(* Title: HOL/Hilbert_Choice.thy
Author: Lawrence C Paulson, Tobias Nipkow
Author: Viorel Preoteasa (Results about complete distributive lattices)
Copyright 2001 University of Cambridge
*)
section \<open>Hilbert's Epsilon-Operator and the Axiom of Choice\<close>
theory Hilbert_Choice
imports Wellfounded
keywords "specification" :: thy_goal_defn
begin
subsection \<open>Hilbert's epsilon\<close>
axiomatization Eps :: "('a \ bool) \ 'a"
where someI: "P x \ P (Eps P)"
syntax (epsilon)
"_Eps" :: "pttrn \ bool \ 'a" ("(3\_./ _)" [0, 10] 10)
syntax (input)
"_Eps" :: "pttrn \ bool \ 'a" ("(3@ _./ _)" [0, 10] 10)
syntax
"_Eps" :: "pttrn \ bool \ 'a" ("(3SOME _./ _)" [0, 10] 10)
translations
"SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"
print_translation \<open>
[(\<^const_syntax>\<open>Eps\<close>, fn _ => fn [Abs abs] =>
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
in Syntax.const \<^syntax_const>\<open>_Eps\<close> $ x $ t end)]
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>
definition inv_into :: "'a set \ ('a \ 'b) \ ('b \ 'a)" where
"inv_into A f = (\x. SOME y. y \ A \ f y = x)"
lemma inv_into_def2: "inv_into A f x = (SOME y. y \ A \ f y = x)"
by(simp add: inv_into_def)
abbreviation inv :: "('a \ 'b) \ ('b \ 'a)" where
"inv \ inv_into UNIV"
subsection \<open>Hilbert's Epsilon-operator\<close>
lemma Eps_cong:
assumes "\x. P x = Q x"
shows "Eps P = Eps Q"
using ext[of P Q, OF assms] by simp
text \<open>
Easier to use than \<open>someI\<close> if the witness comes from an
existential formula.
\<close>
lemma someI_ex [elim?]: "\x. P x \ P (SOME x. P x)"
by (elim exE someI)
lemma some_eq_imp:
assumes "Eps P = a" "P b" shows "P a"
using assms someI_ex by force
text \<open>
Easier to use than \<open>someI\<close> because the conclusion has only one
occurrence of \<^term>\<open>P\<close>.
\<close>
lemma someI2: "P a \ (\x. P x \ Q x) \ Q (SOME x. P x)"
by (blast intro: someI)
text \<open>
Easier to use than \<open>someI2\<close> if the witness comes from an
existential formula.
\<close>
lemma someI2_ex: "\a. P a \ (\x. P x \ Q x) \ Q (SOME x. P x)"
by (blast intro: someI2)
lemma someI2_bex: "\a\A. P a \ (\x. x \ A \ P x \ Q x) \ Q (SOME x. x \ A \ P x)"
by (blast intro: someI2)
lemma some_equality [intro]: "P a \ (\x. P x \ x = a) \ (SOME x. P x) = a"
by (blast intro: someI2)
lemma some1_equality: "\!x. P x \ P a \ (SOME x. P x) = a"
by blast
lemma some_eq_ex: "P (SOME x. P x) \ (\x. P x)"
by (blast intro: someI)
lemma some_in_eq: "(SOME x. x \ A) \ A \ A \ {}"
unfolding ex_in_conv[symmetric] by (rule some_eq_ex)
lemma some_eq_trivial [simp]: "(SOME y. y = x) = x"
by (rule some_equality) (rule refl)
lemma some_sym_eq_trivial [simp]: "(SOME y. x = y) = x"
by (iprover intro: some_equality)
subsection \<open>Axiom of Choice, Proved Using the Description Operator\<close>
lemma choice: "\x. \y. Q x y \ \f. \x. Q x (f x)"
by (fast elim: someI)
lemma bchoice: "\x\S. \y. Q x y \ \f. \x\S. Q x (f x)"
by (fast elim: someI)
lemma choice_iff: "(\x. \y. Q x y) \ (\f. \x. Q x (f x))"
by (fast elim: someI)
lemma choice_iff': "(\x. P x \ (\y. Q x y)) \ (\f. \x. P x \ Q x (f x))"
by (fast elim: someI)
lemma bchoice_iff: "(\x\S. \y. Q x y) \ (\f. \x\S. Q x (f x))"
by (fast elim: someI)
lemma bchoice_iff': "(\x\S. P x \ (\y. Q x y)) \ (\f. \x\S. P x \ Q x (f x))"
by (fast elim: someI)
lemma dependent_nat_choice:
assumes 1: "\x. P 0 x"
and 2: "\x n. P n x \ \y. P (Suc n) y \ Q n x y"
shows "\f. \n. P n (f n) \ Q n (f n) (f (Suc n))"
proof (intro exI allI conjI)
fix n
define f where "f = rec_nat (SOME x. P 0 x) (\n x. SOME y. P (Suc n) y \ Q n x y)"
then have "P 0 (f 0)" "\n. P n (f n) \ P (Suc n) (f (Suc n)) \ Q n (f n) (f (Suc n))"
using someI_ex[OF 1] someI_ex[OF 2] by simp_all
then show "P n (f n)" "Q n (f n) (f (Suc n))"
by (induct n) auto
qed
lemma finite_subset_Union:
assumes "finite A" "A \ \\"
obtains \<F> where "finite \<F>" "\<F> \<subseteq> \<B>" "A \<subseteq> \<Union>\<F>"
proof -
have "\x\A. \B\\. x\B"
using assms by blast
then obtain f where f: "\x. x \ A \ f x \ \ \ x \ f x"
by (auto simp add: bchoice_iff Bex_def)
show thesis
proof
show "finite (f ` A)"
using assms by auto
qed (use f in auto)
qed
subsection \<open>Function Inverse\<close>
lemma inv_def: "inv f = (\y. SOME x. f x = y)"
by (simp add: inv_into_def)
lemma inv_into_into: "x \ f ` A \ inv_into A f x \ A"
by (simp add: inv_into_def) (fast intro: someI2)
lemma inv_identity [simp]: "inv (\a. a) = (\a. a)"
by (simp add: inv_def)
lemma inv_id [simp]: "inv id = id"
by (simp add: id_def)
lemma inv_into_f_f [simp]: "inj_on f A \ x \ A \ inv_into A f (f x) = x"
by (simp add: inv_into_def inj_on_def) (blast intro: someI2)
lemma inv_f_f: "inj f \ inv f (f x) = x"
by simp
lemma f_inv_into_f: "y \ f`A \ f (inv_into A f y) = y"
by (simp add: inv_into_def) (fast intro: someI2)
lemma inv_into_f_eq: "inj_on f A \ x \ A \ f x = y \ inv_into A f y = x"
by (erule subst) (fast intro: inv_into_f_f)
lemma inv_f_eq: "inj f \ f x = y \ inv f y = x"
by (simp add:inv_into_f_eq)
lemma inj_imp_inv_eq: "inj f \ \x. f (g x) = x \ inv f = g"
by (blast intro: inv_into_f_eq)
text \<open>But is it useful?\<close>
lemma inj_transfer:
assumes inj: "inj f"
and minor: "\y. y \ range f \ P (inv f y)"
shows "P x"
proof -
have "f x \ range f" by auto
then have "P(inv f (f x))" by (rule minor)
then show "P x" by (simp add: inv_into_f_f [OF inj])
qed
lemma inj_iff: "inj f \ inv f \ f = id"
by (simp add: o_def fun_eq_iff) (blast intro: inj_on_inverseI inv_into_f_f)
lemma inv_o_cancel[simp]: "inj f \ inv f \ f = id"
by (simp add: inj_iff)
lemma o_inv_o_cancel[simp]: "inj f \ g \ inv f \ f = g"
by (simp add: comp_assoc)
lemma inv_into_image_cancel[simp]: "inj_on f A \ S \ A \ inv_into A f ` f ` S = S"
by (fastforce simp: image_def)
lemma inj_imp_surj_inv: "inj f \ surj (inv f)"
by (blast intro!: surjI inv_into_f_f)
lemma surj_f_inv_f: "surj f \ f (inv f y) = y"
by (simp add: f_inv_into_f)
lemma bij_inv_eq_iff: "bij p \ x = inv p y \ p x = y"
using surj_f_inv_f[of p] by (auto simp add: bij_def)
lemma inv_into_injective:
assumes eq: "inv_into A f x = inv_into A f y"
and x: "x \ f`A"
and y: "y \ f`A"
shows "x = y"
proof -
from eq have "f (inv_into A f x) = f (inv_into A f y)"
by simp
with x y show ?thesis
by (simp add: f_inv_into_f)
qed
lemma inj_on_inv_into: "B \ f`A \ inj_on (inv_into A f) B"
by (blast intro: inj_onI dest: inv_into_injective injD)
lemma inj_imp_bij_betw_inv: "inj f \ bij_betw (inv f) (f ` M) M"
by (simp add: bij_betw_def image_subsetI inj_on_inv_into)
lemma bij_betw_inv_into: "bij_betw f A B \ bij_betw (inv_into A f) B A"
by (auto simp add: bij_betw_def inj_on_inv_into)
lemma surj_imp_inj_inv: "surj f \ inj (inv f)"
by (simp add: inj_on_inv_into)
lemma surj_iff: "surj f \ f \ inv f = id"
by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a])
lemma surj_iff_all: "surj f \ (\x. f (inv f x) = x)"
by (simp add: o_def surj_iff fun_eq_iff)
lemma surj_imp_inv_eq:
assumes "surj f" and gf: "\x. g (f x) = x"
shows "inv f = g"
proof (rule ext)
fix x
have "g (f (inv f x)) = inv f x"
by (rule gf)
then show "inv f x = g x"
by (simp add: surj_f_inv_f \<open>surj f\<close>)
qed
lemma bij_imp_bij_inv: "bij f \ bij (inv f)"
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
lemma inv_equality: "(\x. g (f x) = x) \ (\y. f (g y) = y) \ inv f = g"
by (rule ext) (auto simp add: inv_into_def)
lemma inv_inv_eq: "bij f \ inv (inv f) = f"
by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)
text \<open>
\<open>bij (inv f)\<close> implies little about \<open>f\<close>. Consider \<open>f :: bool \<Rightarrow> bool\<close> such
that \<open>f True = f False = True\<close>. Then it ia consistent with axiom \<open>someI\<close>
that \<open>inv f\<close> could be any function at all, including the identity function.
If \<open>inv f = id\<close> then \<open>inv f\<close> is a bijection, but \<open>inj f\<close>, \<open>surj f\<close> and \<open>inv
(inv f) = f\<close> all fail.
\<close>
lemma inv_into_comp:
"inj_on f (g ` A) \ inj_on g A \ x \ f ` g ` A \
inv_into A (f \<circ> g) x = (inv_into A g \<circ> inv_into (g ` A) f) x"
by (auto simp: f_inv_into_f inv_into_into intro: inv_into_f_eq comp_inj_on)
lemma o_inv_distrib: "bij f \ bij g \ inv (f \ g) = inv g \ inv f"
by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)
lemma image_f_inv_f: "surj f \ f ` (inv f ` A) = A"
by (simp add: surj_f_inv_f image_comp comp_def)
lemma image_inv_f_f: "inj f \ inv f ` (f ` A) = A"
by simp
lemma bij_image_Collect_eq:
assumes "bij f"
shows "f ` Collect P = {y. P (inv f y)}"
proof
show "f ` Collect P \ {y. P (inv f y)}"
using assms by (force simp add: bij_is_inj)
show "{y. P (inv f y)} \ f ` Collect P"
using assms by (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
qed
lemma bij_vimage_eq_inv_image:
assumes "bij f"
shows "f -` A = inv f ` A"
proof
show "f -` A \ inv f ` A"
using assms by (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
show "inv f ` A \ f -` A"
using assms by (auto simp add: bij_is_surj [THEN surj_f_inv_f])
qed
lemma inv_fn_o_fn_is_id:
fixes f::"'a \ 'a"
assumes "bij f"
shows "((inv f)^^n) o (f^^n) = (\x. x)"
proof -
have "((inv f)^^n)((f^^n) x) = x" for x n
proof (induction n)
case (Suc n)
have *: "(inv f) (f y) = y" for y
by (simp add: assms bij_is_inj)
have "(inv f ^^ Suc n) ((f ^^ Suc n) x) = (inv f^^n) (inv f (f ((f^^n) x)))"
by (simp add: funpow_swap1)
also have "... = (inv f^^n) ((f^^n) x)"
using * by auto
also have "... = x" using Suc.IH by auto
finally show ?case by simp
qed (auto)
then show ?thesis unfolding o_def by blast
qed
lemma fn_o_inv_fn_is_id:
fixes f::"'a \ 'a"
assumes "bij f"
shows "(f^^n) o ((inv f)^^n) = (\x. x)"
proof -
have "(f^^n) (((inv f)^^n) x) = x" for x n
proof (induction n)
case (Suc n)
have *: "f(inv f y) = y" for y
using bij_inv_eq_iff[OF assms] by auto
have "(f ^^ Suc n) ((inv f ^^ Suc n) x) = (f^^n) (f (inv f ((inv f^^n) x)))"
by (simp add: funpow_swap1)
also have "... = (f^^n) ((inv f^^n) x)"
using * by auto
also have "... = x" using Suc.IH by auto
finally show ?case by simp
qed (auto)
then show ?thesis unfolding o_def by blast
qed
lemma inv_fn:
fixes f::"'a \ 'a"
assumes "bij f"
shows "inv (f^^n) = ((inv f)^^n)"
proof -
have "inv (f^^n) x = ((inv f)^^n) x" for x
proof (rule inv_into_f_eq)
show "inj (f ^^ n)"
by (simp add: inj_fn[OF bij_is_inj [OF assms]])
show "(f ^^ n) ((inv f ^^ n) x) = x"
using fn_o_inv_fn_is_id[OF assms, THEN fun_cong] by force
qed auto
then show ?thesis by auto
qed
lemma mono_inv:
fixes f::"'a::linorder \ 'b::linorder"
assumes "mono f" "bij f"
shows "mono (inv f)"
proof
fix x y::'b assume "x \ y"
from \<open>bij f\<close> obtain a b where x: "x = f a" and y: "y = f b" by(fastforce simp: bij_def surj_def)
show "inv f x \ inv f y"
proof (rule le_cases)
assume "a \ b"
thus ?thesis using \<open>bij f\<close> x y by(simp add: bij_def inv_f_f)
next
assume "b \ a"
hence "f b \ f a" by(rule monoD[OF \mono f\])
hence "y \ x" using x y by simp
hence "x = y" using \<open>x \<le> y\<close> by auto
thus ?thesis by simp
qed
qed
lemma strict_mono_inv_on_range:
fixes f :: "'a::linorder \ 'b::order"
assumes "strict_mono f"
shows "strict_mono_on (inv f) (range f)"
proof (clarsimp simp: strict_mono_on_def)
fix x y
assume "f x < f y"
then show "inv f (f x) < inv f (f y)"
using assms strict_mono_imp_inj_on strict_mono_less by fastforce
qed
lemma mono_bij_Inf:
fixes f :: "'a::complete_linorder \ 'b::complete_linorder"
assumes "mono f" "bij f"
shows "f (Inf A) = Inf (f`A)"
proof -
have "surj f" using \<open>bij f\<close> by (auto simp: bij_betw_def)
have *: "(inv f) (Inf (f`A)) \ Inf ((inv f)`(f`A))"
using mono_Inf[OF mono_inv[OF assms], of "f`A"] by simp
have "Inf (f`A) \ f (Inf ((inv f)`(f`A)))"
using monoD[OF \<open>mono f\<close> *] by(simp add: surj_f_inv_f[OF \<open>surj f\<close>])
also have "... = f(Inf A)"
using assms by (simp add: bij_is_inj)
finally show ?thesis using mono_Inf[OF assms(1), of A] by auto
qed
lemma finite_fun_UNIVD1:
assumes fin: "finite (UNIV :: ('a \ 'b) set)"
and card: "card (UNIV :: 'b set) \ Suc 0"
shows "finite (UNIV :: 'a set)"
proof -
let ?UNIV_b = "UNIV :: 'b set"
from fin have "finite ?UNIV_b"
by (rule finite_fun_UNIVD2)
with card have "card ?UNIV_b \ Suc (Suc 0)"
by (cases "card ?UNIV_b") (auto simp: card_eq_0_iff)
then have "card ?UNIV_b = Suc (Suc (card ?UNIV_b - Suc (Suc 0)))"
by simp
then obtain b1 b2 :: 'b where b1b2: "b1 \ b2"
by (auto simp: card_Suc_eq)
from fin have fin': "finite (range (\f :: 'a \ 'b. inv f b1))"
by (rule finite_imageI)
have "UNIV = range (\f :: 'a \ 'b. inv f b1)"
proof (rule UNIV_eq_I)
fix x :: 'a
from b1b2 have "x = inv (\y. if y = x then b1 else b2) b1"
by (simp add: inv_into_def)
then show "x \ range (\f::'a \ 'b. inv f b1)"
by blast
qed
with fin' show ?thesis
by simp
qed
text \<open>
Every infinite set contains a countable subset. More precisely we
show that a set \<open>S\<close> is infinite if and only if there exists an
injective function from the naturals into \<open>S\<close>.
The ``only if'' direction is harder because it requires the
construction of a sequence of pairwise different elements of an
infinite set \<open>S\<close>. The idea is to construct a sequence of
non-empty and infinite subsets of \<open>S\<close> obtained by successively
removing elements of \<open>S\<close>.
\<close>
lemma infinite_countable_subset:
assumes inf: "\ finite S"
shows "\f::nat \ 'a. inj f \ range f \ S"
\<comment> \<open>Courtesy of Stephan Merz\<close>
proof -
define Sseq where "Sseq = rec_nat S (\n T. T - {SOME e. e \ T})"
define pick where "pick n = (SOME e. e \ Sseq n)" for n
have *: "Sseq n \ S" "\ finite (Sseq n)" for n
by (induct n) (auto simp: Sseq_def inf)
then have **: "\n. pick n \ Sseq n"
unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex)
with * have "range pick \ S" by auto
moreover have "pick n \ pick (n + Suc m)" for m n
proof -
have "pick n \ Sseq (n + Suc m)"
by (induct m) (auto simp add: Sseq_def pick_def)
with ** show ?thesis by auto
qed
then have "inj pick"
by (intro linorder_injI) (auto simp add: less_iff_Suc_add)
ultimately show ?thesis by blast
qed
lemma infinite_iff_countable_subset: "\ finite S \ (\f::nat \ 'a. inj f \ range f \ S)"
\<comment> \<open>Courtesy of Stephan Merz\<close>
using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto
lemma image_inv_into_cancel:
assumes surj: "f`A = A'"
and sub: "B' \ A'"
shows "f `((inv_into A f)`B') = B'"
using assms
proof (auto simp: f_inv_into_f)
let ?f' = "inv_into A f"
fix a'
assume *: "a' \ B'"
with sub have "a' \ A'" by auto
with surj have "a' = f (?f' a')"
by (auto simp: f_inv_into_f)
with * show "a' \ f ` (?f' ` B')" by blast
qed
lemma inv_into_inv_into_eq:
assumes "bij_betw f A A'"
and a: "a \ A"
shows "inv_into A' (inv_into A f) a = f a"
proof -
let ?f' = "inv_into A f"
let ?f'' = "inv_into A' ?f'"
from assms have *: "bij_betw ?f' A' A"
by (auto simp: bij_betw_inv_into)
with a obtain a' where a': "a' \ A'" "?f' a' = a"
unfolding bij_betw_def by force
with a * have "?f'' a = a'"
by (auto simp: f_inv_into_f bij_betw_def)
moreover from assms a' have "f a = a'"
by (auto simp: bij_betw_def)
ultimately show "?f'' a = f a" by simp
qed
lemma inj_on_iff_surj:
assumes "A \ {}"
shows "(\f. inj_on f A \ f ` A \ A') \ (\g. g ` A' = A)"
proof safe
fix f
assume inj: "inj_on f A" and incl: "f ` A \ A'"
let ?phi = "\a' a. a \ A \ f a = a'"
let ?csi = "\a. a \ A"
let ?g = "\a'. if a' \ f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)"
have "?g ` A' = A"
proof
show "?g ` A' \ A"
proof clarify
fix a'
assume *: "a' \ A'"
show "?g a' \ A"
proof (cases "a' \ f ` A")
case True
then obtain a where "?phi a' a" by blast
then have "?phi a' (SOME a. ?phi a' a)"
using someI[of "?phi a'" a] by blast
with True show ?thesis by auto
next
case False
with assms have "?csi (SOME a. ?csi a)"
using someI_ex[of ?csi] by blast
with False show ?thesis by auto
qed
qed
next
show "A \ ?g ` A'"
proof -
have "?g (f a) = a \ f a \ A'" if a: "a \ A" for a
proof -
let ?b = "SOME aa. ?phi (f a) aa"
from a have "?phi (f a) a" by auto
then have *: "?phi (f a) ?b"
using someI[of "?phi(f a)" a] by blast
then have "?g (f a) = ?b" using a by auto
moreover from inj * a have "a = ?b"
by (auto simp add: inj_on_def)
ultimately have "?g(f a) = a" by simp
with incl a show ?thesis by auto
qed
then show ?thesis by force
qed
qed
then show "\g. g ` A' = A" by blast
next
fix g
let ?f = "inv_into A' g"
have "inj_on ?f (g ` A')"
by (auto simp: inj_on_inv_into)
moreover have "?f (g a') \ A'" if a': "a' \ A'" for a'
proof -
let ?phi = "\ b'. b' \ A' \ g b' = g a'"
from a' have "?phi a'" by auto
then have "?phi (SOME b'. ?phi b')"
using someI[of ?phi] by blast
then show ?thesis by (auto simp: inv_into_def)
qed
ultimately show "\f. inj_on f (g ` A') \ f ` g ` A' \ A'"
by auto
qed
lemma Ex_inj_on_UNION_Sigma:
"\f. (inj_on f (\i \ I. A i) \ f ` (\i \ I. A i) \ (SIGMA i : I. A i))"
proof
let ?phi = "\a i. i \ I \ a \ A i"
let ?sm = "\a. SOME i. ?phi a i"
let ?f = "\a. (?sm a, a)"
have "inj_on ?f (\i \ I. A i)"
by (auto simp: inj_on_def)
moreover
have "?sm a \ I \ a \ A(?sm a)" if "i \ I" and "a \ A i" for i a
using that someI[of "?phi a" i] by auto
then have "?f ` (\i \ I. A i) \ (SIGMA i : I. A i)"
by auto
ultimately show "inj_on ?f (\i \ I. A i) \ ?f ` (\i \ I. A i) \ (SIGMA i : I. A i)"
by auto
qed
lemma inv_unique_comp:
assumes fg: "f \ g = id"
and gf: "g \ f = id"
shows "inv f = g"
using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff)
lemma subset_image_inj:
"S \ f ` T \ (\U. U \ T \ inj_on f U \ S = f ` U)"
proof safe
show "\U\T. inj_on f U \ S = f ` U"
if "S \ f ` T"
proof -
from that [unfolded subset_image_iff subset_iff]
obtain g where g: "\x. x \ S \ g x \ T \ x = f (g x)"
by (auto simp add: image_iff Bex_def choice_iff')
show ?thesis
proof (intro exI conjI)
show "g ` S \ T"
by (simp add: g image_subsetI)
show "inj_on f (g ` S)"
using g by (auto simp: inj_on_def)
show "S = f ` (g ` S)"
using g image_subset_iff by auto
qed
qed
qed blast
subsection \<open>Other Consequences of Hilbert's Epsilon\<close>
text \<open>Hilbert's Epsilon and the \<^term>\<open>split\<close> Operator\<close>
text \<open>Looping simprule!\<close>
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a, b). P (a, b))"
by simp
lemma Eps_case_prod: "Eps (case_prod P) = (SOME xy. P (fst xy) (snd xy))"
by (simp add: split_def)
lemma Eps_case_prod_eq [simp]: "(SOME (x', y'). x = x' \ y = y') = (x, y)"
by blast
text \<open>A relation is wellfounded iff it has no infinite descending chain.\<close>
lemma wf_iff_no_infinite_down_chain: "wf r \ (\f. \i. (f (Suc i), f i) \ r)"
(is "_ \ \ ?ex")
proof
assume "wf r"
show "\ ?ex"
proof
assume ?ex
then obtain f where f: "(f (Suc i), f i) \ r" for i
by blast
from \<open>wf r\<close> have minimal: "x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q" for x Q
by (auto simp: wf_eq_minimal)
let ?Q = "{w. \i. w = f i}"
fix n
have "f n \ ?Q" by blast
from minimal [OF this] obtain j where "(y, f j) \ r \ y \ ?Q" for y by blast
with this [OF \<open>(f (Suc j), f j) \<in> r\<close>] have "f (Suc j) \<notin> ?Q" by simp
then show False by blast
qed
next
assume "\ ?ex"
then show "wf r"
proof (rule contrapos_np)
assume "\ wf r"
then obtain Q x where x: "x \ Q" and rec: "z \ Q \ \y. (y, z) \ r \ y \ Q" for z
by (auto simp add: wf_eq_minimal)
obtain descend :: "nat \ 'a"
where descend_0: "descend 0 = x"
and descend_Suc: "descend (Suc n) = (SOME y. y \ Q \ (y, descend n) \ r)" for n
by (rule that [of "rec_nat x (\_ rec. (SOME y. y \ Q \ (y, rec) \ r))"]) simp_all
have descend_Q: "descend n \ Q" for n
proof (induct n)
case 0
with x show ?case by (simp only: descend_0)
next
case Suc
then show ?case by (simp only: descend_Suc) (rule someI2_ex; use rec in blast)
qed
have "(descend (Suc i), descend i) \ r" for i
by (simp only: descend_Suc) (rule someI2_ex; use descend_Q rec in blast)
then show "\f. \i. (f (Suc i), f i) \ r" by blast
qed
qed
lemma wf_no_infinite_down_chainE:
assumes "wf r"
obtains k where "(f (Suc k), f k) \ r"
using assms wf_iff_no_infinite_down_chain[of r] by blast
text \<open>A dynamically-scoped fact for TFL\<close>
lemma tfl_some: "\P x. P x \ P (Eps P)"
by (blast intro: someI)
subsection \<open>An aside: bounded accessible part\<close>
text \<open>Finite monotone eventually stable sequences\<close>
lemma finite_mono_remains_stable_implies_strict_prefix:
fixes f :: "nat \ 'a::order"
assumes S: "finite (range f)" "mono f"
and eq: "\n. f n = f (Suc n) \ f (Suc n) = f (Suc (Suc n))"
shows "\N. (\n\N. \m\N. m < n \ f m < f n) \ (\n\N. f N = f n)"
using assms
proof -
have "\n. f n = f (Suc n)"
proof (rule ccontr)
assume "\ ?thesis"
then have "\n. f n \ f (Suc n)" by auto
with \<open>mono f\<close> have "\<And>n. f n < f (Suc n)"
by (auto simp: le_less mono_iff_le_Suc)
with lift_Suc_mono_less_iff[of f] have *: "\n m. n < m \ f n < f m"
by auto
have "inj f"
proof (intro injI)
fix x y
assume "f x = f y"
then show "x = y"
by (cases x y rule: linorder_cases) (auto dest: *)
qed
with \<open>finite (range f)\<close> have "finite (UNIV::nat set)"
by (rule finite_imageD)
then show False by simp
qed
then obtain n where n: "f n = f (Suc n)" ..
define N where "N = (LEAST n. f n = f (Suc n))"
have N: "f N = f (Suc N)"
unfolding N_def using n by (rule LeastI)
show ?thesis
proof (intro exI[of _ N] conjI allI impI)
fix n
assume "N \ n"
then have "\m. N \ m \ m \ n \ f m = f N"
proof (induct rule: dec_induct)
case base
then show ?case by simp
next
case (step n)
then show ?case
using eq [rule_format, of "n - 1"] N
by (cases n) (auto simp add: le_Suc_eq)
qed
from this[of n] \<open>N \<le> n\<close> show "f N = f n" by auto
next
fix n m :: nat
assume "m < n" "n \ N"
then show "f m < f n"
proof (induct rule: less_Suc_induct)
case (1 i)
then have "i < N" by simp
then have "f i \ f (Suc i)"
unfolding N_def by (rule not_less_Least)
with \<open>mono f\<close> show ?case by (simp add: mono_iff_le_Suc less_le)
next
case 2
then show ?case by simp
qed
qed
qed
lemma finite_mono_strict_prefix_implies_finite_fixpoint:
fixes f :: "nat \ 'a set"
assumes S: "\i. f i \ S" "finite S"
and ex: "\N. (\n\N. \m\N. m < n \ f m \ f n) \ (\n\N. f N = f n)"
shows "f (card S) = (\n. f n)"
proof -
from ex obtain N where inj: "\n m. n \ N \ m \ N \ m < n \ f m \ f n"
and eq: "\n\N. f N = f n"
by atomize auto
have "i \ N \ i \ card (f i)" for i
proof (induct i)
case 0
then show ?case by simp
next
case (Suc i)
with inj [of "Suc i" i] have "(f i) \ (f (Suc i))" by auto
moreover have "finite (f (Suc i))" using S by (rule finite_subset)
ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono)
with Suc inj show ?case by auto
qed
then have "N \ card (f N)" by simp
also have "\ \ card S" using S by (intro card_mono)
finally have \<section>: "f (card S) = f N" using eq by auto
moreover have "\ (range f) \ f N"
proof clarify
fix x n
assume "x \ f n"
with eq inj [of N] show "x \ f N"
by (cases "n < N") (auto simp: not_less)
qed
ultimately show ?thesis
by auto
qed
subsection \<open>More on injections, bijections, and inverses\<close>
locale bijection =
fixes f :: "'a \ 'a"
assumes bij: "bij f"
begin
lemma bij_inv: "bij (inv f)"
using bij by (rule bij_imp_bij_inv)
lemma surj [simp]: "surj f"
using bij by (rule bij_is_surj)
lemma inj: "inj f"
using bij by (rule bij_is_inj)
lemma surj_inv [simp]: "surj (inv f)"
using inj by (rule inj_imp_surj_inv)
lemma inj_inv: "inj (inv f)"
using surj by (rule surj_imp_inj_inv)
lemma eqI: "f a = f b \ a = b"
using inj by (rule injD)
lemma eq_iff [simp]: "f a = f b \ a = b"
by (auto intro: eqI)
lemma eq_invI: "inv f a = inv f b \ a = b"
using inj_inv by (rule injD)
lemma eq_inv_iff [simp]: "inv f a = inv f b \ a = b"
by (auto intro: eq_invI)
lemma inv_left [simp]: "inv f (f a) = a"
using inj by (simp add: inv_f_eq)
lemma inv_comp_left [simp]: "inv f \ f = id"
by (simp add: fun_eq_iff)
lemma inv_right [simp]: "f (inv f a) = a"
using surj by (simp add: surj_f_inv_f)
lemma inv_comp_right [simp]: "f \ inv f = id"
by (simp add: fun_eq_iff)
lemma inv_left_eq_iff [simp]: "inv f a = b \ f b = a"
by auto
lemma inv_right_eq_iff [simp]: "b = inv f a \ f b = a"
by auto
end
lemma infinite_imp_bij_betw:
assumes infinite: "\ finite A"
shows "\h. bij_betw h A (A - {a})"
proof (cases "a \ A")
case False
then have "A - {a} = A" by blast
then show ?thesis
using bij_betw_id[of A] by auto
next
case True
with infinite have "\ finite (A - {a})" by auto
with infinite_iff_countable_subset[of "A - {a}"]
obtain f :: "nat \ 'a" where "inj f" and f: "f ` UNIV \ A - {a}" by blast
define g where "g n = (if n = 0 then a else f (Suc n))" for n
define A' where "A' = g ` UNIV"
have *: "\y. f y \ a" using f by blast
have 3: "inj_on g UNIV \ g ` UNIV \ A \ a \ g ` UNIV"
using \<open>inj f\<close> f * unfolding inj_on_def g_def
by (auto simp add: True image_subset_iff)
then have 4: "bij_betw g UNIV A' \ a \ A' \ A' \ A"
using inj_on_imp_bij_betw[of g] by (auto simp: A'_def)
then have 5: "bij_betw (inv g) A' UNIV"
by (auto simp add: bij_betw_inv_into)
from 3 obtain n where n: "g n = a" by auto
have 6: "bij_betw g (UNIV - {n}) (A' - {a})"
by (rule bij_betw_subset) (use 3 4 n in \<open>auto simp: image_set_diff A'_def\<close>)
define v where "v m = (if m < n then m else Suc m)" for m
have "m < n \ m = n" if "\k. k < n \ m \ Suc k" for m
using that [of "m-1"] by auto
then have 7: "bij_betw v UNIV (UNIV - {n})"
unfolding bij_betw_def inj_on_def v_def by auto
define h' where "h' = g \<circ> v \<circ> (inv g)"
with 5 6 7 have 8: "bij_betw h' A' (A' - {a})"
by (auto simp add: bij_betw_trans)
define h where "h b = (if b \ A' then h' b else b)" for b
with 8 have "bij_betw h A' (A' - {a})"
using bij_betw_cong[of A' h] by auto
moreover
have "\b \ A - A'. h b = b" by (auto simp: h_def)
then have "bij_betw h (A - A') (A - A')"
using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto
moreover
from 4 have "(A' \ (A - A') = {} \ A' \ (A - A') = A) \
((A' - {a}) \ (A - A') = {} \ (A' - {a}) \ (A - A') = A - {a})"
by blast
ultimately have "bij_betw h A (A - {a})"
using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
then show ?thesis by blast
qed
lemma infinite_imp_bij_betw2:
assumes "\ finite A"
shows "\h. bij_betw h A (A \ {a})"
proof (cases "a \ A")
case True
then have "A \ {a} = A" by blast
then show ?thesis using bij_betw_id[of A] by auto
next
case False
let ?A' = "A \ {a}"
from False have "A = ?A' - {a}" by blast
moreover from assms have "\ finite ?A'" by auto
ultimately obtain f where "bij_betw f ?A' A"
using infinite_imp_bij_betw[of ?A' a] by auto
then have "bij_betw (inv_into ?A' f) A ?A'" by (rule bij_betw_inv_into)
then show ?thesis by auto
qed
lemma bij_betw_inv_into_left: "bij_betw f A A' \ a \ A \ inv_into A f (f a) = a"
unfolding bij_betw_def by clarify (rule inv_into_f_f)
lemma bij_betw_inv_into_right: "bij_betw f A A' \ a' \ A' \ f (inv_into A f a') = a'"
unfolding bij_betw_def using f_inv_into_f by force
lemma bij_betw_inv_into_subset:
"bij_betw f A A' \ B \ A \ f ` B = B' \ bij_betw (inv_into A f) B' B"
by (auto simp: bij_betw_def intro: inj_on_inv_into)
subsection \<open>Specification package -- Hilbertized version\<close>
lemma exE_some: "Ex P \ c \ Eps P \ P c"
by (simp only: someI_ex)
ML_file \<open>Tools/choice_specification.ML\<close>
subsection \<open>Complete Distributive Lattices -- Properties depending on Hilbert Choice\<close>
context complete_distrib_lattice
begin
lemma Sup_Inf: "\ (Inf ` A) = \ (Sup ` {f ` A |f. \B\A. f B \ B})"
proof (rule antisym)
show "\ (Inf ` A) \ \ (Sup ` {f ` A |f. \B\A. f B \ B})"
using Inf_lower2 Sup_upper
by (fastforce simp add: intro: Sup_least INF_greatest)
next
show "\ (Sup ` {f ` A |f. \B\A. f B \ B}) \ \ (Inf ` A)"
proof (simp add: Inf_Sup, rule SUP_least, simp, safe)
fix f
assume "\Y. (\f. Y = f ` A \ (\Y\A. f Y \ Y)) \ f Y \ Y"
then have B: "\ F . (\ Y \ A . F Y \ Y) \ \ Z \ A . f (F ` A) = F Z"
by auto
show "\(f ` {f ` A |f. \Y\A. f Y \ Y}) \ \(Inf ` A)"
proof (cases "\ Z \ A . \(f ` {f ` A |f. \Y\A. f Y \ Y}) \ Inf Z")
case True
from this obtain Z where [simp]: "Z \ A" and A: "\(f ` {f ` A |f. \Y\A. f Y \ Y}) \ Inf Z"
by blast
have B: "... \ \(Inf ` A)"
by (simp add: SUP_upper)
from A and B show ?thesis
by simp
next
case False
then have X: "\ Z . Z \ A \ \ x . x \ Z \ \ \(f ` {f ` A |f. \Y\A. f Y \ Y}) \ x"
using Inf_greatest by blast
define F where "F = (\ Z . SOME x . x \ Z \ \ \(f ` {f ` A |f. \Y\A. f Y \ Y}) \ x)"
have C: "\Y. Y \ A \ F Y \ Y"
using X by (simp add: F_def, rule someI2_ex, auto)
have E: "\Y. Y \ A \ \ \(f ` {f ` A |f. \Y\A. f Y \ Y}) \ F Y"
using X by (simp add: F_def, rule someI2_ex, auto)
from C and B obtain Z where D: "Z \ A " and Y: "f (F ` A) = F Z"
by blast
from E and D have W: "\ \(f ` {f ` A |f. \Y\A. f Y \ Y}) \ F Z"
by simp
have "\(f ` {f ` A |f. \Y\A. f Y \ Y}) \ f (F ` A)"
using C by (blast intro: INF_lower)
with W Y show ?thesis
by simp
qed
qed
qed
lemma dual_complete_distrib_lattice:
"class.complete_distrib_lattice Sup Inf sup (\) (>) inf \ \"
by (simp add: class.complete_distrib_lattice.intro [OF dual_complete_lattice]
class.complete_distrib_lattice_axioms_def Sup_Inf)
lemma sup_Inf: "a \ \B = \((\) a ` B)"
proof (rule antisym)
show "a \ \B \ \((\) a ` B)"
using Inf_lower sup.mono by (fastforce intro: INF_greatest)
next
have "\((\) a ` B) \ \(Sup ` {{f {a}, f B} |f. f {a} = a \ f B \ B})"
by (rule INF_greatest, auto simp add: INF_lower)
also have "... = \(Inf ` {{a}, B})"
by (unfold Sup_Inf, simp)
finally show "\((\) a ` B) \ a \ \B"
by simp
qed
lemma inf_Sup: "a \ \B = \((\) a ` B)"
using dual_complete_distrib_lattice
by (rule complete_distrib_lattice.sup_Inf)
lemma INF_SUP: "(\y. \x. P x y) = (\f. \x. P (f x) x)"
proof (rule antisym)
show "(SUP x. INF y. P (x y) y) \ (INF y. SUP x. P x y)"
by (rule SUP_least, rule INF_greatest, rule SUP_upper2, simp_all, rule INF_lower2, simp, blast)
next
have "(INF y. SUP x. ((P x y))) \ Inf (Sup ` {{P x y | x . True} | y . True })" (is "?A \ ?B")
proof (rule INF_greatest, clarsimp)
fix y
have "?A \ (SUP x. P x y)"
by (rule INF_lower, simp)
also have "... \ Sup {uu. \x. uu = P x y}"
by (simp add: full_SetCompr_eq)
finally show "?A \ Sup {uu. \x. uu = P x y}"
by simp
qed
also have "... \ (SUP x. INF y. P (x y) y)"
proof (subst Inf_Sup, rule SUP_least, clarsimp)
fix f
assume A: "\Y. (\y. Y = {uu. \x. uu = P x y}) \ f Y \ Y"
have " \(f ` {uu. \y. uu = {uu. \x. uu = P x y}}) \
(\<Sqinter>y. P (SOME x. f {P x y |x. True} = P x y) y)"
proof (rule INF_greatest, clarsimp)
fix y
have "(INF x\{uu. \y. uu = {uu. \x. uu = P x y}}. f x) \ f {uu. \x. uu = P x y}"
by (rule INF_lower, blast)
also have "... \ P (SOME x. f {uu . \x. uu = P x y} = P x y) y"
by (rule someI2_ex) (use A in auto)
finally show "\(f ` {uu. \y. uu = {uu. \x. uu = P x y}}) \
P (SOME x. f {uu. \<exists>x. uu = P x y} = P x y) y"
by simp
qed
also have "... \ (SUP x. INF y. P (x y) y)"
by (rule SUP_upper, simp)
finally show "\(f ` {uu. \y. uu = {uu. \x. uu = P x y}}) \ (\x. \y. P (x y) y)"
by simp
qed
finally show "(INF y. SUP x. P x y) \ (SUP x. INF y. P (x y) y)"
by simp
qed
lemma INF_SUP_set: "(\B\A. \(g ` B)) = (\B\{f ` A |f. \C\A. f C \ C}. \(g ` B))"
(is "_ = (\B\?F. _)")
proof (rule antisym)
have "\ ((g \ f) ` A) \ \ (g ` B)" if "\B. B \ A \ f B \ B" "B \ A" for f B
using that by (auto intro: SUP_upper2 INF_lower2)
then show "(\x\?F. \a\x. g a) \ (\x\A. \a\x. g a)"
by (auto intro!: SUP_least INF_greatest simp add: image_comp)
next
show "(\x\A. \a\x. g a) \ (\x\?F. \a\x. g a)"
proof (cases "{} \ A")
case True
then show ?thesis
by (rule INF_lower2) simp_all
next
case False
{fix x
have "(\x\A. \x\x. g x) \ (\u. if x \ A then if u \ x then g u else \ else \)"
proof (cases "x \ A")
case True
then show ?thesis
by (intro INF_lower2 SUP_least SUP_upper2) auto
qed auto
}
then have "(\Y\A. \a\Y. g a) \ (\Y. \y. if Y \ A then if y \ Y then g y else \ else \)"
by (rule INF_greatest)
also have "... = (\x. \Y. if Y \ A then if x Y \ Y then g (x Y) else \ else \)"
by (simp only: INF_SUP)
also have "... \ (\x\?F. \a\x. g a)"
proof (rule SUP_least)
show "(\B. if B \ A then if x B \ B then g (x B) else \ else \)
\<le> (\<Squnion>x\<in>?F. \<Sqinter>x\<in>x. g x)" for x
proof -
define G where "G \ \Y. if x Y \ Y then x Y else (SOME x. x \Y)"
have "\Y\A. G Y \ Y"
using False some_in_eq G_def by auto
then have A: "G ` A \ ?F"
by blast
show "(\Y. if Y \ A then if x Y \ Y then g (x Y) else \ else \) \ (\x\?F. \x\x. g x)"
by (fastforce simp: G_def intro: SUP_upper2 [OF A] INF_greatest INF_lower2)
qed
qed
finally show ?thesis by simp
qed
qed
lemma SUP_INF: "(\y. \x. P x y) = (\x. \y. P (x y) y)"
using dual_complete_distrib_lattice
by (rule complete_distrib_lattice.INF_SUP)
lemma SUP_INF_set: "(\x\A. \ (g ` x)) = (\x\{f ` A |f. \Y\A. f Y \ Y}. \ (g ` x))"
using dual_complete_distrib_lattice
by (rule complete_distrib_lattice.INF_SUP_set)
end
(*properties of the former complete_distrib_lattice*)
context complete_distrib_lattice
begin
lemma sup_INF: "a \ (\b\B. f b) = (\b\B. a \ f b)"
by (simp add: sup_Inf image_comp)
lemma inf_SUP: "a \ (\b\B. f b) = (\b\B. a \ f b)"
by (simp add: inf_Sup image_comp)
lemma Inf_sup: "\B \ a = (\b\B. b \ a)"
by (simp add: sup_Inf sup_commute)
lemma Sup_inf: "\B \ a = (\b\B. b \ a)"
by (simp add: inf_Sup inf_commute)
lemma INF_sup: "(\b\B. f b) \ a = (\b\B. f b \ a)"
by (simp add: sup_INF sup_commute)
lemma SUP_inf: "(\b\B. f b) \ a = (\b\B. f b \ a)"
by (simp add: inf_SUP inf_commute)
lemma Inf_sup_eq_top_iff: "(\B \ a = \) \ (\b\B. b \ a = \)"
by (simp only: Inf_sup INF_top_conv)
lemma Sup_inf_eq_bot_iff: "(\B \ a = \) \ (\b\B. b \ a = \)"
by (simp only: Sup_inf SUP_bot_conv)
lemma INF_sup_distrib2: "(\a\A. f a) \ (\b\B. g b) = (\a\A. \b\B. f a \ g b)"
by (subst INF_commute) (simp add: sup_INF INF_sup)
lemma SUP_inf_distrib2: "(\a\A. f a) \ (\b\B. g b) = (\a\A. \b\B. f a \ g b)"
by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
end
context complete_boolean_algebra
begin
lemma dual_complete_boolean_algebra:
"class.complete_boolean_algebra Sup Inf sup (\) (>) inf \ \ (\x y. x \ - y) uminus"
by (rule class.complete_boolean_algebra.intro,
rule dual_complete_distrib_lattice,
rule dual_boolean_algebra)
end
instantiation set :: (type) complete_distrib_lattice
begin
instance proof (standard, clarsimp)
fix A :: "(('a set) set) set"
fix x::'a
assume A: "\\\A. \X\\. x \ X"
define F where "F \ \Y. SOME X. Y \ A \ X \ Y \ x \ X"
have "(\S \ F ` A. x \ S)"
using A unfolding F_def by (fastforce intro: someI2_ex)
moreover have "\Y\A. F Y \ Y"
using A unfolding F_def by (fastforce intro: someI2_ex)
then have "\f. F ` A = f ` A \ (\Y\A. f Y \ Y)"
by blast
ultimately show "\X. (\f. X = f ` A \ (\Y\A. f Y \ Y)) \ (\S\X. x \ S)"
by auto
qed
end
instance set :: (type) complete_boolean_algebra ..
instantiation "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice
begin
instance by standard (simp add: le_fun_def INF_SUP_set image_comp)
end
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
context complete_linorder
begin
subclass complete_distrib_lattice
proof (standard, rule ccontr)
fix A :: "'a set set"
let ?F = "{f ` A |f. \Y\A. f Y \ Y}"
assume "\ \(Sup ` A) \ \(Inf ` ?F)"
then have C: "\(Sup ` A) > \(Inf ` ?F)"
by (simp add: not_le)
show False
proof (cases "\ z . \(Sup ` A) > z \ z > \(Inf ` ?F)")
case True
then obtain z where A: "z < \(Sup ` A)" and X: "z > \(Inf ` ?F)"
by blast
then have B: "\Y. Y \ A \ \k \Y . z < k"
using local.less_Sup_iff by(force dest: less_INF_D)
define G where "G \ \Y. SOME k . k \ Y \ z < k"
have E: "\Y. Y \ A \ G Y \ Y"
using B unfolding G_def by (fastforce intro: someI2_ex)
have "z \ Inf (G ` A)"
proof (rule INF_greatest)
show "\Y. Y \ A \ z \ G Y"
using B unfolding G_def by (fastforce intro: someI2_ex)
qed
also have "... \ \(Inf ` ?F)"
by (rule SUP_upper) (use E in blast)
finally have "z \ \(Inf ` ?F)"
by simp
with X show ?thesis
using local.not_less by blast
next
case False
have B: "\Y. Y \ A \ \ k \Y . \(Inf ` ?F) < k"
using C local.less_Sup_iff by(force dest: less_INF_D)
define G where "G \ \ Y . SOME k . k \ Y \ \(Inf ` ?F) < k"
have E: "\Y. Y \ A \ G Y \ Y"
using B unfolding G_def by (fastforce intro: someI2_ex)
have "\Y. Y \ A \ \(Sup ` A) \ G Y"
using B False local.leI unfolding G_def by (fastforce intro: someI2_ex)
then have "\(Sup ` A) \ Inf (G ` A)"
by (simp add: local.INF_greatest)
also have "Inf (G ` A) \ \(Inf ` ?F)"
by (rule SUP_upper) (use E in blast)
finally have "\(Sup ` A) \ \(Inf ` ?F)"
by simp
with C show ?thesis
using not_less by blast
qed
qed
end
end
¤ Dauer der Verarbeitung: 0.44 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|