(* Title: HOL/Nonstandard_Analysis/NSCA.thy
Author: Jacques D. Fleuriot
Copyright: 2001, 2002 University of Edinburgh
*)
section\<open>Non-Standard Complex Analysis\<close>
theory NSCA
imports NSComplex HTranscendental
begin
abbreviation
(* standard complex numbers reagarded as an embedded subset of NS complex *)
SComplex :: "hcomplex set" where
"SComplex \ Standard"
definition \<comment> \<open>standard part map\<close>
stc :: "hcomplex => hcomplex" where
"stc x = (SOME r. x \ HFinite \ r\SComplex \ r \ x)"
subsection\<open>Closure Laws for SComplex, the Standard Complex Numbers\<close>
lemma SComplex_minus_iff [simp]: "(-x \ SComplex) = (x \ SComplex)"
using Standard_minus by fastforce
lemma SComplex_add_cancel:
"\x + y \ SComplex; y \ SComplex\ \ x \ SComplex"
using Standard_diff by fastforce
lemma SReal_hcmod_hcomplex_of_complex [simp]:
"hcmod (hcomplex_of_complex r) \ \"
by (simp add: Reals_eq_Standard)
lemma SReal_hcmod_numeral: "hcmod (numeral w ::hcomplex) \ \"
by simp
lemma SReal_hcmod_SComplex: "x \ SComplex \ hcmod x \ \"
by (simp add: Reals_eq_Standard)
lemma SComplex_divide_numeral:
"r \ SComplex \ r/(numeral w::hcomplex) \ SComplex"
by simp
lemma SComplex_UNIV_complex:
"{x. hcomplex_of_complex x \ SComplex} = (UNIV::complex set)"
by simp
lemma SComplex_iff: "(x \ SComplex) = (\y. x = hcomplex_of_complex y)"
by (simp add: Standard_def image_def)
lemma hcomplex_of_complex_image:
"range hcomplex_of_complex = SComplex"
by (simp add: Standard_def)
lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV"
by (auto simp add: Standard_def image_def) (metis inj_star_of inv_f_f)
lemma SComplex_hcomplex_of_complex_image:
"\\x. x \ P; P \ SComplex\ \ \Q. P = hcomplex_of_complex ` Q"
by (metis Standard_def subset_imageE)
lemma SComplex_SReal_dense:
"\x \ SComplex; y \ SComplex; hcmod x < hcmod y
\<rbrakk> \<Longrightarrow> \<exists>r \<in> Reals. hcmod x< r \<and> r < hcmod y"
by (simp add: SReal_dense SReal_hcmod_SComplex)
subsection\<open>The Finite Elements form a Subring\<close>
lemma HFinite_hcmod_hcomplex_of_complex [simp]:
"hcmod (hcomplex_of_complex r) \ HFinite"
by (auto intro!: SReal_subset_HFinite [THEN subsetD])
lemma HFinite_hcmod_iff [simp]: "hcmod x \ HFinite \ x \ HFinite"
by (simp add: HFinite_def)
lemma HFinite_bounded_hcmod:
"\x \ HFinite; y \ hcmod x; 0 \ y\ \ y \ HFinite"
using HFinite_bounded HFinite_hcmod_iff by blast
subsection\<open>The Complex Infinitesimals form a Subring\<close>
lemma Infinitesimal_hcmod_iff:
"(z \ Infinitesimal) = (hcmod z \ Infinitesimal)"
by (simp add: Infinitesimal_def)
lemma HInfinite_hcmod_iff: "(z \ HInfinite) = (hcmod z \ HInfinite)"
by (simp add: HInfinite_def)
lemma HFinite_diff_Infinitesimal_hcmod:
"x \ HFinite - Infinitesimal \ hcmod x \ HFinite - Infinitesimal"
by (simp add: Infinitesimal_hcmod_iff)
lemma hcmod_less_Infinitesimal:
"\e \ Infinitesimal; hcmod x < hcmod e\ \ x \ Infinitesimal"
by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
lemma hcmod_le_Infinitesimal:
"\e \ Infinitesimal; hcmod x \ hcmod e\ \ x \ Infinitesimal"
by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
subsection\<open>The ``Infinitely Close'' Relation\<close>
lemma approx_SComplex_mult_cancel_zero:
"\a \ SComplex; a \ 0; a*x \ 0\ \ x \ 0"
by (metis Infinitesimal_mult_disj SComplex_iff mem_infmal_iff star_of_Infinitesimal_iff_0 star_zero_def)
lemma approx_mult_SComplex1: "\a \ SComplex; x \ 0\ \ x*a \ 0"
using SComplex_iff approx_mult_subst_star_of by fastforce
lemma approx_mult_SComplex2: "\a \ SComplex; x \ 0\ \ a*x \ 0"
by (metis approx_mult_SComplex1 mult.commute)
lemma approx_mult_SComplex_zero_cancel_iff [simp]:
"\a \ SComplex; a \ 0\ \ (a*x \ 0) = (x \ 0)"
using approx_SComplex_mult_cancel_zero approx_mult_SComplex2 by blast
lemma approx_SComplex_mult_cancel:
"\a \ SComplex; a \ 0; a*w \ a*z\ \ w \ z"
by (metis approx_SComplex_mult_cancel_zero approx_minus_iff right_diff_distrib)
lemma approx_SComplex_mult_cancel_iff1 [simp]:
"\a \ SComplex; a \ 0\ \ (a*w \ a*z) = (w \ z)"
by (metis HFinite_star_of SComplex_iff approx_SComplex_mult_cancel approx_mult2)
(* TODO: generalize following theorems: hcmod -> hnorm *)
lemma approx_hcmod_approx_zero: "(x \ y) = (hcmod (y - x) \ 0)"
by (simp add: Infinitesimal_hcmod_iff approx_def hnorm_minus_commute)
lemma approx_approx_zero_iff: "(x \ 0) = (hcmod x \ 0)"
by (simp add: approx_hcmod_approx_zero)
lemma approx_minus_zero_cancel_iff [simp]: "(-x \ 0) = (x \ 0)"
by (simp add: approx_def)
lemma Infinitesimal_hcmod_add_diff:
"u \ 0 \ hcmod(x + u) - hcmod x \ Infinitesimal"
by (metis add.commute add.left_neutral approx_add_right_iff approx_def approx_hnorm)
lemma approx_hcmod_add_hcmod: "u \ 0 \ hcmod(x + u) \ hcmod x"
using Infinitesimal_hcmod_add_diff approx_def by blast
subsection\<open>Zero is the Only Infinitesimal Complex Number\<close>
lemma Infinitesimal_less_SComplex:
"\x \ SComplex; y \ Infinitesimal; 0 < hcmod x\ \ hcmod y < hcmod x"
by (auto intro: Infinitesimal_less_SReal SReal_hcmod_SComplex simp add: Infinitesimal_hcmod_iff)
lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
by (auto simp add: Standard_def Infinitesimal_hcmod_iff)
lemma SComplex_Infinitesimal_zero:
"\x \ SComplex; x \ Infinitesimal\ \ x = 0"
using SComplex_iff by auto
lemma SComplex_HFinite_diff_Infinitesimal:
"\x \ SComplex; x \ 0\ \ x \ HFinite - Infinitesimal"
using SComplex_iff by auto
lemma numeral_not_Infinitesimal [simp]:
"numeral w \ (0::hcomplex) \ (numeral w::hcomplex) \ Infinitesimal"
by (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
lemma approx_SComplex_not_zero:
"\y \ SComplex; x \ y; y\ 0\ \ x \ 0"
by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
lemma SComplex_approx_iff:
"\x \ SComplex; y \ SComplex\ \ (x \ y) = (x = y)"
by (auto simp add: Standard_def)
lemma approx_unique_complex:
"\r \ SComplex; s \ SComplex; r \ x; s \ x\ \ r = s"
by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
subsection \<open>Properties of \<^term>\<open>hRe\<close>, \<^term>\<open>hIm\<close> and \<^term>\<open>HComplex\<close>\<close>
lemma abs_hRe_le_hcmod: "\x. \hRe x\ \ hcmod x"
by transfer (rule abs_Re_le_cmod)
lemma abs_hIm_le_hcmod: "\x. \hIm x\ \ hcmod x"
by transfer (rule abs_Im_le_cmod)
lemma Infinitesimal_hRe: "x \ Infinitesimal \ hRe x \ Infinitesimal"
using Infinitesimal_hcmod_iff abs_hRe_le_hcmod hrabs_le_Infinitesimal by blast
lemma Infinitesimal_hIm: "x \ Infinitesimal \ hIm x \ Infinitesimal"
using Infinitesimal_hcmod_iff abs_hIm_le_hcmod hrabs_le_Infinitesimal by blast
lemma Infinitesimal_HComplex:
assumes x: "x \ Infinitesimal" and y: "y \ Infinitesimal"
shows "HComplex x y \ Infinitesimal"
proof -
have "hcmod (HComplex 0 y) \ Infinitesimal"
by (simp add: hcmod_i y)
moreover have "hcmod (hcomplex_of_hypreal x) \ Infinitesimal"
using Infinitesimal_hcmod_iff Infinitesimal_of_hypreal_iff x by blast
ultimately have "hcmod (HComplex x y) \ Infinitesimal"
by (metis Infinitesimal_add Infinitesimal_hcmod_iff add.right_neutral hcomplex_of_hypreal_add_HComplex)
then show ?thesis
by (simp add: Infinitesimal_hnorm_iff)
qed
lemma hcomplex_Infinitesimal_iff:
"(x \ Infinitesimal) \ (hRe x \ Infinitesimal \ hIm x \ Infinitesimal)"
using Infinitesimal_HComplex Infinitesimal_hIm Infinitesimal_hRe by fastforce
lemma hRe_diff [simp]: "\x y. hRe (x - y) = hRe x - hRe y"
by transfer simp
lemma hIm_diff [simp]: "\x y. hIm (x - y) = hIm x - hIm y"
by transfer simp
lemma approx_hRe: "x \ y \ hRe x \ hRe y"
unfolding approx_def by (drule Infinitesimal_hRe) simp
lemma approx_hIm: "x \ y \ hIm x \ hIm y"
unfolding approx_def by (drule Infinitesimal_hIm) simp
lemma approx_HComplex:
"\a \ b; c \ d\ \ HComplex a c \ HComplex b d"
unfolding approx_def by (simp add: Infinitesimal_HComplex)
lemma hcomplex_approx_iff:
"(x \ y) = (hRe x \ hRe y \ hIm x \ hIm y)"
unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff)
lemma HFinite_hRe: "x \ HFinite \ hRe x \ HFinite"
using HFinite_bounded_hcmod abs_ge_zero abs_hRe_le_hcmod by blast
lemma HFinite_hIm: "x \ HFinite \ hIm x \ HFinite"
using HFinite_bounded_hcmod abs_ge_zero abs_hIm_le_hcmod by blast
lemma HFinite_HComplex:
assumes "x \ HFinite" "y \ HFinite"
shows "HComplex x y \ HFinite"
proof -
have "HComplex x 0 \ HFinite" "HComplex 0 y \ HFinite"
using HFinite_hcmod_iff assms hcmod_i by fastforce+
then have "HComplex x 0 + HComplex 0 y \ HFinite"
using HFinite_add by blast
then show ?thesis
by simp
qed
lemma hcomplex_HFinite_iff:
"(x \ HFinite) = (hRe x \ HFinite \ hIm x \ HFinite)"
using HFinite_HComplex HFinite_hIm HFinite_hRe by fastforce
lemma hcomplex_HInfinite_iff:
"(x \ HInfinite) = (hRe x \ HInfinite \ hIm x \ HInfinite)"
by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff)
lemma hcomplex_of_hypreal_approx_iff [simp]:
"(hcomplex_of_hypreal x \ hcomplex_of_hypreal z) = (x \ z)"
by (simp add: hcomplex_approx_iff)
(* Here we go - easy proof now!! *)
lemma stc_part_Ex:
assumes "x \ HFinite"
shows "\t \ SComplex. x \ t"
proof -
let ?t = "HComplex (st (hRe x)) (st (hIm x))"
have "?t \ SComplex"
using HFinite_hIm HFinite_hRe Reals_eq_Standard assms st_SReal by auto
moreover have "x \ ?t"
by (simp add: HFinite_hIm HFinite_hRe assms hcomplex_approx_iff st_HFinite st_eq_approx)
ultimately show ?thesis ..
qed
lemma stc_part_Ex1: "x \ HFinite \ \!t. t \ SComplex \ x \ t"
using approx_sym approx_unique_complex stc_part_Ex by blast
subsection\<open>Theorems About Monads\<close>
lemma monad_zero_hcmod_iff: "(x \ monad 0) = (hcmod x \ monad 0)"
by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
subsection\<open>Theorems About Standard Part\<close>
lemma stc_approx_self: "x \ HFinite \ stc x \ x"
unfolding stc_def
by (metis (no_types, lifting) approx_reorient someI_ex stc_part_Ex1)
lemma stc_SComplex: "x \ HFinite \ stc x \ SComplex"
unfolding stc_def
by (metis (no_types, lifting) SComplex_iff approx_sym someI_ex stc_part_Ex)
lemma stc_HFinite: "x \ HFinite \ stc x \ HFinite"
by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]])
lemma stc_unique: "\y \ SComplex; y \ x\ \ stc x = y"
by (metis SComplex_approx_iff SComplex_iff approx_monad_iff approx_star_of_HFinite stc_SComplex stc_approx_self)
lemma stc_SComplex_eq [simp]: "x \ SComplex \ stc x = x"
by (simp add: stc_unique)
lemma stc_eq_approx:
"\x \ HFinite; y \ HFinite; stc x = stc y\ \ x \ y"
by (auto dest!: stc_approx_self elim!: approx_trans3)
lemma approx_stc_eq:
"\x \ HFinite; y \ HFinite; x \ y\ \ stc x = stc y"
by (metis approx_sym approx_trans3 stc_part_Ex1 stc_unique)
lemma stc_eq_approx_iff:
"\x \ HFinite; y \ HFinite\ \ (x \ y) = (stc x = stc y)"
by (blast intro: approx_stc_eq stc_eq_approx)
lemma stc_Infinitesimal_add_SComplex:
"\x \ SComplex; e \ Infinitesimal\ \ stc(x + e) = x"
using Infinitesimal_add_approx_self stc_unique by blast
lemma stc_Infinitesimal_add_SComplex2:
"\x \ SComplex; e \ Infinitesimal\ \ stc(e + x) = x"
using Infinitesimal_add_approx_self2 stc_unique by blast
lemma HFinite_stc_Infinitesimal_add:
"x \ HFinite \ \e \ Infinitesimal. x = stc(x) + e"
by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
lemma stc_add:
"\x \ HFinite; y \ HFinite\ \ stc (x + y) = stc(x) + stc(y)"
by (simp add: stc_unique stc_SComplex stc_approx_self approx_add)
lemma stc_zero: "stc 0 = 0"
by simp
lemma stc_one: "stc 1 = 1"
by simp
lemma stc_minus: "y \ HFinite \ stc(-y) = -stc(y)"
by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus)
lemma stc_diff:
"\x \ HFinite; y \ HFinite\ \ stc (x-y) = stc(x) - stc(y)"
by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff)
lemma stc_mult:
"\x \ HFinite; y \ HFinite\
\<Longrightarrow> stc (x * y) = stc(x) * stc(y)"
by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite)
lemma stc_Infinitesimal: "x \ Infinitesimal \ stc x = 0"
by (simp add: stc_unique mem_infmal_iff)
lemma stc_not_Infinitesimal: "stc(x) \ 0 \ x \ Infinitesimal"
by (fast intro: stc_Infinitesimal)
lemma stc_inverse:
"\x \ HFinite; stc x \ 0\ \ stc(inverse x) = inverse (stc x)"
by (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse stc_not_Infinitesimal)
lemma stc_divide [simp]:
"\x \ HFinite; y \ HFinite; stc y \ 0\
\<Longrightarrow> stc(x/y) = (stc x) / (stc y)"
by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
lemma stc_idempotent [simp]: "x \ HFinite \ stc(stc(x)) = stc(x)"
by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
lemma HFinite_HFinite_hcomplex_of_hypreal:
"z \ HFinite \ hcomplex_of_hypreal z \ HFinite"
by (simp add: hcomplex_HFinite_iff)
lemma SComplex_SReal_hcomplex_of_hypreal:
"x \ \ \ hcomplex_of_hypreal x \ SComplex"
by (simp add: Reals_eq_Standard)
lemma stc_hcomplex_of_hypreal:
"z \ HFinite \ stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)"
by (simp add: SComplex_SReal_hcomplex_of_hypreal st_SReal st_approx_self stc_unique)
lemma hmod_stc_eq:
assumes "x \ HFinite"
shows "hcmod(stc x) = st(hcmod x)"
by (metis SReal_hcmod_SComplex approx_HFinite approx_hnorm assms st_unique stc_SComplex_eq stc_eq_approx_iff stc_part_Ex)
lemma Infinitesimal_hcnj_iff [simp]:
"(hcnj z \ Infinitesimal) \ (z \ Infinitesimal)"
by (simp add: Infinitesimal_hcmod_iff)
end
¤ Dauer der Verarbeitung: 0.2 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|