(* Title: HOL/Library/Comparator.thy
Author: Florian Haftmann, TU Muenchen
*)
theory Comparator
imports Main
begin
section \<open>Comparators on linear quasi-orders\<close>
subsection \<open>Basic properties\<close>
datatype comp = Less | Equiv | Greater
locale comparator =
fixes cmp :: "'a \ 'a \ comp"
assumes refl [simp]: "\a. cmp a a = Equiv"
and trans_equiv: "\a b c. cmp a b = Equiv \ cmp b c = Equiv \ cmp a c = Equiv"
assumes trans_less: "cmp a b = Less \ cmp b c = Less \ cmp a c = Less"
and greater_iff_sym_less: "\b a. cmp b a = Greater \ cmp a b = Less"
begin
text \<open>Dual properties\<close>
lemma trans_greater:
"cmp a c = Greater" if "cmp a b = Greater" "cmp b c = Greater"
using that greater_iff_sym_less trans_less by blast
lemma less_iff_sym_greater:
"cmp b a = Less \ cmp a b = Greater"
by (simp add: greater_iff_sym_less)
text \<open>The equivalence part\<close>
lemma sym:
"cmp b a = Equiv \ cmp a b = Equiv"
by (metis (full_types) comp.exhaust greater_iff_sym_less)
lemma reflp:
"reflp (\a b. cmp a b = Equiv)"
by (rule reflpI) simp
lemma symp:
"symp (\a b. cmp a b = Equiv)"
by (rule sympI) (simp add: sym)
lemma transp:
"transp (\a b. cmp a b = Equiv)"
by (rule transpI) (fact trans_equiv)
lemma equivp:
"equivp (\a b. cmp a b = Equiv)"
using reflp symp transp by (rule equivpI)
text \<open>The strict part\<close>
lemma irreflp_less:
"irreflp (\a b. cmp a b = Less)"
by (rule irreflpI) simp
lemma irreflp_greater:
"irreflp (\a b. cmp a b = Greater)"
by (rule irreflpI) simp
lemma asym_less:
"cmp b a \ Less" if "cmp a b = Less"
using that greater_iff_sym_less by force
lemma asym_greater:
"cmp b a \ Greater" if "cmp a b = Greater"
using that greater_iff_sym_less by force
lemma asymp_less:
"asymp (\a b. cmp a b = Less)"
using irreflp_less by (auto intro: asympI dest: asym_less)
lemma asymp_greater:
"asymp (\a b. cmp a b = Greater)"
using irreflp_greater by (auto intro!: asympI dest: asym_greater)
lemma trans_equiv_less:
"cmp a c = Less" if "cmp a b = Equiv" and "cmp b c = Less"
using that
by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)
lemma trans_less_equiv:
"cmp a c = Less" if "cmp a b = Less" and "cmp b c = Equiv"
using that
by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)
lemma trans_equiv_greater:
"cmp a c = Greater" if "cmp a b = Equiv" and "cmp b c = Greater"
using that by (simp add: sym [of a b] greater_iff_sym_less trans_less_equiv)
lemma trans_greater_equiv:
"cmp a c = Greater" if "cmp a b = Greater" and "cmp b c = Equiv"
using that by (simp add: sym [of b c] greater_iff_sym_less trans_equiv_less)
lemma transp_less:
"transp (\a b. cmp a b = Less)"
by (rule transpI) (fact trans_less)
lemma transp_greater:
"transp (\a b. cmp a b = Greater)"
by (rule transpI) (fact trans_greater)
text \<open>The reflexive part\<close>
lemma reflp_not_less:
"reflp (\a b. cmp a b \ Less)"
by (rule reflpI) simp
lemma reflp_not_greater:
"reflp (\a b. cmp a b \ Greater)"
by (rule reflpI) simp
lemma quasisym_not_less:
"cmp a b = Equiv" if "cmp a b \ Less" and "cmp b a \ Less"
using that comp.exhaust greater_iff_sym_less by auto
lemma quasisym_not_greater:
"cmp a b = Equiv" if "cmp a b \ Greater" and "cmp b a \ Greater"
using that comp.exhaust greater_iff_sym_less by auto
lemma trans_not_less:
"cmp a c \ Less" if "cmp a b \ Less" "cmp b c \ Less"
using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less)
lemma trans_not_greater:
"cmp a c \ Greater" if "cmp a b \ Greater" "cmp b c \ Greater"
using that greater_iff_sym_less trans_not_less by blast
lemma transp_not_less:
"transp (\a b. cmp a b \ Less)"
by (rule transpI) (fact trans_not_less)
lemma transp_not_greater:
"transp (\a b. cmp a b \ Greater)"
by (rule transpI) (fact trans_not_greater)
text \<open>Substitution under equivalences\<close>
lemma equiv_subst_left:
"cmp z y = comp \ cmp x y = comp" if "cmp z x = Equiv" for comp
proof -
from that have "cmp x z = Equiv"
by (simp add: sym)
with that show ?thesis
by (cases comp) (auto intro: trans_equiv trans_equiv_less trans_equiv_greater)
qed
lemma equiv_subst_right:
"cmp x z = comp \ cmp x y = comp" if "cmp z y = Equiv" for comp
proof -
from that have "cmp y z = Equiv"
by (simp add: sym)
with that show ?thesis
by (cases comp) (auto intro: trans_equiv trans_less_equiv trans_greater_equiv)
qed
end
typedef 'a comparator = "{cmp :: 'a \<Rightarrow> 'a \<Rightarrow> comp. comparator cmp}"
morphisms compare Abs_comparator
proof -
have "comparator (\_ _. Equiv)"
by standard simp_all
then show ?thesis
by auto
qed
setup_lifting type_definition_comparator
global_interpretation compare: comparator "compare cmp"
using compare [of cmp] by simp
lift_definition flat :: "'a comparator"
is "\_ _. Equiv" by standard simp_all
instantiation comparator :: (linorder) default
begin
lift_definition default_comparator :: "'a comparator"
is "\x y. if x < y then Less else if x > y then Greater else Equiv"
by standard (auto split: if_splits)
instance ..
end
text \<open>A rudimentary quickcheck setup\<close>
instantiation comparator :: (enum) equal
begin
lift_definition equal_comparator :: "'a comparator \ 'a comparator \ bool"
is "\f g. \x \ set Enum.enum. f x = g x" .
instance
by (standard; transfer) (auto simp add: enum_UNIV)
end
lemma [code]:
"HOL.equal cmp1 cmp2 \ Enum.enum_all (\x. compare cmp1 x = compare cmp2 x)"
by transfer (simp add: enum_UNIV)
lemma [code nbe]:
"HOL.equal (cmp :: 'a::enum comparator) cmp \ True"
by (fact equal_refl)
instantiation comparator :: ("{linorder, typerep}") full_exhaustive
begin
definition full_exhaustive_comparator ::
"('a comparator \ (unit \ term) \ (bool \ term list) option)
\<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
where "full_exhaustive_comparator f s =
Quickcheck_Exhaustive.orelse
(f (flat, (\<lambda>u. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator))))
(f (default, (\<lambda>u. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))"
instance ..
end
subsection \<open>Fundamental comparator combinators\<close>
lift_definition reversed :: "'a comparator \ 'a comparator"
is "\cmp a b. cmp b a"
proof -
fix cmp :: "'a \ 'a \ comp"
assume "comparator cmp"
then interpret comparator cmp .
show "comparator (\a b. cmp b a)"
by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed
lift_definition key :: "('b \ 'a) \ 'a comparator \ 'b comparator"
is "\f cmp a b. cmp (f a) (f b)"
proof -
fix cmp :: "'a \ 'a \ comp" and f :: "'b \ 'a"
assume "comparator cmp"
then interpret comparator cmp .
show "comparator (\a b. cmp (f a) (f b))"
by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed
subsection \<open>Direct implementations for linear orders on selected types\<close>
definition comparator_bool :: "bool comparator"
where [simp, code_abbrev]: "comparator_bool = default"
lemma compare_comparator_bool [code abstract]:
"compare comparator_bool = (\p q.
if p then if q then Equiv else Greater
else if q then Less else Equiv)"
by (auto simp add: fun_eq_iff) (transfer; simp)+
definition raw_comparator_nat :: "nat \ nat \ comp"
where [simp]: "raw_comparator_nat = compare default"
lemma default_comparator_nat [simp, code]:
"raw_comparator_nat (0::nat) 0 = Equiv"
"raw_comparator_nat (Suc m) 0 = Greater"
"raw_comparator_nat 0 (Suc n) = Less"
"raw_comparator_nat (Suc m) (Suc n) = raw_comparator_nat m n"
by (transfer; simp)+
definition comparator_nat :: "nat comparator"
where [simp, code_abbrev]: "comparator_nat = default"
lemma compare_comparator_nat [code abstract]:
"compare comparator_nat = raw_comparator_nat"
by simp
definition comparator_linordered_group :: "'a::linordered_ab_group_add comparator"
where [simp, code_abbrev]: "comparator_linordered_group = default"
lemma comparator_linordered_group [code abstract]:
"compare comparator_linordered_group = (\a b.
let c = a - b in if c < 0 then Less
else if c = 0 then Equiv else Greater)"
proof (rule ext)+
fix a b :: 'a
show "compare comparator_linordered_group a b =
(let c = a - b in if c < 0 then Less
else if c = 0 then Equiv else Greater)"
by (simp add: Let_def not_less) (transfer; auto)
qed
end
¤ Dauer der Verarbeitung: 0.17 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|