(* Title: ZF/Induct/Tree_Forest.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
section \<open>Trees and forests, a mutually recursive type definition\<close>
theory Tree_Forest imports ZF begin
subsection \<open>Datatype definition\<close>
consts
tree :: "i => i"
forest :: "i => i"
tree_forest :: "i => i"
datatype "tree(A)" = Tcons ("a \ A", "f \ forest(A)")
and "forest(A)" = Fnil | Fcons ("t \ tree(A)", "f \ forest(A)")
(* FIXME *)
lemmas tree'induct =
tree_forest.mutual_induct [THEN conjunct1, THEN spec, THEN [2] rev_mp, of concl: _ t, consumes 1]
and forest'induct =
tree_forest.mutual_induct [THEN conjunct2, THEN spec, THEN [2] rev_mp, of concl: _ f, consumes 1]
for t f
declare tree_forest.intros [simp, TC]
lemma tree_def: "tree(A) == Part(tree_forest(A), Inl)"
by (simp only: tree_forest.defs)
lemma forest_def: "forest(A) == Part(tree_forest(A), Inr)"
by (simp only: tree_forest.defs)
text \<open>
\medskip \<^term>\<open>tree_forest(A)\<close> as the union of \<^term>\<open>tree(A)\<close>
and \<^term>\<open>forest(A)\<close>.
\<close>
lemma tree_subset_TF: "tree(A) \ tree_forest(A)"
apply (unfold tree_forest.defs)
apply (rule Part_subset)
done
lemma treeI [TC]: "x \ tree(A) ==> x \ tree_forest(A)"
by (rule tree_subset_TF [THEN subsetD])
lemma forest_subset_TF: "forest(A) \ tree_forest(A)"
apply (unfold tree_forest.defs)
apply (rule Part_subset)
done
lemma treeI' [TC]: "x \ forest(A) ==> x \ tree_forest(A)"
by (rule forest_subset_TF [THEN subsetD])
lemma TF_equals_Un: "tree(A) \ forest(A) = tree_forest(A)"
apply (insert tree_subset_TF forest_subset_TF)
apply (auto intro!: equalityI tree_forest.intros elim: tree_forest.cases)
done
lemma tree_forest_unfold:
"tree_forest(A) = (A \ forest(A)) + ({0} + tree(A) \ forest(A))"
\<comment> \<open>NOT useful, but interesting \dots\<close>
supply rews = tree_forest.con_defs tree_def forest_def
apply (unfold tree_def forest_def)
apply (fast intro!: tree_forest.intros [unfolded rews, THEN PartD1]
elim: tree_forest.cases [unfolded rews])
done
lemma tree_forest_unfold':
"tree_forest(A) =
A \<times> Part(tree_forest(A), \<lambda>w. Inr(w)) +
{0} + Part(tree_forest(A), \<lambda>w. Inl(w)) * Part(tree_forest(A), \<lambda>w. Inr(w))"
by (rule tree_forest_unfold [unfolded tree_def forest_def])
lemma tree_unfold: "tree(A) = {Inl(x). x \ A \ forest(A)}"
apply (unfold tree_def forest_def)
apply (rule Part_Inl [THEN subst])
apply (rule tree_forest_unfold' [THEN subst_context])
done
lemma forest_unfold: "forest(A) = {Inr(x). x \ {0} + tree(A)*forest(A)}"
apply (unfold tree_def forest_def)
apply (rule Part_Inr [THEN subst])
apply (rule tree_forest_unfold' [THEN subst_context])
done
text \<open>
\medskip Type checking for recursor: Not needed; possibly interesting?
\<close>
lemma TF_rec_type:
"[| z \ tree_forest(A);
!!x f r. [| x \<in> A; f \<in> forest(A); r \<in> C(f)
|] ==> b(x,f,r) \<in> C(Tcons(x,f));
c \<in> C(Fnil);
!!t f r1 r2. [| t \<in> tree(A); f \<in> forest(A); r1 \<in> C(t); r2 \<in> C(f)
|] ==> d(t,f,r1,r2) \<in> C(Fcons(t,f))
|] ==> tree_forest_rec(b,c,d,z) \<in> C(z)"
by (induct_tac z) simp_all
lemma tree_forest_rec_type:
"[| !!x f r. [| x \ A; f \ forest(A); r \ D(f)
|] ==> b(x,f,r) \<in> C(Tcons(x,f));
c \<in> D(Fnil);
!!t f r1 r2. [| t \<in> tree(A); f \<in> forest(A); r1 \<in> C(t); r2 \<in> D(f)
|] ==> d(t,f,r1,r2) \<in> D(Fcons(t,f))
|] ==> (\<forall>t \<in> tree(A). tree_forest_rec(b,c,d,t) \<in> C(t)) \<and>
(\<forall>f \<in> forest(A). tree_forest_rec(b,c,d,f) \<in> D(f))"
\<comment> \<open>Mutually recursive version.\<close>
apply (unfold Ball_def)
apply (rule tree_forest.mutual_induct)
apply simp_all
done
subsection \<open>Operations\<close>
consts
map :: "[i => i, i] => i"
size :: "i => i"
preorder :: "i => i"
list_of_TF :: "i => i"
of_list :: "i => i"
reflect :: "i => i"
primrec
"list_of_TF (Tcons(x,f)) = [Tcons(x,f)]"
"list_of_TF (Fnil) = []"
"list_of_TF (Fcons(t,tf)) = Cons (t, list_of_TF(tf))"
primrec
"of_list([]) = Fnil"
"of_list(Cons(t,l)) = Fcons(t, of_list(l))"
primrec
"map (h, Tcons(x,f)) = Tcons(h(x), map(h,f))"
"map (h, Fnil) = Fnil"
"map (h, Fcons(t,tf)) = Fcons (map(h, t), map(h, tf))"
primrec
"size (Tcons(x,f)) = succ(size(f))"
"size (Fnil) = 0"
"size (Fcons(t,tf)) = size(t) #+ size(tf)"
primrec
"preorder (Tcons(x,f)) = Cons(x, preorder(f))"
"preorder (Fnil) = Nil"
"preorder (Fcons(t,tf)) = preorder(t) @ preorder(tf)"
primrec
"reflect (Tcons(x,f)) = Tcons(x, reflect(f))"
"reflect (Fnil) = Fnil"
"reflect (Fcons(t,tf)) =
of_list (list_of_TF (reflect(tf)) @ Cons(reflect(t), Nil))"
text \<open>
\medskip \<open>list_of_TF\<close> and \<open>of_list\<close>.
\<close>
lemma list_of_TF_type [TC]:
"z \ tree_forest(A) ==> list_of_TF(z) \ list(tree(A))"
by (induct set: tree_forest) simp_all
lemma of_list_type [TC]: "l \ list(tree(A)) ==> of_list(l) \ forest(A)"
by (induct set: list) simp_all
text \<open>
\medskip \<open>map\<close>.
\<close>
lemma
assumes "!!x. x \ A ==> h(x): B"
shows map_tree_type: "t \ tree(A) ==> map(h,t) \ tree(B)"
and map_forest_type: "f \ forest(A) ==> map(h,f) \ forest(B)"
using assms
by (induct rule: tree'induct forest'induct) simp_all
text \<open>
\medskip \<open>size\<close>.
\<close>
lemma size_type [TC]: "z \ tree_forest(A) ==> size(z) \ nat"
by (induct set: tree_forest) simp_all
text \<open>
\medskip \<open>preorder\<close>.
\<close>
lemma preorder_type [TC]: "z \ tree_forest(A) ==> preorder(z) \ list(A)"
by (induct set: tree_forest) simp_all
text \<open>
\medskip Theorems about \<open>list_of_TF\<close> and \<open>of_list\<close>.
\<close>
lemma forest_induct [consumes 1, case_names Fnil Fcons]:
"[| f \ forest(A);
R(Fnil);
!!t f. [| t \<in> tree(A); f \<in> forest(A); R(f) |] ==> R(Fcons(t,f))
|] ==> R(f)"
\<comment> \<open>Essentially the same as list induction.\<close>
apply (erule tree_forest.mutual_induct
[THEN conjunct2, THEN spec, THEN [2] rev_mp])
apply (rule TrueI)
apply simp
apply simp
done
lemma forest_iso: "f \ forest(A) ==> of_list(list_of_TF(f)) = f"
by (induct rule: forest_induct) simp_all
lemma tree_list_iso: "ts: list(tree(A)) ==> list_of_TF(of_list(ts)) = ts"
by (induct set: list) simp_all
text \<open>
\medskip Theorems about \<open>map\<close>.
\<close>
lemma map_ident: "z \ tree_forest(A) ==> map(\u. u, z) = z"
by (induct set: tree_forest) simp_all
lemma map_compose:
"z \ tree_forest(A) ==> map(h, map(j,z)) = map(\u. h(j(u)), z)"
by (induct set: tree_forest) simp_all
text \<open>
\medskip Theorems about \<open>size\<close>.
\<close>
lemma size_map: "z \ tree_forest(A) ==> size(map(h,z)) = size(z)"
by (induct set: tree_forest) simp_all
lemma size_length: "z \ tree_forest(A) ==> size(z) = length(preorder(z))"
by (induct set: tree_forest) (simp_all add: length_app)
text \<open>
\medskip Theorems about \<open>preorder\<close>.
\<close>
lemma preorder_map:
"z \ tree_forest(A) ==> preorder(map(h,z)) = List.map(h, preorder(z))"
by (induct set: tree_forest) (simp_all add: map_app_distrib)
end
¤ Dauer der Verarbeitung: 0.16 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|