by (simp add: fix_ind)
lemma def_fix_ind: "\f \ fix\F; adm P; P \; \x. P x \ P (F\x)\ \ P f"
by (simp add: fix_ind)
lemma fix_ind2:
assumes adm: "adm P"
assumes 0: "P \" and 1: "P (F\\)"
assumes step: "\x. \P x; P (F\x)\ \ P (F\(F\x))"
shows "P (fix\F)"
unfolding fix_def2
apply (rule admD [OF adm chain_iterate])
apply (rule nat_less_induct)
apply (case_tac n)
apply (simp add: 0)
apply (case_tac nat)
apply (simp add: 1)
apply (frule_tac x=nat in spec)
apply (simp add: step)
done
lemma parallel_fix_ind:
assumes adm: "adm (\x. P (fst x) (snd x))"
assumes base: "P \ \"
assumes step: "\x y. P x y \ P (F\x) (G\y)"
shows "P (fix\F) (fix\G)"
proof -
from adm have adm': "adm (case_prod P)"
unfolding split_def .
have "P (iterate i\F\\) (iterate i\G\\)" for i
by (induct i) (simp add: base, simp add: step)
then have "\i. case_prod P (iterate i\F\\, iterate i\G\\)"
by simp
then have "case_prod P (\i. (iterate i\F\\, iterate i\G\\))"
by - (rule admD [OF adm'], simp, assumption)
then have "case_prod P (\i. iterate i\F\\, \i. iterate i\G\\)"
by (simp add: lub_Pair)
then have "P (\i. iterate i\F\\) (\i. iterate i\G\\)"
by simp
then show "P (fix\F) (fix\G)"
by (simp add: fix_def2)
qed
lemma cont_parallel_fix_ind:
assumes "cont F" and "cont G"
assumes "adm (\x. P (fst x) (snd x))"
assumes "P \ \"
assumes "\x y. P x y \ P (F x) (G y)"
shows "P (fix\(Abs_cfun F)) (fix\(Abs_cfun G))"
by (rule parallel_fix_ind) (simp_all add: assms)
subsection \<open>Fixed-points on product types\<close>
text \<open>
Bekic's Theorem: Simultaneous fixed points over pairs
can be written in terms of separate fixed points.
\<close>
lemma fix_cprod:
"fix\(F::'a \ 'b \ 'a \ 'b) =
(\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))),
\<mu> y. snd (F\<cdot>(\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))), y)))"
(is "fix\F = (?x, ?y)")
proof (rule fix_eqI)
have *: "fst (F\(?x, ?y)) = ?x"
by (rule trans [symmetric, OF fix_eq], simp)
have "snd (F\(?x, ?y)) = ?y"
by (rule trans [symmetric, OF fix_eq], simp)
with * show "F\(?x, ?y) = (?x, ?y)"
by (simp add: prod_eq_iff)
next
fix z
assume F_z: "F\z = z"
obtain x y where z: "z = (x, y)" by (rule prod.exhaust)
from F_z z have F_x: "fst (F\(x, y)) = x" by simp
from F_z z have F_y: "snd (F\(x, y)) = y" by simp
let ?y1 = "\ y. snd (F\(x, y))"
have "?y1 \ y"
by (rule fix_least) (simp add: F_y)
then have "fst (F\(x, ?y1)) \ fst (F\(x, y))"
by (simp add: fst_monofun monofun_cfun)
with F_x have "fst (F\(x, ?y1)) \ x"
by simp
then have *: "?x \ x"
by (simp add: fix_least_below)
then have "snd (F\(?x, y)) \ snd (F\(x, y))"
by (simp add: snd_monofun monofun_cfun)
with F_y have "snd (F\(?x, y)) \ y"
by simp
then have "?y \ y"
by (simp add: fix_least_below)
with z * show "(?x, ?y) \ z"
by simp
qed
end
¤ Dauer der Verarbeitung: 0.4 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|