(* Title: HOL/SET_Protocol/Message_SET.thy
Author: Giampaolo Bella
Author: Fabio Massacci
Author: Lawrence C Paulson
*)
section\<open>The Message Theory, Modified for SET\<close>
theory Message_SET
imports Main "HOL-Library.Nat_Bijection"
begin
subsection\<open>General Lemmas\<close>
text\<open>Needed occasionally with \<open>spy_analz_tac\<close>, e.g. in
\<open>analz_insert_Key_newK\<close>\<close>
lemma Un_absorb3 [simp] : "A \ (B \ A) = B \ A"
by blast
text\<open>Collapses redundant cases in the huge protocol proofs\<close>
lemmas disj_simps = disj_comms disj_left_absorb disj_assoc
text\<open>Effective with assumptions like \<^term>\<open>K \<notin> range pubK\<close> and
\<^term>\<open>K \<notin> invKey`range pubK\<close>\<close>
lemma notin_image_iff: "(y \ f`I) = (\i\I. f i \ y)"
by blast
text\<open>Effective with the assumption \<^term>\<open>KK \<subseteq> - (range(invKey o pubK))\<close>\<close>
lemma disjoint_image_iff: "(A \ - (f`I)) = (\i\I. f i \ A)"
by blast
type_synonym key = nat
consts
all_symmetric :: bool \<comment> \<open>true if all keys are symmetric\<close>
invKey :: "key\key" \ \inverse of a symmetric key\
specification (invKey)
invKey [simp]: "invKey (invKey K) = K"
invKey_symmetric: "all_symmetric \ invKey = id"
by (rule exI [of _ id], auto)
text\<open>The inverse of a symmetric key is itself; that of a public key
is the private key and vice versa\<close>
definition symKeys :: "key set" where
"symKeys == {K. invKey K = K}"
text\<open>Agents. We allow any number of certification authorities, cardholders
merchants, and payment gateways.\<close>
datatype
agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy
text\<open>Messages\<close>
datatype
msg = Agent agent \<comment> \<open>Agent names\<close>
| Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close>
| Nonce nat \<comment> \<open>Unguessable nonces\<close>
| Pan nat \<comment> \<open>Unguessable Primary Account Numbers (??)\<close>
| Key key \<comment> \<open>Crypto keys\<close>
| Hash msg \<comment> \<open>Hashing\<close>
| MPair msg msg \<comment> \<open>Compound messages\<close>
| Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close>
(*Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...*)
syntax
"_MTuple" :: "['a, args] \ 'a * 'b" ("(2\_,/ _\)")
translations
"\x, y, z\" == "\x, \y, z\\"
"\x, y\" == "CONST MPair x y"
definition nat_of_agent :: "agent \ nat" where
"nat_of_agent == case_agent (curry prod_encode 0)
(curry prod_encode 1)
(curry prod_encode 2)
(curry prod_encode 3)
(prod_encode (4,0))"
\<comment> \<open>maps each agent to a unique natural number, for specifications\<close>
text\<open>The function is indeed injective\<close>
lemma inj_nat_of_agent: "inj nat_of_agent"
by (simp add: nat_of_agent_def inj_on_def curry_def prod_encode_eq split: agent.split)
definition
(*Keys useful to decrypt elements of a message set*)
keysFor :: "msg set \ key set"
where "keysFor H = invKey ` {K. \X. Crypt K X \ H}"
subsubsection\<open>Inductive definition of all "parts" of a message.\<close>
inductive_set
parts :: "msg set \ msg set"
for H :: "msg set"
where
Inj [intro]: "X \ H ==> X \ parts H"
| Fst: "\X,Y\ \ parts H ==> X \ parts H"
| Snd: "\X,Y\ \ parts H ==> Y \ parts H"
| Body: "Crypt K X \ parts H ==> X \ parts H"
(*Monotonicity*)
lemma parts_mono: "G\H ==> parts(G) \ parts(H)"
apply auto
apply (erule parts.induct)
apply (auto dest: Fst Snd Body)
done
subsubsection\<open>Inverse of keys\<close>
(*Equations hold because constructors are injective; cannot prove for all f*)
lemma Key_image_eq [simp]: "(Key x \ Key`A) = (x\A)"
by auto
lemma Nonce_Key_image_eq [simp]: "(Nonce x \ Key`A)"
by auto
lemma Cardholder_image_eq [simp]: "(Cardholder x \ Cardholder`A) = (x \ A)"
by auto
lemma CA_image_eq [simp]: "(CA x \ CA`A) = (x \ A)"
by auto
lemma Pan_image_eq [simp]: "(Pan x \ Pan`A) = (x \ A)"
by auto
lemma Pan_Key_image_eq [simp]: "(Pan x \ Key`A)"
by auto
lemma Nonce_Pan_image_eq [simp]: "(Nonce x \ Pan`A)"
by auto
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
apply safe
apply (drule_tac f = invKey in arg_cong, simp)
done
subsection\<open>keysFor operator\<close>
lemma keysFor_empty [simp]: "keysFor {} = {}"
by (unfold keysFor_def, blast)
lemma keysFor_Un [simp]: "keysFor (H \ H') = keysFor H \ keysFor H'"
by (unfold keysFor_def, blast)
lemma keysFor_UN [simp]: "keysFor (\i\A. H i) = (\i\A. keysFor (H i))"
by (unfold keysFor_def, blast)
(*Monotonicity*)
lemma keysFor_mono: "G\H ==> keysFor(G) \ keysFor(H)"
by (unfold keysFor_def, blast)
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Pan [simp]: "keysFor (insert (Pan A) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_MPair [simp]: "keysFor (insert \X,Y\ H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Crypt [simp]:
"keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
by (unfold keysFor_def, auto)
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
by (unfold keysFor_def, auto)
lemma Crypt_imp_invKey_keysFor: "Crypt K X \ H ==> invKey K \ keysFor H"
by (unfold keysFor_def, blast)
subsection\<open>Inductive relation "parts"\<close>
lemma MPair_parts:
"[| \X,Y\ \ parts H;
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
by (blast dest: parts.Fst parts.Snd)
declare MPair_parts [elim!] parts.Body [dest!]
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the
compound message. They work well on THIS FILE.
\<open>MPair_parts\<close> is left as SAFE because it speeds up proofs.
The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close>
lemma parts_increasing: "H \ parts(H)"
by blast
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]
lemma parts_empty [simp]: "parts{} = {}"
apply safe
apply (erule parts.induct, blast+)
done
lemma parts_emptyE [elim!]: "X\ parts{} ==> P"
by simp
(*WARNING: loops if H = {Y}, therefore must not be repeated!*)
lemma parts_singleton: "X\ parts H ==> \Y\H. X\ parts {Y}"
by (erule parts.induct, fast+)
subsubsection\<open>Unions\<close>
lemma parts_Un_subset1: "parts(G) \ parts(H) \ parts(G \ H)"
by (intro Un_least parts_mono Un_upper1 Un_upper2)
lemma parts_Un_subset2: "parts(G \ H) \ parts(G) \ parts(H)"
apply (rule subsetI)
apply (erule parts.induct, blast+)
done
lemma parts_Un [simp]: "parts(G \ H) = parts(G) \ parts(H)"
by (intro equalityI parts_Un_subset1 parts_Un_subset2)
lemma parts_insert: "parts (insert X H) = parts {X} \ parts H"
apply (subst insert_is_Un [of _ H])
apply (simp only: parts_Un)
done
(*TWO inserts to avoid looping. This rewrite is better than nothing.
Not suitable for Addsimps: its behaviour can be strange.*)
lemma parts_insert2:
"parts (insert X (insert Y H)) = parts {X} \ parts {Y} \ parts H"
apply (simp add: Un_assoc)
apply (simp add: parts_insert [symmetric])
done
lemma parts_UN_subset1: "(\x\A. parts(H x)) \ parts(\x\A. H x)"
by (intro UN_least parts_mono UN_upper)
lemma parts_UN_subset2: "parts(\x\A. H x) \ (\x\A. parts(H x))"
apply (rule subsetI)
apply (erule parts.induct, blast+)
done
lemma parts_UN [simp]: "parts(\x\A. H x) = (\x\A. parts(H x))"
by (intro equalityI parts_UN_subset1 parts_UN_subset2)
(*Added to simplify arguments to parts, analz and synth.
NOTE: the UN versions are no longer used!*)
text\<open>This allows \<open>blast\<close> to simplify occurrences of
\<^term>\<open>parts(G\<union>H)\<close> in the assumption.\<close>
declare parts_Un [THEN equalityD1, THEN subsetD, THEN UnE, elim!]
lemma parts_insert_subset: "insert X (parts H) \ parts(insert X H)"
by (blast intro: parts_mono [THEN [2] rev_subsetD])
subsubsection\<open>Idempotence and transitivity\<close>
lemma parts_partsD [dest!]: "X\ parts (parts H) ==> X\ parts H"
by (erule parts.induct, blast+)
lemma parts_idem [simp]: "parts (parts H) = parts H"
by blast
lemma parts_trans: "[| X\ parts G; G \ parts H |] ==> X\ parts H"
by (drule parts_mono, blast)
(*Cut*)
lemma parts_cut:
"[| Y\ parts (insert X G); X\ parts H |] ==> Y\ parts (G \ H)"
by (erule parts_trans, auto)
lemma parts_cut_eq [simp]: "X\ parts H ==> parts (insert X H) = parts H"
by (force dest!: parts_cut intro: parts_insertI)
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
lemma parts_insert_Agent [simp]:
"parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done
lemma parts_insert_Nonce [simp]:
"parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done
lemma parts_insert_Number [simp]:
"parts (insert (Number N) H) = insert (Number N) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done
lemma parts_insert_Key [simp]:
"parts (insert (Key K) H) = insert (Key K) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done
lemma parts_insert_Pan [simp]:
"parts (insert (Pan A) H) = insert (Pan A) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done
lemma parts_insert_Hash [simp]:
"parts (insert (Hash X) H) = insert (Hash X) (parts H)"
apply (rule parts_insert_eq_I)
apply (erule parts.induct, auto)
done
lemma parts_insert_Crypt [simp]:
"parts (insert (Crypt K X) H) =
insert (Crypt K X) (parts (insert X H))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct, auto)
apply (erule parts.induct)
apply (blast intro: parts.Body)+
done
lemma parts_insert_MPair [simp]:
"parts (insert \X,Y\ H) =
insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct, auto)
apply (erule parts.induct)
apply (blast intro: parts.Fst parts.Snd)+
done
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
apply auto
apply (erule parts.induct, auto)
done
lemma parts_image_Pan [simp]: "parts (Pan`A) = Pan`A"
apply auto
apply (erule parts.induct, auto)
done
(*In any message, there is an upper bound N on its greatest nonce.*)
lemma msg_Nonce_supply: "\N. \n. N\n \ Nonce n \ parts {msg}"
apply (induct_tac "msg")
apply (simp_all (no_asm_simp) add: exI parts_insert2)
(*MPair case: blast_tac works out the necessary sum itself!*)
prefer 2 apply (blast elim!: add_leE)
(*Nonce case*)
apply (rename_tac nat)
apply (rule_tac x = "N + Suc nat" in exI)
apply (auto elim!: add_leE)
done
(* Ditto, for numbers.*)
lemma msg_Number_supply: "\N. \n. N\n \ Number n \ parts {msg}"
apply (induct_tac "msg")
apply (simp_all (no_asm_simp) add: exI parts_insert2)
prefer 2 apply (blast elim!: add_leE)
apply (rename_tac nat)
apply (rule_tac x = "N + Suc nat" in exI, auto)
done
subsection\<open>Inductive relation "analz"\<close>
text\<open>Inductive definition of "analz" -- what can be broken down from a set of
messages, including keys. A form of downward closure. Pairs can
be taken apart; messages decrypted with known keys.\<close>
inductive_set
analz :: "msg set => msg set"
for H :: "msg set"
where
Inj [intro,simp] : "X \ H ==> X \ analz H"
| Fst: "\X,Y\ \ analz H ==> X \ analz H"
| Snd: "\X,Y\ \ analz H ==> Y \ analz H"
| Decrypt [dest]:
"[|Crypt K X \ analz H; Key(invKey K) \ analz H|] ==> X \ analz H"
(*Monotonicity; Lemma 1 of Lowe's paper*)
lemma analz_mono: "G\H ==> analz(G) \ analz(H)"
apply auto
apply (erule analz.induct)
apply (auto dest: Fst Snd)
done
text\<open>Making it safe speeds up proofs\<close>
lemma MPair_analz [elim!]:
"[| \X,Y\ \ analz H;
[| X \<in> analz H; Y \<in> analz H |] ==> P
|] ==> P"
by (blast dest: analz.Fst analz.Snd)
lemma analz_increasing: "H \ analz(H)"
by blast
lemma analz_subset_parts: "analz H \ parts H"
apply (rule subsetI)
apply (erule analz.induct, blast+)
done
lemmas analz_into_parts = analz_subset_parts [THEN subsetD]
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]
lemma parts_analz [simp]: "parts (analz H) = parts H"
apply (rule equalityI)
apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)
apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])
done
lemma analz_parts [simp]: "analz (parts H) = parts H"
apply auto
apply (erule analz.induct, auto)
done
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]
subsubsection\<open>General equational properties\<close>
lemma analz_empty [simp]: "analz{} = {}"
apply safe
apply (erule analz.induct, blast+)
done
(*Converse fails: we can analz more from the union than from the
separate parts, as a key in one might decrypt a message in the other*)
lemma analz_Un: "analz(G) \ analz(H) \ analz(G \ H)"
by (intro Un_least analz_mono Un_upper1 Un_upper2)
lemma analz_insert: "insert X (analz H) \ analz(insert X H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
lemma analz_insert_Agent [simp]:
"analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
lemma analz_insert_Nonce [simp]:
"analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
lemma analz_insert_Number [simp]:
"analz (insert (Number N) H) = insert (Number N) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
lemma analz_insert_Hash [simp]:
"analz (insert (Hash X) H) = insert (Hash X) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
(*Can only pull out Keys if they are not needed to decrypt the rest*)
lemma analz_insert_Key [simp]:
"K \ keysFor (analz H) ==>
analz (insert (Key K) H) = insert (Key K) (analz H)"
apply (unfold keysFor_def)
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
lemma analz_insert_MPair [simp]:
"analz (insert \X,Y\ H) =
insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule analz.induct, auto)
apply (erule analz.induct)
apply (blast intro: analz.Fst analz.Snd)+
done
(*Can pull out enCrypted message if the Key is not known*)
lemma analz_insert_Crypt:
"Key (invKey K) \ analz H
==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
lemma analz_insert_Pan [simp]:
"analz (insert (Pan A) H) = insert (Pan A) (analz H)"
apply (rule analz_insert_eq_I)
apply (erule analz.induct, auto)
done
lemma lemma1: "Key (invKey K) \ analz H ==>
analz (insert (Crypt K X) H) \<subseteq>
insert (Crypt K X) (analz (insert X H))"
apply (rule subsetI)
apply (erule_tac x = x in analz.induct, auto)
done
lemma lemma2: "Key (invKey K) \ analz H ==>
insert (Crypt K X) (analz (insert X H)) \<subseteq>
analz (insert (Crypt K X) H)"
apply auto
apply (erule_tac x = x in analz.induct, auto)
apply (blast intro: analz_insertI analz.Decrypt)
done
lemma analz_insert_Decrypt:
"Key (invKey K) \ analz H ==>
analz (insert (Crypt K X) H) =
insert (Crypt K X) (analz (insert X H))"
by (intro equalityI lemma1 lemma2)
(*Case analysis: either the message is secure, or it is not!
Effective, but can cause subgoals to blow up!
Use with if_split; apparently split_tac does not cope with patterns
such as "analz (insert (Crypt K X) H)" *)
lemma analz_Crypt_if [simp]:
"analz (insert (Crypt K X) H) =
(if (Key (invKey K) \<in> analz H)
then insert (Crypt K X) (analz (insert X H))
else insert (Crypt K X) (analz H))"
by (simp add: analz_insert_Crypt analz_insert_Decrypt)
(*This rule supposes "for the sake of argument" that we have the key.*)
lemma analz_insert_Crypt_subset:
"analz (insert (Crypt K X) H) \
insert (Crypt K X) (analz (insert X H))"
apply (rule subsetI)
apply (erule analz.induct, auto)
done
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
apply auto
apply (erule analz.induct, auto)
done
lemma analz_image_Pan [simp]: "analz (Pan`A) = Pan`A"
apply auto
apply (erule analz.induct, auto)
done
subsubsection\<open>Idempotence and transitivity\<close>
lemma analz_analzD [dest!]: "X\ analz (analz H) ==> X\ analz H"
by (erule analz.induct, blast+)
lemma analz_idem [simp]: "analz (analz H) = analz H"
by blast
lemma analz_trans: "[| X\ analz G; G \ analz H |] ==> X\ analz H"
by (drule analz_mono, blast)
(*Cut; Lemma 2 of Lowe*)
lemma analz_cut: "[| Y\ analz (insert X H); X\ analz H |] ==> Y\ analz H"
by (erule analz_trans, blast)
(*Cut can be proved easily by induction on
"Y: analz (insert X H) ==> X: analz H \<longrightarrow> Y: analz H"
*)
(*This rewrite rule helps in the simplification of messages that involve
the forwarding of unknown components (X). Without it, removing occurrences
of X can be very complicated. *)
lemma analz_insert_eq: "X\ analz H ==> analz (insert X H) = analz H"
by (blast intro: analz_cut analz_insertI)
text\<open>A congruence rule for "analz"\<close>
lemma analz_subset_cong:
"[| analz G \ analz G'; analz H \ analz H'
|] ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
apply clarify
apply (erule analz.induct)
apply (best intro: analz_mono [THEN subsetD])+
done
lemma analz_cong:
"[| analz G = analz G'; analz H = analz H'
|] ==> analz (G \<union> H) = analz (G' \<union> H')"
by (intro equalityI analz_subset_cong, simp_all)
lemma analz_insert_cong:
"analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
by (force simp only: insert_def intro!: analz_cong)
(*If there are no pairs or encryptions then analz does nothing*)
lemma analz_trivial:
"[| \X Y. \X,Y\ \ H; \X K. Crypt K X \ H |] ==> analz H = H"
apply safe
apply (erule analz.induct, blast+)
done
(*These two are obsolete (with a single Spy) but cost little to prove...*)
lemma analz_UN_analz_lemma:
"X\ analz (\i\A. analz (H i)) ==> X\ analz (\i\A. H i)"
apply (erule analz.induct)
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
done
lemma analz_UN_analz [simp]: "analz (\i\A. analz (H i)) = analz (\i\A. H i)"
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
subsection\<open>Inductive relation "synth"\<close>
text\<open>Inductive definition of "synth" -- what can be built up from a set of
messages. A form of upward closure. Pairs can be built, messages
encrypted with known keys. Agent names are public domain.
Numbers can be guessed, but Nonces cannot be.\<close>
inductive_set
synth :: "msg set \ msg set"
for H :: "msg set"
where
Inj [intro]: "X \ H ==> X \ synth H"
| Agent [intro]: "Agent agt \ synth H"
| Number [intro]: "Number n \ synth H"
| Hash [intro]: "X \ synth H ==> Hash X \ synth H"
| MPair [intro]: "[|X \ synth H; Y \ synth H|] ==> \X,Y\ \ synth H"
| Crypt [intro]: "[|X \ synth H; Key(K) \ H|] ==> Crypt K X \ synth H"
(*Monotonicity*)
lemma synth_mono: "G\H ==> synth(G) \ synth(H)"
apply auto
apply (erule synth.induct)
apply (auto dest: Fst Snd Body)
done
(*NO Agent_synth, as any Agent name can be synthesized. Ditto for Number*)
inductive_cases Nonce_synth [elim!]: "Nonce n \ synth H"
inductive_cases Key_synth [elim!]: "Key K \ synth H"
inductive_cases Hash_synth [elim!]: "Hash X \ synth H"
inductive_cases MPair_synth [elim!]: "\X,Y\ \ synth H"
inductive_cases Crypt_synth [elim!]: "Crypt K X \ synth H"
inductive_cases Pan_synth [elim!]: "Pan A \ synth H"
lemma synth_increasing: "H \ synth(H)"
by blast
subsubsection\<open>Unions\<close>
(*Converse fails: we can synth more from the union than from the
separate parts, building a compound message using elements of each.*)
lemma synth_Un: "synth(G) \ synth(H) \ synth(G \ H)"
by (intro Un_least synth_mono Un_upper1 Un_upper2)
lemma synth_insert: "insert X (synth H) \ synth(insert X H)"
by (blast intro: synth_mono [THEN [2] rev_subsetD])
subsubsection\<open>Idempotence and transitivity\<close>
lemma synth_synthD [dest!]: "X\ synth (synth H) ==> X\ synth H"
by (erule synth.induct, blast+)
lemma synth_idem: "synth (synth H) = synth H"
by blast
lemma synth_trans: "[| X\ synth G; G \ synth H |] ==> X\ synth H"
by (drule synth_mono, blast)
(*Cut; Lemma 2 of Lowe*)
lemma synth_cut: "[| Y\ synth (insert X H); X\ synth H |] ==> Y\ synth H"
by (erule synth_trans, blast)
lemma Agent_synth [simp]: "Agent A \ synth H"
by blast
lemma Number_synth [simp]: "Number n \ synth H"
by blast
lemma Nonce_synth_eq [simp]: "(Nonce N \ synth H) = (Nonce N \ H)"
by blast
lemma Key_synth_eq [simp]: "(Key K \ synth H) = (Key K \ H)"
by blast
lemma Crypt_synth_eq [simp]: "Key K \ H ==> (Crypt K X \ synth H) = (Crypt K X \ H)"
by blast
lemma Pan_synth_eq [simp]: "(Pan A \ synth H) = (Pan A \ H)"
by blast
lemma keysFor_synth [simp]:
"keysFor (synth H) = keysFor H \ invKey`{K. Key K \ H}"
by (unfold keysFor_def, blast)
subsubsection\<open>Combinations of parts, analz and synth\<close>
lemma parts_synth [simp]: "parts (synth H) = parts H \ synth H"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct)
apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD]
parts.Fst parts.Snd parts.Body)+
done
lemma analz_analz_Un [simp]: "analz (analz G \ H) = analz (G \ H)"
apply (intro equalityI analz_subset_cong)+
apply simp_all
done
lemma analz_synth_Un [simp]: "analz (synth G \ H) = analz (G \ H) \ synth G"
apply (rule equalityI)
apply (rule subsetI)
apply (erule analz.induct)
prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])
apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+
done
lemma analz_synth [simp]: "analz (synth H) = analz H \ synth H"
apply (cut_tac H = "{}" in analz_synth_Un)
apply (simp (no_asm_use))
done
subsubsection\<open>For reasoning about the Fake rule in traces\<close>
lemma parts_insert_subset_Un: "X\ G ==> parts(insert X H) \ parts G \ parts H"
by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
(*More specifically for Fake. Very occasionally we could do with a version
of the form parts{X} \<subseteq> synth (analz H) \<union> parts H *)
lemma Fake_parts_insert: "X \ synth (analz H) ==>
parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
apply (drule parts_insert_subset_Un)
apply (simp (no_asm_use))
apply blast
done
lemma Fake_parts_insert_in_Un:
"[|Z \ parts (insert X H); X \ synth (analz H)|]
==> Z \<in> synth (analz H) \<union> parts H"
by (blast dest: Fake_parts_insert [THEN subsetD, dest])
(*H is sometimes (Key ` KK \<union> spies evs), so can't put G=H*)
lemma Fake_analz_insert:
"X\ synth (analz G) ==>
analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
apply (rule subsetI)
apply (subgoal_tac "x \ analz (synth (analz G) \ H) ")
prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])
apply (simp (no_asm_use))
apply blast
done
lemma analz_conj_parts [simp]:
"(X \ analz H \ X \ parts H) = (X \ analz H)"
by (blast intro: analz_subset_parts [THEN subsetD])
lemma analz_disj_parts [simp]:
"(X \ analz H | X \ parts H) = (X \ parts H)"
by (blast intro: analz_subset_parts [THEN subsetD])
(*Without this equation, other rules for synth and analz would yield
redundant cases*)
lemma MPair_synth_analz [iff]:
"(\X,Y\ \ synth (analz H)) =
(X \<in> synth (analz H) \<and> Y \<in> synth (analz H))"
by blast
lemma Crypt_synth_analz:
"[| Key K \ analz H; Key (invKey K) \ analz H |]
==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"
by blast
lemma Hash_synth_analz [simp]:
"X \ synth (analz H)
==> (Hash\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = (Hash\<lbrace>X,Y\<rbrace> \<in> analz H)"
by blast
(*We do NOT want Crypt... messages broken up in protocols!!*)
declare parts.Body [rule del]
text\<open>Rewrites to push in Key and Crypt messages, so that other messages can
be pulled out using the \<open>analz_insert\<close> rules\<close>
lemmas pushKeys =
insert_commute [of "Key K" "Agent C"]
insert_commute [of "Key K" "Nonce N"]
insert_commute [of "Key K" "Number N"]
insert_commute [of "Key K" "Pan PAN"]
insert_commute [of "Key K" "Hash X"]
insert_commute [of "Key K" "MPair X Y"]
insert_commute [of "Key K" "Crypt X K'"]
for K C N PAN X Y K'
lemmas pushCrypts =
insert_commute [of "Crypt X K" "Agent C"]
insert_commute [of "Crypt X K" "Nonce N"]
insert_commute [of "Crypt X K" "Number N"]
insert_commute [of "Crypt X K" "Pan PAN"]
insert_commute [of "Crypt X K" "Hash X'"]
insert_commute [of "Crypt X K" "MPair X' Y"]
for X K C N PAN X' Y
text\<open>Cannot be added with \<open>[simp]\<close> -- messages should not always be
re-ordered.\<close>
lemmas pushes = pushKeys pushCrypts
subsection\<open>Tactics useful for many protocol proofs\<close>
(*<*)
ML
\<open>
(*Analysis of Fake cases. Also works for messages that forward unknown parts,
but this application is no longer necessary if analz_insert_eq is used.
DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
(*Apply rules to break down assumptions of the form
Y \<in> parts(insert X H) and Y \<in> analz(insert X H)
*)
fun Fake_insert_tac ctxt =
dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert},
impOfSubs @{thm Fake_parts_insert}] THEN'
eresolve_tac ctxt [asm_rl, @{thm synth.Inj}];
fun Fake_insert_simp_tac ctxt i =
REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i;
fun atomic_spy_analz_tac ctxt =
SELECT_GOAL
(Fake_insert_simp_tac ctxt 1 THEN
IF_UNSOLVED
(Blast.depth_tac (ctxt addIs [@{thm analz_insertI},
impOfSubs @{thm analz_subset_parts}]) 4 1));
fun spy_analz_tac ctxt i =
DETERM
(SELECT_GOAL
(EVERY
[ (*push in occurrences of X...*)
(REPEAT o CHANGED)
(Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] []
(insert_commute RS ssubst) 1),
(*...allowing further simplifications*)
simp_tac ctxt 1,
REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])),
DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i);
\<close>
(*>*)
(*By default only o_apply is built-in. But in the presence of eta-expansion
this means that some terms displayed as (f o g) will be rewritten, and others
will not!*)
declare o_def [simp]
lemma Crypt_notin_image_Key [simp]: "Crypt K X \ Key ` A"
by auto
lemma Hash_notin_image_Key [simp] :"Hash X \ Key ` A"
by auto
lemma synth_analz_mono: "G\H ==> synth (analz(G)) \ synth (analz(H))"
by (simp add: synth_mono analz_mono)
lemma Fake_analz_eq [simp]:
"X \ synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"
apply (drule Fake_analz_insert[of _ _ "H"])
apply (simp add: synth_increasing[THEN Un_absorb2])
apply (drule synth_mono)
apply (simp add: synth_idem)
apply (blast intro: synth_analz_mono [THEN [2] rev_subsetD])
done
text\<open>Two generalizations of \<open>analz_insert_eq\<close>\<close>
lemma gen_analz_insert_eq [rule_format]:
"X \ analz H ==> \G. H \ G \ analz (insert X G) = analz G"
by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
lemma synth_analz_insert_eq [rule_format]:
"X \ synth (analz H)
\<Longrightarrow> \<forall>G. H \<subseteq> G \<longrightarrow> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)"
apply (erule synth.induct)
apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI])
done
lemma Fake_parts_sing:
"X \ synth (analz H) ==> parts{X} \ synth (analz H) \ parts H"
apply (rule subset_trans)
apply (erule_tac [2] Fake_parts_insert)
apply (simp add: parts_mono)
done
lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
method_setup spy_analz = \<open>
Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\
"for proving the Fake case when analz is involved"
method_setup atomic_spy_analz = \<open>
Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\
"for debugging spy_analz"
method_setup Fake_insert_simp = \<open>
Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\
"for debugging spy_analz"
end
¤ Dauer der Verarbeitung: 0.34 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|