(* Title: HOL/SMT_Examples/SMT_Examples_Verit.thy
Author: Sascha Boehme, TU Muenchen
Author: Mathias Fleury, JKU
Half of the examples come from the corresponding file for z3,
the others come from the Isabelle distribution or the AFP.
*)
section \<open>Examples for the (smt (verit)) binding\<close>
theory SMT_Examples_Verit
imports Complex_Main
begin
external_file \<open>SMT_Examples_Verit.certs\<close>
declare [[smt_certificates = "SMT_Examples_Verit.certs"]]
declare [[smt_read_only_certificates = true]]
section \<open>Propositional and first-order logic\<close>
lemma "True" by (smt (verit))
lemma "p \ \p" by (smt (verit))
lemma "(p \ True) = p" by (smt (verit))
lemma "(p \ q) \ \p \ q" by (smt (verit))
lemma "(a \ b) \ (c \ d) \ (a \ b) \ (c \ d)" by (smt (verit))
lemma "(p1 \ p2) \ p3 \ (p1 \ (p3 \ p2) \ (p1 \ p3)) \ p1" by (smt (verit))
lemma "P = P = P = P = P = P = P = P = P = P" by (smt (verit))
lemma
assumes "a \ b \ c \ d"
and "e \ f \ (a \ d)"
and "\ (a \ (c \ ~c)) \ b"
and "\ (b \ (x \ \ x)) \ c"
and "\ (d \ False) \ c"
and "\ (c \ (\ p \ (p \ (q \ \ q))))"
shows False
using assms by (smt (verit))
axiomatization symm_f :: "'a \ 'a \ 'a" where
symm_f: "symm_f x y = symm_f y x"
lemma "a = a \ symm_f a b = symm_f b a"
by (smt (verit) symm_f)
(*
Taken from ~~/src/HOL/ex/SAT_Examples.thy.
Translated from TPTP problem library: PUZ015-2.006.dimacs
*)
lemma
assumes "~x0"
and "~x30"
and "~x29"
and "~x59"
and "x1 \ x31 \ x0"
and "x2 \ x32 \ x1"
and "x3 \ x33 \ x2"
and "x4 \ x34 \ x3"
and "x35 \ x4"
and "x5 \ x36 \ x30"
and "x6 \ x37 \ x5 \ x31"
and "x7 \ x38 \ x6 \ x32"
and "x8 \ x39 \ x7 \ x33"
and "x9 \ x40 \ x8 \ x34"
and "x41 \ x9 \ x35"
and "x10 \ x42 \ x36"
and "x11 \ x43 \ x10 \ x37"
and "x12 \ x44 \ x11 \ x38"
and "x13 \ x45 \ x12 \ x39"
and "x14 \ x46 \ x13 \ x40"
and "x47 \ x14 \ x41"
and "x15 \ x48 \ x42"
and "x16 \ x49 \ x15 \ x43"
and "x17 \ x50 \ x16 \ x44"
and "x18 \ x51 \ x17 \ x45"
and "x19 \ x52 \ x18 \ x46"
and "x53 \ x19 \ x47"
and "x20 \ x54 \ x48"
and "x21 \ x55 \ x20 \ x49"
and "x22 \ x56 \ x21 \ x50"
and "x23 \ x57 \ x22 \ x51"
and "x24 \ x58 \ x23 \ x52"
and "x59 \ x24 \ x53"
and "x25 \ x54"
and "x26 \ x25 \ x55"
and "x27 \ x26 \ x56"
and "x28 \ x27 \ x57"
and "x29 \ x28 \ x58"
and "~x1 \ ~x31"
and "~x1 \ ~x0"
and "~x31 \ ~x0"
and "~x2 \ ~x32"
and "~x2 \ ~x1"
and "~x32 \ ~x1"
and "~x3 \ ~x33"
and "~x3 \ ~x2"
and "~x33 \ ~x2"
and "~x4 \ ~x34"
and "~x4 \ ~x3"
and "~x34 \ ~x3"
and "~x35 \ ~x4"
and "~x5 \ ~x36"
and "~x5 \ ~x30"
and "~x36 \ ~x30"
and "~x6 \ ~x37"
and "~x6 \ ~x5"
and "~x6 \ ~x31"
and "~x37 \ ~x5"
and "~x37 \ ~x31"
and "~x5 \ ~x31"
and "~x7 \ ~x38"
and "~x7 \ ~x6"
and "~x7 \ ~x32"
and "~x38 \ ~x6"
and "~x38 \ ~x32"
and "~x6 \ ~x32"
and "~x8 \ ~x39"
and "~x8 \ ~x7"
and "~x8 \ ~x33"
and "~x39 \ ~x7"
and "~x39 \ ~x33"
and "~x7 \ ~x33"
and "~x9 \ ~x40"
and "~x9 \ ~x8"
and "~x9 \ ~x34"
and "~x40 \ ~x8"
and "~x40 \ ~x34"
and "~x8 \ ~x34"
and "~x41 \ ~x9"
and "~x41 \ ~x35"
and "~x9 \ ~x35"
and "~x10 \ ~x42"
and "~x10 \ ~x36"
and "~x42 \ ~x36"
and "~x11 \ ~x43"
and "~x11 \ ~x10"
and "~x11 \ ~x37"
and "~x43 \ ~x10"
and "~x43 \ ~x37"
and "~x10 \ ~x37"
and "~x12 \ ~x44"
and "~x12 \ ~x11"
and "~x12 \ ~x38"
and "~x44 \ ~x11"
and "~x44 \ ~x38"
and "~x11 \ ~x38"
and "~x13 \ ~x45"
and "~x13 \ ~x12"
and "~x13 \ ~x39"
and "~x45 \ ~x12"
and "~x45 \ ~x39"
and "~x12 \ ~x39"
and "~x14 \ ~x46"
and "~x14 \ ~x13"
and "~x14 \ ~x40"
and "~x46 \ ~x13"
and "~x46 \ ~x40"
and "~x13 \ ~x40"
and "~x47 \ ~x14"
and "~x47 \ ~x41"
and "~x14 \ ~x41"
and "~x15 \ ~x48"
and "~x15 \ ~x42"
and "~x48 \ ~x42"
and "~x16 \ ~x49"
and "~x16 \ ~x15"
and "~x16 \ ~x43"
and "~x49 \ ~x15"
and "~x49 \ ~x43"
and "~x15 \ ~x43"
and "~x17 \ ~x50"
and "~x17 \ ~x16"
and "~x17 \ ~x44"
and "~x50 \ ~x16"
and "~x50 \ ~x44"
and "~x16 \ ~x44"
and "~x18 \ ~x51"
and "~x18 \ ~x17"
and "~x18 \ ~x45"
and "~x51 \ ~x17"
and "~x51 \ ~x45"
and "~x17 \ ~x45"
and "~x19 \ ~x52"
and "~x19 \ ~x18"
and "~x19 \ ~x46"
and "~x52 \ ~x18"
and "~x52 \ ~x46"
and "~x18 \ ~x46"
and "~x53 \ ~x19"
and "~x53 \ ~x47"
and "~x19 \ ~x47"
and "~x20 \ ~x54"
and "~x20 \ ~x48"
and "~x54 \ ~x48"
and "~x21 \ ~x55"
and "~x21 \ ~x20"
and "~x21 \ ~x49"
and "~x55 \ ~x20"
and "~x55 \ ~x49"
and "~x20 \ ~x49"
and "~x22 \ ~x56"
and "~x22 \ ~x21"
and "~x22 \ ~x50"
and "~x56 \ ~x21"
and "~x56 \ ~x50"
and "~x21 \ ~x50"
and "~x23 \ ~x57"
and "~x23 \ ~x22"
and "~x23 \ ~x51"
and "~x57 \ ~x22"
and "~x57 \ ~x51"
and "~x22 \ ~x51"
and "~x24 \ ~x58"
and "~x24 \ ~x23"
and "~x24 \ ~x52"
and "~x58 \ ~x23"
and "~x58 \ ~x52"
and "~x23 \ ~x52"
and "~x59 \ ~x24"
and "~x59 \ ~x53"
and "~x24 \ ~x53"
and "~x25 \ ~x54"
and "~x26 \ ~x25"
and "~x26 \ ~x55"
and "~x25 \ ~x55"
and "~x27 \ ~x26"
and "~x27 \ ~x56"
and "~x26 \ ~x56"
and "~x28 \ ~x27"
and "~x28 \ ~x57"
and "~x27 \ ~x57"
and "~x29 \ ~x28"
and "~x29 \ ~x58"
and "~x28 \ ~x58"
shows False
using assms by (smt (verit))
lemma "\x::int. P x \ (\y::int. P x \ P y)"
by (smt (verit))
lemma
assumes "(\x y. P x y = x)"
shows "(\y. P x y) = P x c"
using assms by (smt (verit))
lemma
assumes "(\x y. P x y = x)"
and "(\x. \y. P x y) = (\x. P x c)"
shows "(\y. P x y) = P x c"
using assms by (smt (verit))
lemma
assumes "if P x then \(\y. P y) else (\y. \P y)"
shows "P x \ P y"
using assms by (smt (verit))
section \<open>Arithmetic\<close>
subsection \<open>Linear arithmetic over integers and reals\<close>
lemma "(3::int) = 3" by (smt (verit))
lemma "(3::real) = 3" by (smt (verit))
lemma "(3 :: int) + 1 = 4" by (smt (verit))
lemma "x + (y + z) = y + (z + (x::int))" by (smt (verit))
lemma "max (3::int) 8 > 5" by (smt (verit))
lemma "\x :: real\ + \y\ \ \x + y\" by (smt (verit))
lemma "P ((2::int) < 3) = P True" supply[[smt_trace]] by (smt (verit))
lemma "x + 3 \ 4 \ x < (1::int)" by (smt (verit))
lemma
assumes "x \ (3::int)" and "y = x + 4"
shows "y - x > 0"
using assms by (smt (verit))
lemma "let x = (2 :: int) in x + x \ 5" by (smt (verit))
lemma
fixes x :: int
assumes "3 * x + 7 * a < 4" and "3 < 2 * x"
shows "a < 0"
using assms by (smt (verit))
lemma "(0 \ y + -1 * x \ \ 0 \ x \ 0 \ (x::int)) = (\ False)" by (smt (verit))
lemma "
(n < m \<and> m < n') \<or> (n < m \<and> m = n') \<or> (n < n' \<and> n' < m) \<or>
(n = n' \ n' < m) \ (n = m \ m < n') \
(n' < m \ m < n) \ (n' < m \ m = n) \
(n' < n \ n < m) \ (n' = n \ n < m) \ (n' = m \ m < n) \
(m < n \<and> n < n') \<or> (m < n \<and> n' = n) \<or> (m < n' \<and> n' < n) \<or>
(m = n \<and> n < n') \<or> (m = n' \<and> n' < n) \<or>
(n' = m \ m = (n::int))"
by (smt (verit))
text\<open>
The following example was taken from HOL/ex/PresburgerEx.thy, where it says:
This following theorem proves that all solutions to the
recurrence relation $x_{i+2} = |x_{i+1}| - x_i$ are periodic with
period 9. The example was brought to our attention by John
Harrison. It does does not require Presburger arithmetic but merely
quantifier-free linear arithmetic and holds for the rationals as well.
Warning: it takes (in 2006) over 4.2 minutes!
There, it is proved by "arith". (smt (verit)) is able to prove this within a fraction
of one second. With proof reconstruction, it takes about 13 seconds on a Core2
processor.
\<close>
lemma "\ x3 = \x2\ - x1; x4 = \x3\ - x2; x5 = \x4\ - x3;
x6 = \<bar>x5\<bar> - x4; x7 = \<bar>x6\<bar> - x5; x8 = \<bar>x7\<bar> - x6;
x9 = \<bar>x8\<bar> - x7; x10 = \<bar>x9\<bar> - x8; x11 = \<bar>x10\<bar> - x9 \<rbrakk>
\<Longrightarrow> x1 = x10 \<and> x2 = (x11::int)"
supply [[smt_timeout=360]]
by (smt (verit))
lemma "let P = 2 * x + 1 > x + (x::real) in P \ False \ P" by (smt (verit))
subsection \<open>Linear arithmetic with quantifiers\<close>
lemma "~ (\x::int. False)" by (smt (verit))
lemma "~ (\x::real. False)" by (smt (verit))
lemma "\x y::int. (x = 0 \ y = 1) \ x \ y" by (smt (verit))
lemma "\x y::int. x < y \ (2 * x + 1) < (2 * y)" by (smt (verit))
lemma "\x y::int. x + y > 2 \ x + y = 2 \ x + y < 2" by (smt (verit))
lemma "\x::int. if x > 0 then x + 1 > 0 else 1 > x" by (smt (verit))
lemma "(if (\x::int. x < 0 \ x > 0) then -1 else 3) > (0::int)" by (smt (verit))
lemma "\x::int. \x y. 0 < x \ 0 < y \ (0::int) < x + y" by (smt (verit))
lemma "\u::int. \(x::int) y::real. 0 < x \ 0 < y \ -1 < x" by (smt (verit))
lemma "\(a::int) b::int. 0 < b \ b < 1" by (smt (verit))
subsection \<open>Linear arithmetic for natural numbers\<close>
declare [[smt_nat_as_int]]
lemma "2 * (x::nat) \ 1" by (smt (verit))
lemma "a < 3 \ (7::nat) > 2 * a" by (smt (verit))
lemma "let x = (1::nat) + y in x - y > 0 * x" by (smt (verit))
lemma
"let x = (1::nat) + y in
let P = (if x > 0 then True else False) in
False \<or> P = (x - 1 = y) \<or> (\<not>P \<longrightarrow> False)"
by (smt (verit))
lemma "int (nat \x::int\) = \x\" by (smt (verit) int_nat_eq)
definition prime_nat :: "nat \ bool" where
"prime_nat p = (1 < p \ (\m. m dvd p --> m = 1 \ m = p))"
lemma "prime_nat (4*m + 1) \ m \ (1::nat)" by (smt (verit) prime_nat_def)
lemma "2 * (x::nat) \ 1"
by (smt (verit))
lemma \<open>2*(x :: int) \<noteq> 1\<close>
by (smt (verit))
declare [[smt_nat_as_int = false]]
section \<open>Pairs\<close>
lemma "fst (x, y) = a \ x = a"
using fst_conv by (smt (verit))
lemma "p1 = (x, y) \ p2 = (y, x) \ fst p1 = snd p2"
using fst_conv snd_conv by (smt (verit))
section \<open>Higher-order problems and recursion\<close>
lemma "i \ i1 \ i \ i2 \ (f (i1 := v1, i2 := v2)) i = f i"
using fun_upd_same fun_upd_apply by (smt (verit))
lemma "(f g (x::'a::type) = (g x \ True)) \ (f g x = True) \ (g x = True)"
by (smt (verit))
lemma "id x = x \ id True = True"
by (smt (verit) id_def)
lemma "i \ i1 \ i \ i2 \ ((f (i1 := v1)) (i2 := v2)) i = f i"
using fun_upd_same fun_upd_apply by (smt (verit))
lemma
"f (\x. g x) \ True"
"f (\x. g x) \ True"
by (smt (verit))+
lemma True using let_rsp by (smt (verit))
lemma "le = (\) \ le (3::int) 42" by (smt (verit))
lemma "map (\i::int. i + 1) [0, 1] = [1, 2]" by (smt (verit) list.map)
lemma "(\x. P x) \ \ All P" by (smt (verit))
fun dec_10 :: "int \ int" where
"dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
lemma "dec_10 (4 * dec_10 4) = 6" by (smt (verit) dec_10.simps)
context complete_lattice
begin
lemma
assumes "Sup {a | i::bool. True} \ Sup {b | i::bool. True}"
and "Sup {b | i::bool. True} \ Sup {a | i::bool. True}"
shows "Sup {a | i::bool. True} \ Sup {a | i::bool. True}"
using assms by (smt (verit) order_trans)
end
lemma
"eq_set (List.coset xs) (set ys) = rhs"
if "\ys. subset' (List.coset xs) (set ys) = (let n = card (UNIV::'a set) in 0 < n \ card (set (xs @ ys)) = n)"
and "\uu A. (uu::'a) \ - A \ uu \ A"
and "\uu. card (set (uu::'a list)) = length (remdups uu)"
and "\uu. finite (set (uu::'a list))"
and "\uu. (uu::'a) \ UNIV"
and "(UNIV::'a set) \ {}"
and "\c A B P. \(c::'a) \ A \ B; c \ A \ P; c \ B \ P\ \ P"
and "\a b. (a::nat) + b = b + a"
and "\a b. ((a::nat) = a + b) = (b = 0)"
and "card' (set xs) = length (remdups xs)"
and "card' = (card :: 'a set \ nat)"
and "\A B. \finite (A::'a set); finite B\ \ card A + card B = card (A \ B) + card (A \ B)"
and "\A. (card (A::'a set) = 0) = (A = {} \ infinite A)"
and "\A. \finite (UNIV::'a set); card (A::'a set) = card (UNIV::'a set)\ \ A = UNIV"
and "\xs. - List.coset (xs::'a list) = set xs"
and "\xs. - set (xs::'a list) = List.coset xs"
and "\A B. (A \ B = {}) = (\x. (x::'a) \ A \ x \ B)"
and "eq_set = (=)"
and "\A. finite (A::'a set) \ finite (- A) = finite (UNIV::'a set)"
and "rhs \ let n = card (UNIV::'a set) in if n = 0 then False else let xs' = remdups xs; ys' = remdups ys in length xs' + length ys' = n \ (\x\set xs'. x \ set ys') \ (\y\set ys'. y \ set xs')"
and "\xs ys. set ((xs::'a list) @ ys) = set xs \ set ys"
and "\A B. ((A::'a set) = B) = (A \ B \ B \ A)"
and "\xs. set (remdups (xs::'a list)) = set xs"
and "subset' = (\)"
and "\A B. (\x. (x::'a) \ A \ x \ B) \ A \ B"
and "\A B. \(A::'a set) \ B; B \ A\ \ A = B"
and "\A ys. (A \ List.coset ys) = (\y\set ys. (y::'a) \ A)"
using that by (smt (verit, default))
notepad
begin
have "line_integral F {i, j} g = line_integral F {i} g + line_integral F {j} g"
if \<open>(k, g) \<in> one_chain_typeI\<close>
\<open>\<And>A b B. ({} = (A::(real \<times> real) set) \<inter> insert (b::real \<times> real) (B::(real \<times> real) set)) = (b \<notin> A \<and> {} = A \<inter> B)\<close>
\<open>finite ({} :: (real \<times> real) set)\<close>
\<open>\<And>a A. finite (A::(real \<times> real) set) \<Longrightarrow> finite (insert (a::real \<times> real) A)\<close>
\<open>(i::real \<times> real) = (1::real, 0::real)\<close>
\<open> \<And>a A. (a::real \<times> real) \<in> (A::(real \<times> real) set) \<Longrightarrow> insert a A = A\<close> \<open>j = (0, 1)\<close>
\<open>\<And>x. (x::(real \<times> real) set) \<inter> {} = {}\<close>
\<open>\<And>y x A. insert (x::real \<times> real) (insert (y::real \<times> real) (A::(real \<times> real) set)) = insert y (insert x A)\<close>
\<open>\<And>a A. insert (a::real \<times> real) (A::(real \<times> real) set) = {a} \<union> A\<close>
\<open>\<And>F u basis2 basis1 \<gamma>. finite (u :: (real \<times> real) set) \<Longrightarrow>
line_integral_exists F basis1 \<gamma> \<Longrightarrow>
line_integral_exists F basis2 \<gamma> \<Longrightarrow>
basis1 \<union> basis2 = u \<Longrightarrow>
basis1 \<inter> basis2 = {} \<Longrightarrow>
line_integral F u \<gamma> = line_integral F basis1 \<gamma> + line_integral F basis2 \<gamma>\<close>
\<open>one_chain_line_integral F {i} one_chain_typeI =
one_chain_line_integral F {i} one_chain_typeII \<and>
(\<forall>(k, \<gamma>)\<in>one_chain_typeI. line_integral_exists F {i} \<gamma>) \<and>
(\<forall>(k, \<gamma>)\<in>one_chain_typeII. line_integral_exists F {i} \<gamma>)\<close>
\<open> one_chain_line_integral (F::real \<times> real \<Rightarrow> real \<times> real) {j::real \<times> real}
(one_chain_typeII::(int \<times> (real \<Rightarrow> real \<times> real)) set) =
one_chain_line_integral F {j} (one_chain_typeI::(int \<times> (real \<Rightarrow> real \<times> real)) set) \<and>
(\<forall>(k::int, \<gamma>::real \<Rightarrow> real \<times> real)\<in>one_chain_typeII. line_integral_exists F {j} \<gamma>) \<and>
(\<forall>(k::int, \<gamma>::real \<Rightarrow> real \<times> real)\<in>one_chain_typeI. line_integral_exists F {j} \<gamma>)\<close>
for F i j g one_chain_typeI one_chain_typeII and
line_integral :: \<open>(real \<times> real \<Rightarrow> real \<times> real) \<Rightarrow> (real \<times> real) set \<Rightarrow> (real \<Rightarrow> real \<times> real) \<Rightarrow> real\<close> and
line_integral_exists :: \<open>(real \<times> real \<Rightarrow> real \<times> real) \<Rightarrow> (real \<times> real) set \<Rightarrow> (real \<Rightarrow> real \<times> real) \<Rightarrow> bool\<close> and
one_chain_line_integral :: \<open>(real \<times> real \<Rightarrow> real \<times> real) \<Rightarrow> (real \<times> real) set \<Rightarrow> (int \<times> (real \<Rightarrow> real \<times> real)) set \<Rightarrow> real\<close> and
k
using prod.case_eq_if singleton_inject snd_conv
that
by (smt (verit))
end
lemma
fixes x y z :: real
assumes \<open>x + 2 * y > 0\<close> and
\<open>x - 2 * y > 0\<close> and
\<open>x < 0\<close>
shows False
using assms by (smt (verit))
(*test for arith reconstruction*)
lemma
fixes d :: real
assumes \<open>0 < d\<close>
\<open>diamond_y \<equiv> \<lambda>t. d / 2 - \<bar>t\<bar>\<close>
\<open>\<And>a b c :: real. (a / c < b / c) =
((0 < c \<longrightarrow> a < b) \<and> (c < 0 \<longrightarrow> b < a) \<and> c \<noteq> 0)\<close>
\<open>\<And>a b c :: real. (a / c < b / c) =
((0 < c \<longrightarrow> a < b) \<and> (c < 0 \<longrightarrow> b < a) \<and> c \<noteq> 0)\<close>
\<open>\<And>a b :: real. - a / b = - (a / b)\<close>
\<open>\<And>a b :: real. - a * b = - (a * b)\<close>
\<open>\<And>(x1 :: real) x2 y1 y2 :: real. ((x1, x2) = (y1, y2)) = (x1 = y1 \<and> x2 = y2)\<close>
shows \<open>(\<lambda>y. (d / 2, (2 * y - 1) * diamond_y (d / 2))) \<noteq>
(\<lambda>x. ((x - 1 / 2) * d, - diamond_y ((x - 1 / 2) * d))) \<Longrightarrow>
(\<lambda>y. (- (d / 2), (2 * y - 1) * diamond_y (- (d / 2)))) =
(\<lambda>x. ((x - 1 / 2) * d, diamond_y ((x - 1 / 2) * d))) \<Longrightarrow>
False\<close>
using assms
by (smt (verit,del_insts))
lemma
fixes d :: real
assumes \<open>0 < d\<close>
\<open>diamond_y \<equiv> \<lambda>t. d / 2 - \<bar>t\<bar>\<close>
\<open>\<And>a b c :: real. (a / c < b / c) =
((0 < c \<longrightarrow> a < b) \<and> (c < 0 \<longrightarrow> b < a) \<and> c \<noteq> 0)\<close>
\<open>\<And>a b c :: real. (a / c < b / c) =
((0 < c \<longrightarrow> a < b) \<and> (c < 0 \<longrightarrow> b < a) \<and> c \<noteq> 0)\<close>
\<open>\<And>a b :: real. - a / b = - (a / b)\<close>
\<open>\<And>a b :: real. - a * b = - (a * b)\<close>
\<open>\<And>(x1 :: real) x2 y1 y2 :: real. ((x1, x2) = (y1, y2)) = (x1 = y1 \<and> x2 = y2)\<close>
shows \<open>(\<lambda>y. (d / 2, (2 * y - 1) * diamond_y (d / 2))) \<noteq>
(\<lambda>x. ((x - 1 / 2) * d, - diamond_y ((x - 1 / 2) * d))) \<Longrightarrow>
(\<lambda>y. (- (d / 2), (2 * y - 1) * diamond_y (- (d / 2)))) =
(\<lambda>x. ((x - 1 / 2) * d, diamond_y ((x - 1 / 2) * d))) \<Longrightarrow>
False\<close>
using assms
by (smt (verit,ccfv_threshold))
(*qnt_rm_unused example*)
lemma
assumes \<open>\<forall>z y x. P z y\<close>
\<open>P z y \<Longrightarrow> False\<close>
shows False
using assms
by (smt (verit))
lemma
"max (x::int) y \ y"
supply [[smt_trace]]
by (smt (verit))+
context
begin
abbreviation finite' :: "'a set \<Rightarrow> bool"
where "finite' A \ finite A \ A \ {}"
lemma
fixes f :: "'b \ 'c :: linorder"
assumes
\<open>\<forall>(S::'b::type set) f::'b::type \<Rightarrow> 'c::linorder. finite' S \<longrightarrow> arg_min_on f S \<in> S\<close>
\<open>\<forall>(S::'a::type set) f::'a::type \<Rightarrow> 'c::linorder. finite' S \<longrightarrow> arg_min_on f S \<in> S\<close>
\<open>\<forall>(S::'b::type set) (y::'b::type) f::'b::type \<Rightarrow> 'c::linorder.
finite S \<and> S \<noteq> {} \<and> y \<in> S \<longrightarrow> f (arg_min_on f S) \<le> f y\<close>
\<open>\<forall>(S::'a::type set) (y::'a::type) f::'a::type \<Rightarrow> 'c::linorder.
finite S \<and> S \<noteq> {} \<and> y \<in> S \<longrightarrow> f (arg_min_on f S) \<le> f y\<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'c::linorder) (g::'a::type \<Rightarrow> 'b::type) x::'a::type. (f \<circ> g) x = f (g x)\<close>
\<open>\<forall>(F::'b::type set) h::'b::type \<Rightarrow> 'a::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(F::'b::type set) h::'b::type \<Rightarrow> 'b::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(F::'a::type set) h::'a::type \<Rightarrow> 'b::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(F::'a::type set) h::'a::type \<Rightarrow> 'a::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(b::'a::type) (f::'b::type \<Rightarrow> 'a::type) A::'b::type set.
b \<in> f ` A \<and> (\<forall>x::'b::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'b::type) (f::'b::type \<Rightarrow> 'b::type) A::'b::type set.
b \<in> f ` A \<and> (\<forall>x::'b::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'b::type) (f::'a::type \<Rightarrow> 'b::type) A::'a::type set.
b \<in> f ` A \<and> (\<forall>x::'a::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'a::type) (f::'a::type \<Rightarrow> 'a::type) A::'a::type set.
b \<in> f ` A \<and> (\<forall>x::'a::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'a::type) (f::'b::type \<Rightarrow> 'a::type) (x::'b::type) A::'b::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(b::'b::type) (f::'b::type \<Rightarrow> 'b::type) (x::'b::type) A::'b::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(b::'b::type) (f::'a::type \<Rightarrow> 'b::type) (x::'a::type) A::'a::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(b::'a::type) (f::'a::type \<Rightarrow> 'a::type) (x::'a::type) A::'a::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'a::type) A::'b::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'b::type) A::'b::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'a::type \<Rightarrow> 'b::type) A::'a::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'a::type \<Rightarrow> 'a::type) A::'a::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'c::linorder) (A::'b::type set) (x::'b::type) y::'b::type.
inj_on f A \<and> f x = f y \<and> x \<in> A \<and> y \<in> A \<longrightarrow> x = y\<close>
\<open>\<forall>(x::'c::linorder) y::'c::linorder. (x < y) = (x \<le> y \<and> x \<noteq> y)\<close>
\<open>inj_on (f::'b::type \<Rightarrow> 'c::linorder) ((g::'a::type \<Rightarrow> 'b::type) ` (B::'a::type set))\<close>
\<open>finite (B::'a::type set)\<close>
\<open>(B::'a::type set) \<noteq> {}\<close>
\<open>arg_min_on ((f::'b::type \<Rightarrow> 'c::linorder) \<circ> (g::'a::type \<Rightarrow> 'b::type)) (B::'a::type set) \<in> B\<close>
\<open>\<nexists>x::'a::type.
x \<in> (B::'a::type set) \<and>
((f::'b::type \ 'c::linorder) \ (g::'a::type \ 'b::type)) x < (f \ g) (arg_min_on (f \ g) B)\
\<open>\<forall>(f::'b::type \<Rightarrow> 'c::linorder) (P::'b::type \<Rightarrow> bool) a::'b::type.
inj_on f (Collect P) \<and> P a \<and> (\<forall>y::'b::type. P y \<longrightarrow> f a \<le> f y) \<longrightarrow> arg_min f P = a\<close>
\<open>\<forall>(S::'b::type set) f::'b::type \<Rightarrow> 'c::linorder. finite' S \<longrightarrow> arg_min_on f S \<in> S\<close>
\<open>\<forall>(S::'a::type set) f::'a::type \<Rightarrow> 'c::linorder. finite' S \<longrightarrow> arg_min_on f S \<in> S\<close>
\<open>\<forall>(S::'b::type set) (y::'b::type) f::'b::type \<Rightarrow> 'c::linorder.
finite S \<and> S \<noteq> {} \<and> y \<in> S \<longrightarrow> f (arg_min_on f S) \<le> f y\<close>
\<open>\<forall>(S::'a::type set) (y::'a::type) f::'a::type \<Rightarrow> 'c::linorder.
finite S \<and> S \<noteq> {} \<and> y \<in> S \<longrightarrow> f (arg_min_on f S) \<le> f y\<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'c::linorder) (g::'a::type \<Rightarrow> 'b::type) x::'a::type. (f \<circ> g) x = f (g x)\<close>
\<open>\<forall>(F::'b::type set) h::'b::type \<Rightarrow> 'a::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(F::'b::type set) h::'b::type \<Rightarrow> 'b::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(F::'a::type set) h::'a::type \<Rightarrow> 'b::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(F::'a::type set) h::'a::type \<Rightarrow> 'a::type. finite F \<longrightarrow> finite (h ` F)\<close>
\<open>\<forall>(b::'a::type) (f::'b::type \<Rightarrow> 'a::type) A::'b::type set.
b \<in> f ` A \<and> (\<forall>x::'b::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'b::type) (f::'b::type \<Rightarrow> 'b::type) A::'b::type set.
b \<in> f ` A \<and> (\<forall>x::'b::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'b::type) (f::'a::type \<Rightarrow> 'b::type) A::'a::type set.
b \<in> f ` A \<and> (\<forall>x::'a::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'a::type) (f::'a::type \<Rightarrow> 'a::type) A::'a::type set.
b \<in> f ` A \<and> (\<forall>x::'a::type. b = f x \<and> x \<in> A \<longrightarrow> False) \<longrightarrow> False\<close>
\<open>\<forall>(b::'a::type) (f::'b::type \<Rightarrow> 'a::type) (x::'b::type) A::'b::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(b::'b::type) (f::'b::type \<Rightarrow> 'b::type) (x::'b::type) A::'b::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(b::'b::type) (f::'a::type \<Rightarrow> 'b::type) (x::'a::type) A::'a::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(b::'a::type) (f::'a::type \<Rightarrow> 'a::type) (x::'a::type) A::'a::type set. b = f x \<and> x \<in> A \<longrightarrow> b \<in> f ` A \<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'a::type) A::'b::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'b::type) A::'b::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'a::type \<Rightarrow> 'b::type) A::'a::type set. (f ` A = {}) = (A = {}) \<close>
\<open>\<forall>(f::'a::type \<Rightarrow> 'a::type) A::'a::type set. (f ` A = {}) = (A = {})\<close>
\<open>\<forall>(f::'b::type \<Rightarrow> 'c::linorder) (A::'b::type set) (x::'b::type) y::'b::type.
inj_on f A \<and> f x = f y \<and> x \<in> A \<and> y \<in> A \<longrightarrow> x = y\<close>
\<open>\<forall>(x::'c::linorder) y::'c::linorder. (x < y) = (x \<le> y \<and> x \<noteq> y)\<close>
\<open>arg_min_on (f::'b::type \<Rightarrow> 'c::linorder) ((g::'a::type \<Rightarrow> 'b::type) ` (B::'a::type set)) \<noteq>
g (arg_min_on (f \<circ> g) B) \<close>
shows False
using assms
by (smt (verit))
end
experiment
begin
private datatype abort =
Rtype_error
| Rtimeout_error
private datatype ('a) error_result =
Rraise " 'a " \<comment> \<open>\<open> Should only be a value of type exn \<close>\<close>
| Rabort " abort "
private datatype( 'a, 'b) result =
Rval " 'a "
| Rerr " ('b) error_result "
lemma
fixes clock :: \<open>'astate \<Rightarrow> nat\<close> and
fun_evaluate_match :: \<open>'astate \<Rightarrow> 'vsemv_env \<Rightarrow> _ \<Rightarrow> ('pat \<times> 'exp0) list \<Rightarrow> _ \<Rightarrow>
'astate*((('v)list),('v))result\
assumes
" fix_clock (st::'astate) (fun_evaluate st (env::'vsemv_env) [e::'exp0]) =
(st'::'astate, r::('v list, 'v) result)"
" clock (fst (fun_evaluate (st::'astate) (env::'vsemv_env) [e::'exp0])) \ clock st"
"\(b::nat) (a::nat) c::nat. b \ a \ c \ b \ c \ a"
"\(a::'astate) p::'astate \ ('v list, 'v) result. (a = fst p) = (\b::('v list, 'v) result. p = (a, b))"
"\y::'v error_result. (\x1::'v. y = Rraise x1 \ False) \ (\x2::abort. y = Rabort x2 \ False) \ False"
"\(f1::'v \ 'astate \ ('v list, 'v) result) (f2::abort \ 'astate \ ('v list, 'v) result) x1::'v.
(case Rraise x1 of Rraise (x::'v) \ f1 x | Rabort (x::abort) \ f2 x) = f1 x1"
" \(f1::'v \ 'astate \ ('v list, 'v) result) (f2::abort \ 'astate \ ('v list, 'v) result) x2::abort.
(case Rabort x2 of Rraise (x::'v) \ f1 x | Rabort (x::abort) \ f2 x) = f2 x2"
"\(s1::'astate) (s2::'astate) (x::('v list, 'v) result) s::'astate.
fix_clock s1 (s2, x) = (s, x) \<longrightarrow> clock s \<le> clock s2"
"\(s::'astate) (s'::'astate) res::('v list, 'v) result.
fix_clock s (s', res) =
(update_clock (\<lambda>_::nat. if clock s' \<le> clock s then clock s' else clock s) s', res)"
"\(x2::'v error_result) x1::'v.
(r::('v list, 'v) result) = Rerr x2 \<and> x2 = Rraise x1 \<longrightarrow>
clock (fst (fun_evaluate_match (st'::'astate) (env::'vsemv_env) x1 (pes::('pat \<times> 'exp0) list) x1))
\<le> clock st'"
shows "((r::('v list, 'v) result) = Rerr (x2::'v error_result) \
clock
(fst (case x2 of
Rraise (v2::'v) \
fun_evaluate_match (st'::'astate) (env::'vsemv_env) v2 (pes::('pat \<times> 'exp0) list) v2
| Rabort (abort::abort) \<Rightarrow> (st', Rerr (Rabort abort))))
\<le> clock (st::'astate)) "
using assms by (smt (verit))
end
context
fixes piecewise_C1 :: "('real :: {one,zero,ord} \ 'a :: {one,zero,ord}) \ 'real set \ bool" and
joinpaths :: "('real \ 'a) \ ('real \ 'a) \ 'real \ 'a"
begin
notation piecewise_C1 (infixr "piecewise'_C1'_differentiable'_on" 50)
notation joinpaths (infixr "+++" 75)
lemma
\<open>(\<And>v1. \<forall>v0. (rec_join v0 = v1 \<and>
(v0 = [] \<and> (\<lambda>uu. 0) = v1 \<longrightarrow> False) \<and>
(\<forall>v2. v0 = [v2] \<and> v1 = coeff_cube_to_path v2 \<longrightarrow> False) \<and>
(\<forall>v2 v3 v4.
v0 = v2 # v3 # v4 \<and> v1 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \<longrightarrow> False) \<longrightarrow>
False) =
(rec_join v0 = rec_join v0 \<and>
(v0 = [] \<and> (\<lambda>uu. 0) = rec_join v0 \<longrightarrow> False) \<and>
(\<forall>v2. v0 = [v2] \<and> rec_join v0 = coeff_cube_to_path v2 \<longrightarrow> False) \<and>
(\<forall>v2 v3 v4.
v0 = v2 # v3 # v4 \<and> rec_join v0 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \<longrightarrow>
False) \<longrightarrow>
False)) \<Longrightarrow>
(\<forall>v0 v1.
rec_join v0 = v1 \<and>
(v0 = [] \<and> (\<lambda>uu. 0) = v1 \<longrightarrow> False) \<and>
(\<forall>v2. v0 = [v2] \<and> v1 = coeff_cube_to_path v2 \<longrightarrow> False) \<and>
(\<forall>v2 v3 v4. v0 = v2 # v3 # v4 \<and> v1 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \<longrightarrow> False) \<longrightarrow>
False) =
(\<forall>v0. rec_join v0 = rec_join v0 \<and>
(v0 = [] \<and> (\<lambda>uu. 0) = rec_join v0 \<longrightarrow> False) \<and>
(\<forall>v2. v0 = [v2] \<and> rec_join v0 = coeff_cube_to_path v2 \<longrightarrow> False) \<and>
(\<forall>v2 v3 v4.
v0 = v2 # v3 # v4 \<and> rec_join v0 = coeff_cube_to_path v2 +++ rec_join (v3 # v4) \<longrightarrow>
False) \<longrightarrow>
False)\<close>
by (smt (verit))
end
section \<open>Monomorphization examples\<close>
definition Pred :: "'a \ bool" where
"Pred x = True"
lemma poly_Pred: "Pred x \ (Pred [x] \ \ Pred [x])"
by (simp add: Pred_def)
lemma "Pred (1::int)"
by (smt (verit) poly_Pred)
axiomatization g :: "'a \ nat"
axiomatization where
g1: "g (Some x) = g [x]" and
g2: "g None = g []" and
g3: "g xs = length xs"
lemma "g (Some (3::int)) = g (Some True)" by (smt (verit) g1 g2 g3 list.size)
end
¤ Diese beiden folgenden Angebotsgruppen bietet das Unternehmen0.29Angebot
Wie Sie bei der Firma Beratungs- und Dienstleistungen beauftragen können
¤
|
Lebenszyklus
Die hierunter aufgelisteten Ziele sind für diese Firma wichtig
Ziele
Entwicklung einer Software für die statische Quellcodeanalyse
|