(* Title: HOL/Library/BigO.thy
Authors: Jeremy Avigad and Kevin Donnelly
*)
section \<open>Big O notation\<close>
theory BigO
imports
Complex_Main
Function_Algebras
Set_Algebras
begin
text \<open>
This library is designed to support asymptotic ``big O'' calculations,
i.e.~reasoning with expressions of the form \<open>f = O(g)\<close> and \<open>f = g + O(h)\<close>.
An earlier version of this library is described in detail in @{cite
"Avigad-Donnelly"}.
The main changes in this version are as follows:
\<^item> We have eliminated the \<open>O\<close> operator on sets. (Most uses of this seem
to be inessential.)
\<^item> We no longer use \<open>+\<close> as output syntax for \<open>+o\<close>
\<^item> Lemmas involving \<open>sumr\<close> have been replaced by more general lemmas
involving `\<open>sum\<close>.
\<^item> The library has been expanded, with e.g.~support for expressions of
the form \<open>f < g + O(h)\<close>.
Note also since the Big O library includes rules that demonstrate set
inclusion, to use the automated reasoners effectively with the library one
should redeclare the theorem \<open>subsetI\<close> as an intro rule, rather than as an
\<open>intro!\<close> rule, for example, using \<^theory_text>\<open>declare subsetI [del, intro]\<close>.
\<close>
subsection \<open>Definitions\<close>
definition bigo :: "('a \ 'b::linordered_idom) \ ('a \ 'b) set" ("(1O'(_'))")
where "O(f:: 'a \ 'b) = {h. \c. \x. \h x\ \ c * \f x\}"
lemma bigo_pos_const:
"(\c::'a::linordered_idom. \x. \h x\ \ c * \f x\) \
(\<exists>c. 0 < c \<and> (\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>))"
apply auto
apply (case_tac "c = 0")
apply simp
apply (rule_tac x = "1" in exI)
apply simp
apply (rule_tac x = "\c\" in exI)
apply auto
apply (subgoal_tac "c * \f x\ \ \c\ * \f x\")
apply (erule_tac x = x in allE)
apply force
apply (rule mult_right_mono)
apply (rule abs_ge_self)
apply (rule abs_ge_zero)
done
lemma bigo_alt_def: "O(f) = {h. \c. 0 < c \ (\x. \h x\ \ c * \f x\)}"
by (auto simp add: bigo_def bigo_pos_const)
lemma bigo_elt_subset [intro]: "f \ O(g) \ O(f) \ O(g)"
apply (auto simp add: bigo_alt_def)
apply (rule_tac x = "ca * c" in exI)
apply (rule conjI)
apply simp
apply (rule allI)
apply (drule_tac x = "xa" in spec)+
apply (subgoal_tac "ca * \f xa\ \ ca * (c * \g xa\)")
apply (erule order_trans)
apply (simp add: ac_simps)
apply (rule mult_left_mono, assumption)
apply (rule order_less_imp_le, assumption)
done
lemma bigo_refl [intro]: "f \ O(f)"
apply (auto simp add: bigo_def)
apply (rule_tac x = 1 in exI)
apply simp
done
lemma bigo_zero: "0 \ O(g)"
apply (auto simp add: bigo_def func_zero)
apply (rule_tac x = 0 in exI)
apply auto
done
lemma bigo_zero2: "O(\x. 0) = {\x. 0}"
by (auto simp add: bigo_def)
lemma bigo_plus_self_subset [intro]: "O(f) + O(f) \ O(f)"
apply (auto simp add: bigo_alt_def set_plus_def)
apply (rule_tac x = "c + ca" in exI)
apply auto
apply (simp add: ring_distribs func_plus)
apply (rule order_trans)
apply (rule abs_triangle_ineq)
apply (rule add_mono)
apply force
apply force
done
lemma bigo_plus_idemp [simp]: "O(f) + O(f) = O(f)"
apply (rule equalityI)
apply (rule bigo_plus_self_subset)
apply (rule set_zero_plus2)
apply (rule bigo_zero)
done
lemma bigo_plus_subset [intro]: "O(f + g) \ O(f) + O(g)"
apply (rule subsetI)
apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def)
apply (subst bigo_pos_const [symmetric])+
apply (rule_tac x = "\n. if \g n\ \ \f n\ then x n else 0" in exI)
apply (rule conjI)
apply (rule_tac x = "c + c" in exI)
apply (clarsimp)
apply (subgoal_tac "c * \f xa + g xa\ \ (c + c) * \f xa\")
apply (erule_tac x = xa in allE)
apply (erule order_trans)
apply (simp)
apply (subgoal_tac "c * \f xa + g xa\ \ c * (\f xa\ + \g xa\)")
apply (erule order_trans)
apply (simp add: ring_distribs)
apply (rule mult_left_mono)
apply (simp add: abs_triangle_ineq)
apply (simp add: order_less_le)
apply (rule_tac x = "\n. if \f n\ < \g n\ then x n else 0" in exI)
apply (rule conjI)
apply (rule_tac x = "c + c" in exI)
apply auto
apply (subgoal_tac "c * \f xa + g xa\ \ (c + c) * \g xa\")
apply (erule_tac x = xa in allE)
apply (erule order_trans)
apply simp
apply (subgoal_tac "c * \f xa + g xa\ \ c * (\f xa\ + \g xa\)")
apply (erule order_trans)
apply (simp add: ring_distribs)
apply (rule mult_left_mono)
apply (rule abs_triangle_ineq)
apply (simp add: order_less_le)
done
lemma bigo_plus_subset2 [intro]: "A \ O(f) \ B \ O(f) \ A + B \ O(f)"
apply (subgoal_tac "A + B \ O(f) + O(f)")
apply (erule order_trans)
apply simp
apply (auto del: subsetI simp del: bigo_plus_idemp)
done
lemma bigo_plus_eq: "\x. 0 \ f x \ \x. 0 \ g x \ O(f + g) = O(f) + O(g)"
apply (rule equalityI)
apply (rule bigo_plus_subset)
apply (simp add: bigo_alt_def set_plus_def func_plus)
apply clarify
apply (rule_tac x = "max c ca" in exI)
apply (rule conjI)
apply (subgoal_tac "c \ max c ca")
apply (erule order_less_le_trans)
apply assumption
apply (rule max.cobounded1)
apply clarify
apply (drule_tac x = "xa" in spec)+
apply (subgoal_tac "0 \ f xa + g xa")
apply (simp add: ring_distribs)
apply (subgoal_tac "\a xa + b xa\ \ \a xa\ + \b xa\")
apply (subgoal_tac "\a xa\ + \b xa\ \ max c ca * f xa + max c ca * g xa")
apply force
apply (rule add_mono)
apply (subgoal_tac "c * f xa \ max c ca * f xa")
apply force
apply (rule mult_right_mono)
apply (rule max.cobounded1)
apply assumption
apply (subgoal_tac "ca * g xa \ max c ca * g xa")
apply force
apply (rule mult_right_mono)
apply (rule max.cobounded2)
apply assumption
apply (rule abs_triangle_ineq)
apply (rule add_nonneg_nonneg)
apply assumption+
done
lemma bigo_bounded_alt: "\x. 0 \ f x \ \x. f x \ c * g x \ f \ O(g)"
apply (auto simp add: bigo_def)
apply (rule_tac x = "\c\" in exI)
apply auto
apply (drule_tac x = x in spec)+
apply (simp flip: abs_mult)
done
lemma bigo_bounded: "\x. 0 \ f x \ \x. f x \ g x \ f \ O(g)"
apply (erule bigo_bounded_alt [of f 1 g])
apply simp
done
lemma bigo_bounded2: "\x. lb x \ f x \ \x. f x \ lb x + g x \ f \ lb +o O(g)"
apply (rule set_minus_imp_plus)
apply (rule bigo_bounded)
apply (auto simp add: fun_Compl_def func_plus)
apply (drule_tac x = x in spec)+
apply force
done
lemma bigo_abs: "(\x. \f x\) =o O(f)"
apply (unfold bigo_def)
apply auto
apply (rule_tac x = 1 in exI)
apply auto
done
lemma bigo_abs2: "f =o O(\x. \f x\)"
apply (unfold bigo_def)
apply auto
apply (rule_tac x = 1 in exI)
apply auto
done
lemma bigo_abs3: "O(f) = O(\x. \f x\)"
apply (rule equalityI)
apply (rule bigo_elt_subset)
apply (rule bigo_abs2)
apply (rule bigo_elt_subset)
apply (rule bigo_abs)
done
lemma bigo_abs4: "f =o g +o O(h) \ (\x. \f x\) =o (\x. \g x\) +o O(h)"
apply (drule set_plus_imp_minus)
apply (rule set_minus_imp_plus)
apply (subst fun_diff_def)
proof -
assume *: "f - g \ O(h)"
have "(\x. \f x\ - \g x\) =o O(\x. \\f x\ - \g x\\)"
by (rule bigo_abs2)
also have "\ \ O(\x. \f x - g x\)"
apply (rule bigo_elt_subset)
apply (rule bigo_bounded)
apply force
apply (rule allI)
apply (rule abs_triangle_ineq3)
done
also have "\ \ O(f - g)"
apply (rule bigo_elt_subset)
apply (subst fun_diff_def)
apply (rule bigo_abs)
done
also from * have "\ \ O(h)"
by (rule bigo_elt_subset)
finally show "(\x. \f x\ - \g x\) \ O(h)".
qed
lemma bigo_abs5: "f =o O(g) \ (\x. \f x\) =o O(g)"
by (auto simp: bigo_def)
lemma bigo_elt_subset2 [intro]:
assumes *: "f \ g +o O(h)"
shows "O(f) \ O(g) + O(h)"
proof -
note *
also have "g +o O(h) \ O(g) + O(h)"
by (auto del: subsetI)
also have "\ = O(\x. \g x\) + O(\x. \h x\)"
by (subst bigo_abs3 [symmetric])+ (rule refl)
also have "\ = O((\x. \g x\) + (\x. \h x\))"
by (rule bigo_plus_eq [symmetric]) auto
finally have "f \ \" .
then have "O(f) \ \"
by (elim bigo_elt_subset)
also have "\ = O(\x. \g x\) + O(\x. \h x\)"
by (rule bigo_plus_eq, auto)
finally show ?thesis
by (simp flip: bigo_abs3)
qed
lemma bigo_mult [intro]: "O(f)*O(g) \ O(f * g)"
apply (rule subsetI)
apply (subst bigo_def)
apply (auto simp add: bigo_alt_def set_times_def func_times)
apply (rule_tac x = "c * ca" in exI)
apply (rule allI)
apply (erule_tac x = x in allE)+
apply (subgoal_tac "c * ca * \f x * g x\ = (c * \f x\) * (ca * \g x\)")
apply (erule ssubst)
apply (subst abs_mult)
apply (rule mult_mono)
apply assumption+
apply auto
apply (simp add: ac_simps abs_mult)
done
lemma bigo_mult2 [intro]: "f *o O(g) \ O(f * g)"
apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult)
apply (rule_tac x = c in exI)
apply auto
apply (drule_tac x = x in spec)
apply (subgoal_tac "\f x\ * \b x\ \ \f x\ * (c * \g x\)")
apply (force simp add: ac_simps)
apply (rule mult_left_mono, assumption)
apply (rule abs_ge_zero)
done
lemma bigo_mult3: "f \ O(h) \ g \ O(j) \ f * g \ O(h * j)"
apply (rule subsetD)
apply (rule bigo_mult)
apply (erule set_times_intro, assumption)
done
lemma bigo_mult4 [intro]: "f \ k +o O(h) \ g * f \ (g * k) +o O(g * h)"
apply (drule set_plus_imp_minus)
apply (rule set_minus_imp_plus)
apply (drule bigo_mult3 [where g = g and j = g])
apply (auto simp add: algebra_simps)
done
lemma bigo_mult5:
fixes f :: "'a \ 'b::linordered_field"
assumes "\x. f x \ 0"
shows "O(f * g) \ f *o O(g)"
proof
fix h
assume "h \ O(f * g)"
then have "(\x. 1 / (f x)) * h \ (\x. 1 / f x) *o O(f * g)"
by auto
also have "\ \ O((\x. 1 / f x) * (f * g))"
by (rule bigo_mult2)
also have "(\x. 1 / f x) * (f * g) = g"
apply (simp add: func_times)
apply (rule ext)
apply (simp add: assms nonzero_divide_eq_eq ac_simps)
done
finally have "(\x. (1::'b) / f x) * h \ O(g)" .
then have "f * ((\x. (1::'b) / f x) * h) \ f *o O(g)"
by auto
also have "f * ((\x. (1::'b) / f x) * h) = h"
apply (simp add: func_times)
apply (rule ext)
apply (simp add: assms nonzero_divide_eq_eq ac_simps)
done
finally show "h \ f *o O(g)" .
qed
lemma bigo_mult6: "\x. f x \ 0 \ O(f * g) = f *o O(g)"
for f :: "'a \ 'b::linordered_field"
apply (rule equalityI)
apply (erule bigo_mult5)
apply (rule bigo_mult2)
done
lemma bigo_mult7: "\x. f x \ 0 \ O(f * g) \ O(f) * O(g)"
for f :: "'a \ 'b::linordered_field"
apply (subst bigo_mult6)
apply assumption
apply (rule set_times_mono3)
apply (rule bigo_refl)
done
lemma bigo_mult8: "\x. f x \ 0 \ O(f * g) = O(f) * O(g)"
for f :: "'a \ 'b::linordered_field"
apply (rule equalityI)
apply (erule bigo_mult7)
apply (rule bigo_mult)
done
lemma bigo_minus [intro]: "f \ O(g) \ - f \ O(g)"
by (auto simp add: bigo_def fun_Compl_def)
lemma bigo_minus2: "f \ g +o O(h) \ - f \ -g +o O(h)"
apply (rule set_minus_imp_plus)
apply (drule set_plus_imp_minus)
apply (drule bigo_minus)
apply simp
done
lemma bigo_minus3: "O(- f) = O(f)"
by (auto simp add: bigo_def fun_Compl_def)
lemma bigo_plus_absorb_lemma1:
assumes *: "f \ O(g)"
shows "f +o O(g) \ O(g)"
proof -
have "f \ O(f)" by auto
then have "f +o O(g) \ O(f) + O(g)"
by (auto del: subsetI)
also have "\ \ O(g) + O(g)"
proof -
from * have "O(f) \ O(g)"
by (auto del: subsetI)
then show ?thesis
by (auto del: subsetI)
qed
also have "\ \ O(g)" by simp
finally show ?thesis .
qed
lemma bigo_plus_absorb_lemma2:
assumes *: "f \ O(g)"
shows "O(g) \ f +o O(g)"
proof -
from * have "- f \ O(g)"
by auto
then have "- f +o O(g) \ O(g)"
by (elim bigo_plus_absorb_lemma1)
then have "f +o (- f +o O(g)) \ f +o O(g)"
by auto
also have "f +o (- f +o O(g)) = O(g)"
by (simp add: set_plus_rearranges)
finally show ?thesis .
qed
lemma bigo_plus_absorb [simp]: "f \ O(g) \ f +o O(g) = O(g)"
apply (rule equalityI)
apply (erule bigo_plus_absorb_lemma1)
apply (erule bigo_plus_absorb_lemma2)
done
lemma bigo_plus_absorb2 [intro]: "f \ O(g) \ A \ O(g) \ f +o A \ O(g)"
apply (subgoal_tac "f +o A \ f +o O(g)")
apply force+
done
lemma bigo_add_commute_imp: "f \ g +o O(h) \ g \ f +o O(h)"
apply (subst set_minus_plus [symmetric])
apply (subgoal_tac "g - f = - (f - g)")
apply (erule ssubst)
apply (rule bigo_minus)
apply (subst set_minus_plus)
apply assumption
apply (simp add: ac_simps)
done
lemma bigo_add_commute: "f \ g +o O(h) \ g \ f +o O(h)"
apply (rule iffI)
apply (erule bigo_add_commute_imp)+
done
lemma bigo_const1: "(\x. c) \ O(\x. 1)"
by (auto simp add: bigo_def ac_simps)
lemma bigo_const2 [intro]: "O(\x. c) \ O(\x. 1)"
apply (rule bigo_elt_subset)
apply (rule bigo_const1)
done
lemma bigo_const3: "c \ 0 \ (\x. 1) \ O(\x. c)"
for c :: "'a::linordered_field"
apply (simp add: bigo_def)
apply (rule_tac x = "\inverse c\" in exI)
apply (simp flip: abs_mult)
done
lemma bigo_const4: "c \ 0 \ O(\x. 1) \ O(\x. c)"
for c :: "'a::linordered_field"
apply (rule bigo_elt_subset)
apply (rule bigo_const3)
apply assumption
done
lemma bigo_const [simp]: "c \ 0 \ O(\x. c) = O(\x. 1)"
for c :: "'a::linordered_field"
apply (rule equalityI)
apply (rule bigo_const2)
apply (rule bigo_const4)
apply assumption
done
lemma bigo_const_mult1: "(\x. c * f x) \ O(f)"
apply (simp add: bigo_def)
apply (rule_tac x = "\c\" in exI)
apply (auto simp flip: abs_mult)
done
lemma bigo_const_mult2: "O(\x. c * f x) \ O(f)"
apply (rule bigo_elt_subset)
apply (rule bigo_const_mult1)
done
lemma bigo_const_mult3: "c \ 0 \ f \ O(\x. c * f x)"
for c :: "'a::linordered_field"
apply (simp add: bigo_def)
apply (rule_tac x = "\inverse c\" in exI)
apply (simp add: abs_mult mult.assoc [symmetric])
done
lemma bigo_const_mult4: "c \ 0 \ O(f) \ O(\x. c * f x)"
for c :: "'a::linordered_field"
apply (rule bigo_elt_subset)
apply (rule bigo_const_mult3)
apply assumption
done
lemma bigo_const_mult [simp]: "c \ 0 \ O(\x. c * f x) = O(f)"
for c :: "'a::linordered_field"
apply (rule equalityI)
apply (rule bigo_const_mult2)
apply (erule bigo_const_mult4)
done
lemma bigo_const_mult5 [simp]: "c \ 0 \ (\x. c) *o O(f) = O(f)"
for c :: "'a::linordered_field"
apply (auto del: subsetI)
apply (rule order_trans)
apply (rule bigo_mult2)
apply (simp add: func_times)
apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
apply (rule_tac x = "\y. inverse c * x y" in exI)
apply (simp add: mult.assoc [symmetric] abs_mult)
apply (rule_tac x = "\inverse c\ * ca" in exI)
apply auto
done
lemma bigo_const_mult6 [intro]: "(\x. c) *o O(f) \ O(f)"
apply (auto intro!: simp add: bigo_def elt_set_times_def func_times)
apply (rule_tac x = "ca * \c\" in exI)
apply (rule allI)
apply (subgoal_tac "ca * \c\ * \f x\ = \c\ * (ca * \f x\)")
apply (erule ssubst)
apply (subst abs_mult)
apply (rule mult_left_mono)
apply (erule spec)
apply simp
apply (simp add: ac_simps)
done
lemma bigo_const_mult7 [intro]:
assumes *: "f =o O(g)"
shows "(\x. c * f x) =o O(g)"
proof -
from * have "(\x. c) * f =o (\x. c) *o O(g)"
by auto
also have "(\x. c) * f = (\x. c * f x)"
by (simp add: func_times)
also have "(\x. c) *o O(g) \ O(g)"
by (auto del: subsetI)
finally show ?thesis .
qed
lemma bigo_compose1: "f =o O(g) \ (\x. f (k x)) =o O(\x. g (k x))"
by (auto simp: bigo_def)
lemma bigo_compose2: "f =o g +o O(h) \ (\x. f (k x)) =o (\x. g (k x)) +o O(\x. h(k x))"
apply (simp only: set_minus_plus [symmetric] fun_Compl_def func_plus)
apply (drule bigo_compose1)
apply (simp add: fun_diff_def)
done
subsection \<open>Sum\<close>
lemma bigo_sum_main: "\x. \y \ A x. 0 \ h x y \
\<exists>c. \<forall>x. \<forall>y \<in> A x. \<bar>f x y\<bar> \<le> c * h x y \<Longrightarrow>
(\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
apply (auto simp add: bigo_def)
apply (rule_tac x = "\c\" in exI)
apply (subst abs_of_nonneg) back back
apply (rule sum_nonneg)
apply force
apply (subst sum_distrib_left)
apply (rule allI)
apply (rule order_trans)
apply (rule sum_abs)
apply (rule sum_mono)
apply (rule order_trans)
apply (drule spec)+
apply (drule bspec)+
apply assumption+
apply (drule bspec)
apply assumption+
apply (rule mult_right_mono)
apply (rule abs_ge_self)
apply force
done
lemma bigo_sum1: "\x y. 0 \ h x y \
\<exists>c. \<forall>x y. \<bar>f x y\<bar> \<le> c * h x y \<Longrightarrow>
(\<lambda>x. \<Sum>y \<in> A x. f x y) =o O(\<lambda>x. \<Sum>y \<in> A x. h x y)"
apply (rule bigo_sum_main)
apply force
apply clarsimp
apply (rule_tac x = c in exI)
apply force
done
lemma bigo_sum2: "\y. 0 \ h y \
\<exists>c. \<forall>y. \<bar>f y\<bar> \<le> c * (h y) \<Longrightarrow>
(\<lambda>x. \<Sum>y \<in> A x. f y) =o O(\<lambda>x. \<Sum>y \<in> A x. h y)"
by (rule bigo_sum1) auto
lemma bigo_sum3: "f =o O(h) \
(\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o O(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)"
apply (rule bigo_sum1)
apply (rule allI)+
apply (rule abs_ge_zero)
apply (unfold bigo_def)
apply auto
apply (rule_tac x = c in exI)
apply (rule allI)+
apply (subst abs_mult)+
apply (subst mult.left_commute)
apply (rule mult_left_mono)
apply (erule spec)
apply (rule abs_ge_zero)
done
lemma bigo_sum4: "f =o g +o O(h) \
(\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
(\<lambda>x. \<Sum>y \<in> A x. l x y * g (k x y)) +o
O(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)"
apply (rule set_minus_imp_plus)
apply (subst fun_diff_def)
apply (subst sum_subtractf [symmetric])
apply (subst right_diff_distrib [symmetric])
apply (rule bigo_sum3)
apply (subst fun_diff_def [symmetric])
apply (erule set_plus_imp_minus)
done
lemma bigo_sum5: "f =o O(h) \ \x y. 0 \ l x y \
\<forall>x. 0 \<le> h x \<Longrightarrow>
(\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
O(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y))"
apply (subgoal_tac "(\x. \y \ A x. l x y * h (k x y)) =
(\<lambda>x. \<Sum>y \<in> A x. \<bar>l x y * h (k x y)\<bar>)")
apply (erule ssubst)
apply (erule bigo_sum3)
apply (rule ext)
apply (rule sum.cong)
apply (rule refl)
apply (subst abs_of_nonneg)
apply auto
done
lemma bigo_sum6: "f =o g +o O(h) \ \x y. 0 \ l x y \
\<forall>x. 0 \<le> h x \<Longrightarrow>
(\<lambda>x. \<Sum>y \<in> A x. l x y * f (k x y)) =o
(\<lambda>x. \<Sum>y \<in> A x. l x y * g (k x y)) +o
O(\<lambda>x. \<Sum>y \<in> A x. l x y * h (k x y))"
apply (rule set_minus_imp_plus)
apply (subst fun_diff_def)
apply (subst sum_subtractf [symmetric])
apply (subst right_diff_distrib [symmetric])
apply (rule bigo_sum5)
apply (subst fun_diff_def [symmetric])
apply (drule set_plus_imp_minus)
apply auto
done
subsection \<open>Misc useful stuff\<close>
lemma bigo_useful_intro: "A \ O(f) \ B \ O(f) \ A + B \ O(f)"
apply (subst bigo_plus_idemp [symmetric])
apply (rule set_plus_mono2)
apply assumption+
done
lemma bigo_useful_add: "f =o O(h) \ g =o O(h) \ f + g =o O(h)"
apply (subst bigo_plus_idemp [symmetric])
apply (rule set_plus_intro)
apply assumption+
done
lemma bigo_useful_const_mult: "c \ 0 \ (\x. c) * f =o O(h) \ f =o O(h)"
for c :: "'a::linordered_field"
apply (rule subsetD)
apply (subgoal_tac "(\x. 1 / c) *o O(h) \ O(h)")
apply assumption
apply (rule bigo_const_mult6)
apply (subgoal_tac "f = (\x. 1 / c) * ((\x. c) * f)")
apply (erule ssubst)
apply (erule set_times_intro2)
apply (simp add: func_times)
done
lemma bigo_fix: "(\x::nat. f (x + 1)) =o O(\x. h (x + 1)) \ f 0 = 0 \ f =o O(h)"
apply (simp add: bigo_alt_def)
apply auto
apply (rule_tac x = c in exI)
apply auto
apply (case_tac "x = 0")
apply simp
apply (subgoal_tac "x = Suc (x - 1)")
apply (erule ssubst) back
apply (erule spec)
apply simp
done
lemma bigo_fix2:
"(\x. f ((x::nat) + 1)) =o (\x. g(x + 1)) +o O(\x. h(x + 1)) \
f 0 = g 0 \<Longrightarrow> f =o g +o O(h)"
apply (rule set_minus_imp_plus)
apply (rule bigo_fix)
apply (subst fun_diff_def)
apply (subst fun_diff_def [symmetric])
apply (rule set_plus_imp_minus)
apply simp
apply (simp add: fun_diff_def)
done
subsection \<open>Less than or equal to\<close>
definition lesso :: "('a \ 'b::linordered_idom) \ ('a \ 'b) \ 'a \ 'b" (infixl "
where "f x. max (f x - g x) 0)"
lemma bigo_lesseq1: "f =o O(h) \ \x. \g x\ \ \f x\ \ g =o O(h)"
apply (unfold bigo_def)
apply clarsimp
apply (rule_tac x = c in exI)
apply (rule allI)
apply (rule order_trans)
apply (erule spec)+
done
lemma bigo_lesseq2: "f =o O(h) \ \x. \g x\ \ f x \ g =o O(h)"
apply (erule bigo_lesseq1)
apply (rule allI)
apply (drule_tac x = x in spec)
apply (rule order_trans)
apply assumption
apply (rule abs_ge_self)
done
lemma bigo_lesseq3: "f =o O(h) \ \x. 0 \ g x \ \x. g x \ f x \ g =o O(h)"
apply (erule bigo_lesseq2)
apply (rule allI)
apply (subst abs_of_nonneg)
apply (erule spec)+
done
lemma bigo_lesseq4: "f =o O(h) \
\<forall>x. 0 \<le> g x \<Longrightarrow> \<forall>x. g x \<le> \<bar>f x\<bar> \<Longrightarrow> g =o O(h)"
apply (erule bigo_lesseq1)
apply (rule allI)
apply (subst abs_of_nonneg)
apply (erule spec)+
done
lemma bigo_lesso1: "\x. f x \ g x \ f
apply (unfold lesso_def)
apply (subgoal_tac "(\x. max (f x - g x) 0) = 0")
apply (erule ssubst)
apply (rule bigo_zero)
apply (unfold func_zero)
apply (rule ext)
apply (simp split: split_max)
done
lemma bigo_lesso2: "f =o g +o O(h) \ \x. 0 \ k x \ \x. k x \ f x \ k
apply (unfold lesso_def)
apply (rule bigo_lesseq4)
apply (erule set_plus_imp_minus)
apply (rule allI)
apply (rule max.cobounded2)
apply (rule allI)
apply (subst fun_diff_def)
apply (case_tac "0 \ k x - g x")
apply simp
apply (subst abs_of_nonneg)
apply (drule_tac x = x in spec) back
apply (simp add: algebra_simps)
apply (subst diff_conv_add_uminus)+
apply (rule add_right_mono)
apply (erule spec)
apply (rule order_trans)
prefer 2
apply (rule abs_ge_zero)
apply (simp add: algebra_simps)
done
lemma bigo_lesso3: "f =o g +o O(h) \ \x. 0 \ k x \ \x. g x \ k x \ f
apply (unfold lesso_def)
apply (rule bigo_lesseq4)
apply (erule set_plus_imp_minus)
apply (rule allI)
apply (rule max.cobounded2)
apply (rule allI)
apply (subst fun_diff_def)
apply (case_tac "0 \ f x - k x")
apply simp
apply (subst abs_of_nonneg)
apply (drule_tac x = x in spec) back
apply (simp add: algebra_simps)
apply (subst diff_conv_add_uminus)+
apply (rule add_left_mono)
apply (rule le_imp_neg_le)
apply (erule spec)
apply (rule order_trans)
prefer 2
apply (rule abs_ge_zero)
apply (simp add: algebra_simps)
done
lemma bigo_lesso4: "f g =o h +o O(k) \ f
for k :: "'a \ 'b::linordered_field"
apply (unfold lesso_def)
apply (drule set_plus_imp_minus)
apply (drule bigo_abs5) back
apply (simp add: fun_diff_def)
apply (drule bigo_useful_add)
apply assumption
apply (erule bigo_lesseq2) back
apply (rule allI)
apply (auto simp add: func_plus fun_diff_def algebra_simps split: split_max abs_split)
done
lemma bigo_lesso5: "f \C. \x. f x \ g x + C * \h x\"
apply (simp only: lesso_def bigo_alt_def)
apply clarsimp
apply (rule_tac x = c in exI)
apply (rule allI)
apply (drule_tac x = x in spec)
apply (subgoal_tac "\max (f x - g x) 0\ = max (f x - g x) 0")
apply (clarsimp simp add: algebra_simps)
apply (rule abs_of_nonneg)
apply (rule max.cobounded2)
done
lemma lesso_add: "f k (f + k)
apply (unfold lesso_def)
apply (rule bigo_lesseq3)
apply (erule bigo_useful_add)
apply assumption
apply (force split: split_max)
apply (auto split: split_max simp add: func_plus)
done
lemma bigo_LIMSEQ1: "f =o O(g) \ g \ 0 \ f \ 0"
for f g :: "nat \ real"
apply (simp add: LIMSEQ_iff bigo_alt_def)
apply clarify
apply (drule_tac x = "r / c" in spec)
apply (drule mp)
apply simp
apply clarify
apply (rule_tac x = no in exI)
apply (rule allI)
apply (drule_tac x = n in spec)+
apply (rule impI)
apply (drule mp)
apply assumption
apply (rule order_le_less_trans)
apply assumption
apply (rule order_less_le_trans)
apply (subgoal_tac "c * \g n\ < c * (r / c)")
apply assumption
apply (erule mult_strict_left_mono)
apply assumption
apply simp
done
lemma bigo_LIMSEQ2: "f =o g +o O(h) \ h \ 0 \ f \ a \ g \ a"
for f g h :: "nat \ real"
apply (drule set_plus_imp_minus)
apply (drule bigo_LIMSEQ1)
apply assumption
apply (simp only: fun_diff_def)
apply (erule Lim_transform2)
apply assumption
done
end
¤ Dauer der Verarbeitung: 0.31 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|