(* Title: HOL/Library/Boolean_Algebra.thy
Author: Brian Huffman
*)
section \<open>Boolean Algebras\<close>
theory Boolean_Algebra
imports Main
begin
locale boolean_algebra = conj: abel_semigroup "(\<^bold>\)" + disj: abel_semigroup "(\<^bold>\)"
for conj :: "'a \ 'a \ 'a" (infixr "\<^bold>\" 70)
and disj :: "'a \ 'a \ 'a" (infixr "\<^bold>\" 65) +
fixes compl :: "'a \ 'a" ("\ _" [81] 80)
and zero :: "'a" ("\")
and one :: "'a" ("\")
assumes conj_disj_distrib: "x \<^bold>\ (y \<^bold>\ z) = (x \<^bold>\ y) \<^bold>\ (x \<^bold>\ z)"
and disj_conj_distrib: "x \<^bold>\ (y \<^bold>\ z) = (x \<^bold>\ y) \<^bold>\ (x \<^bold>\ z)"
and conj_one_right: "x \<^bold>\ \ = x"
and disj_zero_right: "x \<^bold>\ \ = x"
and conj_cancel_right [simp]: "x \<^bold>\ \ x = \"
and disj_cancel_right [simp]: "x \<^bold>\ \ x = \"
begin
sublocale conj: semilattice_neutr "(\<^bold>\)" "\"
proof
show "x \<^bold>\ \ = x" for x
by (fact conj_one_right)
show "x \<^bold>\ x = x" for x
proof -
have "x \<^bold>\ x = (x \<^bold>\ x) \<^bold>\ \"
by (simp add: disj_zero_right)
also have "\ = (x \<^bold>\ x) \<^bold>\ (x \<^bold>\ \ x)"
by simp
also have "\ = x \<^bold>\ (x \<^bold>\ \ x)"
by (simp only: conj_disj_distrib)
also have "\ = x \<^bold>\ \"
by simp
also have "\ = x"
by (simp add: conj_one_right)
finally show ?thesis .
qed
qed
sublocale disj: semilattice_neutr "(\<^bold>\)" "\"
proof
show "x \<^bold>\ \ = x" for x
by (fact disj_zero_right)
show "x \<^bold>\ x = x" for x
proof -
have "x \<^bold>\ x = (x \<^bold>\ x) \<^bold>\ \"
by simp
also have "\ = (x \<^bold>\ x) \<^bold>\ (x \<^bold>\ \ x)"
by simp
also have "\ = x \<^bold>\ (x \<^bold>\ \ x)"
by (simp only: disj_conj_distrib)
also have "\ = x \<^bold>\ \"
by simp
also have "\ = x"
by (simp add: disj_zero_right)
finally show ?thesis .
qed
qed
subsection \<open>Complement\<close>
lemma complement_unique:
assumes 1: "a \<^bold>\ x = \"
assumes 2: "a \<^bold>\ x = \"
assumes 3: "a \<^bold>\ y = \"
assumes 4: "a \<^bold>\ y = \"
shows "x = y"
proof -
from 1 3 have "(a \<^bold>\ x) \<^bold>\ (x \<^bold>\ y) = (a \<^bold>\ y) \<^bold>\ (x \<^bold>\ y)"
by simp
then have "(x \<^bold>\ a) \<^bold>\ (x \<^bold>\ y) = (y \<^bold>\ a) \<^bold>\ (y \<^bold>\ x)"
by (simp add: ac_simps)
then have "x \<^bold>\ (a \<^bold>\ y) = y \<^bold>\ (a \<^bold>\ x)"
by (simp add: conj_disj_distrib)
with 2 4 have "x \<^bold>\ \ = y \<^bold>\ \"
by simp
then show "x = y"
by simp
qed
lemma compl_unique: "x \<^bold>\ y = \ \ x \<^bold>\ y = \ \ \ x = y"
by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
lemma double_compl [simp]: "\ (\ x) = x"
proof (rule compl_unique)
show "\ x \<^bold>\ x = \"
by (simp only: conj_cancel_right conj.commute)
show "\ x \<^bold>\ x = \"
by (simp only: disj_cancel_right disj.commute)
qed
lemma compl_eq_compl_iff [simp]: "\ x = \ y \ x = y"
by (rule inj_eq [OF inj_on_inverseI]) (rule double_compl)
subsection \<open>Conjunction\<close>
lemma conj_zero_right [simp]: "x \<^bold>\ \ = \"
using conj.left_idem conj_cancel_right by fastforce
lemma compl_one [simp]: "\ \ = \"
by (rule compl_unique [OF conj_zero_right disj_zero_right])
lemma conj_zero_left [simp]: "\ \<^bold>\ x = \"
by (subst conj.commute) (rule conj_zero_right)
lemma conj_cancel_left [simp]: "\ x \<^bold>\ x = \"
by (subst conj.commute) (rule conj_cancel_right)
lemma conj_disj_distrib2: "(y \<^bold>\ z) \<^bold>\ x = (y \<^bold>\ x) \<^bold>\ (z \<^bold>\ x)"
by (simp only: conj.commute conj_disj_distrib)
lemmas conj_disj_distribs = conj_disj_distrib conj_disj_distrib2
lemma conj_assoc: "(x \<^bold>\ y) \<^bold>\ z = x \<^bold>\ (y \<^bold>\ z)"
by (fact ac_simps)
lemma conj_commute: "x \<^bold>\ y = y \<^bold>\ x"
by (fact ac_simps)
lemmas conj_left_commute = conj.left_commute
lemmas conj_ac = conj.assoc conj.commute conj.left_commute
lemma conj_one_left: "\ \<^bold>\ x = x"
by (fact conj.left_neutral)
lemma conj_left_absorb: "x \<^bold>\ (x \<^bold>\ y) = x \<^bold>\ y"
by (fact conj.left_idem)
lemma conj_absorb: "x \<^bold>\ x = x"
by (fact conj.idem)
subsection \<open>Disjunction\<close>
interpretation dual: boolean_algebra "(\<^bold>\)" "(\<^bold>\)" compl \ \
apply standard
apply (rule disj_conj_distrib)
apply (rule conj_disj_distrib)
apply simp_all
done
lemma compl_zero [simp]: "\ \ = \"
by (fact dual.compl_one)
lemma disj_one_right [simp]: "x \<^bold>\ \ = \"
by (fact dual.conj_zero_right)
lemma disj_one_left [simp]: "\ \<^bold>\ x = \"
by (fact dual.conj_zero_left)
lemma disj_cancel_left [simp]: "\ x \<^bold>\ x = \"
by (rule dual.conj_cancel_left)
lemma disj_conj_distrib2: "(y \<^bold>\ z) \<^bold>\ x = (y \<^bold>\ x) \<^bold>\ (z \<^bold>\ x)"
by (rule dual.conj_disj_distrib2)
lemmas disj_conj_distribs = disj_conj_distrib disj_conj_distrib2
lemma disj_assoc: "(x \<^bold>\ y) \<^bold>\ z = x \<^bold>\ (y \<^bold>\ z)"
by (fact ac_simps)
lemma disj_commute: "x \<^bold>\ y = y \<^bold>\ x"
by (fact ac_simps)
lemmas disj_left_commute = disj.left_commute
lemmas disj_ac = disj.assoc disj.commute disj.left_commute
lemma disj_zero_left: "\ \<^bold>\ x = x"
by (fact disj.left_neutral)
lemma disj_left_absorb: "x \<^bold>\ (x \<^bold>\ y) = x \<^bold>\ y"
by (fact disj.left_idem)
lemma disj_absorb: "x \<^bold>\ x = x"
by (fact disj.idem)
subsection \<open>De Morgan's Laws\<close>
lemma de_Morgan_conj [simp]: "\ (x \<^bold>\ y) = \ x \<^bold>\ \ y"
proof (rule compl_unique)
have "(x \<^bold>\ y) \<^bold>\ (\ x \<^bold>\ \ y) = ((x \<^bold>\ y) \<^bold>\ \ x) \<^bold>\ ((x \<^bold>\ y) \<^bold>\ \ y)"
by (rule conj_disj_distrib)
also have "\ = (y \<^bold>\ (x \<^bold>\ \ x)) \<^bold>\ (x \<^bold>\ (y \<^bold>\ \ y))"
by (simp only: conj_ac)
finally show "(x \<^bold>\ y) \<^bold>\ (\ x \<^bold>\ \ y) = \"
by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
next
have "(x \<^bold>\ y) \<^bold>\ (\ x \<^bold>\ \ y) = (x \<^bold>\ (\ x \<^bold>\ \ y)) \<^bold>\ (y \<^bold>\ (\ x \<^bold>\ \ y))"
by (rule disj_conj_distrib2)
also have "\ = (\ y \<^bold>\ (x \<^bold>\ \ x)) \<^bold>\ (\ x \<^bold>\ (y \<^bold>\ \ y))"
by (simp only: disj_ac)
finally show "(x \<^bold>\ y) \<^bold>\ (\ x \<^bold>\ \ y) = \"
by (simp only: disj_cancel_right disj_one_right conj_one_right)
qed
lemma de_Morgan_disj [simp]: "\ (x \<^bold>\ y) = \ x \<^bold>\ \ y"
using dual.boolean_algebra_axioms by (rule boolean_algebra.de_Morgan_conj)
subsection \<open>Symmetric Difference\<close>
definition xor :: "'a \ 'a \ 'a" (infixr "\" 65)
where "x \ y = (x \<^bold>\ \ y) \<^bold>\ (\ x \<^bold>\ y)"
sublocale xor: comm_monoid xor \<zero>
proof
fix x y z :: 'a
let ?t = "(x \<^bold>\ y \<^bold>\ z) \<^bold>\ (x \<^bold>\ \ y \<^bold>\ \ z) \<^bold>\ (\ x \<^bold>\ y \<^bold>\ \ z) \<^bold>\ (\ x \<^bold>\ \ y \<^bold>\ z)"
have "?t \<^bold>\ (z \<^bold>\ x \<^bold>\ \ x) \<^bold>\ (z \<^bold>\ y \<^bold>\ \ y) = ?t \<^bold>\ (x \<^bold>\ y \<^bold>\ \ y) \<^bold>\ (x \<^bold>\ z \<^bold>\ \ z)"
by (simp only: conj_cancel_right conj_zero_right)
then show "(x \ y) \ z = x \ (y \ z)"
by (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
(simp only: conj_disj_distribs conj_ac disj_ac)
show "x \ y = y \ x"
by (simp only: xor_def conj_commute disj_commute)
show "x \ \ = x"
by (simp add: xor_def)
qed
lemmas xor_assoc = xor.assoc
lemmas xor_commute = xor.commute
lemmas xor_left_commute = xor.left_commute
lemmas xor_ac = xor.assoc xor.commute xor.left_commute
lemma xor_def2: "x \ y = (x \<^bold>\ y) \<^bold>\ (\ x \<^bold>\ \ y)"
using conj.commute conj_disj_distrib2 disj.commute xor_def by auto
lemma xor_zero_right [simp]: "x \ \ = x"
by (simp only: xor_def compl_zero conj_one_right conj_zero_right disj_zero_right)
lemma xor_zero_left [simp]: "\ \ x = x"
by (subst xor_commute) (rule xor_zero_right)
lemma xor_one_right [simp]: "x \ \ = \ x"
by (simp only: xor_def compl_one conj_zero_right conj_one_right disj_zero_left)
lemma xor_one_left [simp]: "\ \ x = \ x"
by (subst xor_commute) (rule xor_one_right)
lemma xor_self [simp]: "x \ x = \"
by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)
lemma xor_left_self [simp]: "x \ (x \ y) = y"
by (simp only: xor_assoc [symmetric] xor_self xor_zero_left)
lemma xor_compl_left [simp]: "\ x \ y = \ (x \ y)"
by (metis xor_assoc xor_one_left)
lemma xor_compl_right [simp]: "x \ \ y = \ (x \ y)"
using xor_commute xor_compl_left by auto
lemma xor_cancel_right: "x \ \ x = \"
by (simp only: xor_compl_right xor_self compl_zero)
lemma xor_cancel_left: "\ x \ x = \"
by (simp only: xor_compl_left xor_self compl_zero)
lemma conj_xor_distrib: "x \<^bold>\ (y \ z) = (x \<^bold>\ y) \ (x \<^bold>\ z)"
proof -
have *: "(x \<^bold>\ y \<^bold>\ \ z) \<^bold>\ (x \<^bold>\ \ y \<^bold>\ z) =
(y \<^bold>\<sqinter> x \<^bold>\<sqinter> \<sim> x) \<^bold>\<squnion> (z \<^bold>\<sqinter> x \<^bold>\<sqinter> \<sim> x) \<^bold>\<squnion> (x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<sim> z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<sim> y \<^bold>\<sqinter> z)"
by (simp only: conj_cancel_right conj_zero_right disj_zero_left)
then show "x \<^bold>\ (y \ z) = (x \<^bold>\ y) \ (x \<^bold>\ z)"
by (simp (no_asm_use) only:
xor_def de_Morgan_disj de_Morgan_conj double_compl
conj_disj_distribs conj_ac disj_ac)
qed
lemma conj_xor_distrib2: "(y \ z) \<^bold>\ x = (y \<^bold>\ x) \ (z \<^bold>\ x)"
by (simp add: conj.commute conj_xor_distrib)
lemmas conj_xor_distribs = conj_xor_distrib conj_xor_distrib2
end
end
¤ Dauer der Verarbeitung: 0.16 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|