/*
* Copyright (c) 2008, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/tlab_globals.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.hpp"
#include "oops/cpCache.hpp"
#include "oops/klass.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "utilities/powerOfTwo.hpp"
#define __ _masm->
//----------------------------------------------------------------------------------------------------
// Address computation
// local variables
static inline Address iaddress(int n) {
return Address(Rlocals, Interpreter::local_offset_in_bytes(n));
}
static inline Address laddress(int n) { return iaddress(n + 1); }
static inline Address haddress(int n) { return iaddress(n + 0); }
static inline Address faddress(int n) { return iaddress(n); }
static inline Address daddress(int n) { return laddress(n); }
static inline Address aaddress(int n) { return iaddress(n); }
void TemplateTable::get_local_base_addr(Register r, Register index) {
__ sub(r, Rlocals, AsmOperand(index, lsl, Interpreter::logStackElementSize));
}
Address TemplateTable::load_iaddress(Register index, Register scratch) {
return Address(Rlocals, index, lsl, Interpreter::logStackElementSize, basic_offset, sub_offset);
}
Address TemplateTable::load_aaddress(Register index, Register scratch) {
return load_iaddress(index, scratch);
}
Address TemplateTable::load_faddress(Register index, Register scratch) {
#ifdef __SOFTFP__
return load_iaddress(index, scratch);
#else
get_local_base_addr(scratch, index);
return Address(scratch);
#endif // __SOFTFP__
}
Address TemplateTable::load_daddress(Register index, Register scratch) {
get_local_base_addr(scratch, index);
return Address(scratch, Interpreter::local_offset_in_bytes(1));
}
// At top of Java expression stack which may be different than SP.
// It isn't for category 1 objects.
static inline Address at_tos() {
return Address(Rstack_top, Interpreter::expr_offset_in_bytes(0));
}
static inline Address at_tos_p1() {
return Address(Rstack_top, Interpreter::expr_offset_in_bytes(1));
}
static inline Address at_tos_p2() {
return Address(Rstack_top, Interpreter::expr_offset_in_bytes(2));
}
// Loads double/long local into R0_tos_lo/R1_tos_hi with two
// separate ldr instructions (supports nonadjacent values).
// Used for longs in all modes, and for doubles in SOFTFP mode.
void TemplateTable::load_category2_local(Register Rlocal_index, Register tmp) {
const Register Rlocal_base = tmp;
assert_different_registers(Rlocal_index, tmp);
get_local_base_addr(Rlocal_base, Rlocal_index);
__ ldr(R0_tos_lo, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
__ ldr(R1_tos_hi, Address(Rlocal_base, Interpreter::local_offset_in_bytes(0)));
}
// Stores R0_tos_lo/R1_tos_hi to double/long local with two
// separate str instructions (supports nonadjacent values).
// Used for longs in all modes, and for doubles in SOFTFP mode
void TemplateTable::store_category2_local(Register Rlocal_index, Register tmp) {
const Register Rlocal_base = tmp;
assert_different_registers(Rlocal_index, tmp);
get_local_base_addr(Rlocal_base, Rlocal_index);
__ str(R0_tos_lo, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
__ str(R1_tos_hi, Address(Rlocal_base, Interpreter::local_offset_in_bytes(0)));
}
// Returns address of Java array element using temp register as address base.
Address TemplateTable::get_array_elem_addr(BasicType elemType, Register array, Register index, Register temp) {
int logElemSize = exact_log2(type2aelembytes(elemType));
__ add_ptr_scaled_int32(temp, array, index, logElemSize);
return Address(temp, arrayOopDesc::base_offset_in_bytes(elemType));
}
// Returns address of Java array element using temp register as offset from array base
Address TemplateTable::get_array_elem_addr_same_base(BasicType elemType, Register array, Register index, Register temp) {
int logElemSize = exact_log2(type2aelembytes(elemType));
if (logElemSize == 0) {
__ add(temp, index, arrayOopDesc::base_offset_in_bytes(elemType));
} else {
__ mov(temp, arrayOopDesc::base_offset_in_bytes(elemType));
__ add_ptr_scaled_int32(temp, temp, index, logElemSize);
}
return Address(array, temp);
}
//----------------------------------------------------------------------------------------------------
// Condition conversion
AsmCondition convNegCond(TemplateTable::Condition cc) {
switch (cc) {
case TemplateTable::equal : return ne;
case TemplateTable::not_equal : return eq;
case TemplateTable::less : return ge;
case TemplateTable::less_equal : return gt;
case TemplateTable::greater : return le;
case TemplateTable::greater_equal: return lt;
}
ShouldNotReachHere();
return nv;
}
//----------------------------------------------------------------------------------------------------
// Miscellaneous helper routines
// Store an oop (or NULL) at the address described by obj.
// Blows all volatile registers R0-R3, Rtemp, LR).
// Also destroys new_val and obj.base().
static void do_oop_store(InterpreterMacroAssembler* _masm,
Address obj,
Register new_val,
Register tmp1,
Register tmp2,
Register tmp3,
bool is_null,
DecoratorSet decorators = 0) {
assert_different_registers(obj.base(), new_val, tmp1, tmp2, tmp3, noreg);
if (is_null) {
__ store_heap_oop_null(obj, new_val, tmp1, tmp2, tmp3, decorators);
} else {
__ store_heap_oop(obj, new_val, tmp1, tmp2, tmp3, decorators);
}
}
static void do_oop_load(InterpreterMacroAssembler* _masm,
Register dst,
Address obj,
DecoratorSet decorators = 0) {
__ load_heap_oop(dst, obj, noreg, noreg, noreg, decorators);
}
Address TemplateTable::at_bcp(int offset) {
assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
return Address(Rbcp, offset);
}
// Blows volatile registers R0-R3, Rtemp, LR.
void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
int byte_no) {
assert_different_registers(bc_reg, temp_reg);
if (!RewriteBytecodes) return;
Label L_patch_done;
switch (bc) {
case Bytecodes::_fast_aputfield:
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_zputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_dputfield:
case Bytecodes::_fast_fputfield:
case Bytecodes::_fast_iputfield:
case Bytecodes::_fast_lputfield:
case Bytecodes::_fast_sputfield:
{
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1, sizeof(u2));
__ mov(bc_reg, bc);
__ cbz(temp_reg, L_patch_done); // test if bytecode is zero
}
break;
default:
assert(byte_no == -1, "sanity");
// the pair bytecodes have already done the load.
if (load_bc_into_bc_reg) {
__ mov(bc_reg, bc);
}
}
if (__ can_post_breakpoint()) {
Label L_fast_patch;
// if a breakpoint is present we can't rewrite the stream directly
__ ldrb(temp_reg, at_bcp(0));
__ cmp(temp_reg, Bytecodes::_breakpoint);
__ b(L_fast_patch, ne);
if (bc_reg != R3) {
__ mov(R3, bc_reg);
}
__ mov(R1, Rmethod);
__ mov(R2, Rbcp);
// Let breakpoint table handling rewrite to quicker bytecode
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R1, R2, R3);
__ b(L_patch_done);
__ bind(L_fast_patch);
}
#ifdef ASSERT
Label L_okay;
__ ldrb(temp_reg, at_bcp(0));
__ cmp(temp_reg, (int)Bytecodes::java_code(bc));
__ b(L_okay, eq);
__ cmp(temp_reg, bc_reg);
__ b(L_okay, eq);
__ stop("patching the wrong bytecode");
__ bind(L_okay);
#endif
// patch bytecode
__ strb(bc_reg, at_bcp(0));
__ bind(L_patch_done);
}
//----------------------------------------------------------------------------------------------------
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
// nothing to do
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("shouldnotreachhere bytecode");
}
void TemplateTable::aconst_null() {
transition(vtos, atos);
__ mov(R0_tos, 0);
}
void TemplateTable::iconst(int value) {
transition(vtos, itos);
__ mov_slow(R0_tos, value);
}
void TemplateTable::lconst(int value) {
transition(vtos, ltos);
assert((value == 0) || (value == 1), "unexpected long constant");
__ mov(R0_tos, value);
__ mov(R1_tos_hi, 0);
}
void TemplateTable::fconst(int value) {
transition(vtos, ftos);
const int zero = 0; // 0.0f
const int one = 0x3f800000; // 1.0f
const int two = 0x40000000; // 2.0f
switch(value) {
case 0: __ mov(R0_tos, zero); break;
case 1: __ mov(R0_tos, one); break;
case 2: __ mov(R0_tos, two); break;
default: ShouldNotReachHere(); break;
}
#ifndef __SOFTFP__
__ fmsr(S0_tos, R0_tos);
#endif // !__SOFTFP__
}
void TemplateTable::dconst(int value) {
transition(vtos, dtos);
const int one_lo = 0; // low part of 1.0
const int one_hi = 0x3ff00000; // high part of 1.0
if (value == 0) {
#ifdef __SOFTFP__
__ mov(R0_tos_lo, 0);
__ mov(R1_tos_hi, 0);
#else
__ mov(R0_tmp, 0);
__ fmdrr(D0_tos, R0_tmp, R0_tmp);
#endif // __SOFTFP__
} else if (value == 1) {
__ mov(R0_tos_lo, one_lo);
__ mov_slow(R1_tos_hi, one_hi);
#ifndef __SOFTFP__
__ fmdrr(D0_tos, R0_tos_lo, R1_tos_hi);
#endif // !__SOFTFP__
} else {
ShouldNotReachHere();
}
}
void TemplateTable::bipush() {
transition(vtos, itos);
__ ldrsb(R0_tos, at_bcp(1));
}
void TemplateTable::sipush() {
transition(vtos, itos);
__ ldrsb(R0_tmp, at_bcp(1));
__ ldrb(R1_tmp, at_bcp(2));
__ orr(R0_tos, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
}
void TemplateTable::ldc(LdcType type) {
transition(vtos, vtos);
Label fastCase, Condy, Done;
const Register Rindex = R1_tmp;
const Register Rcpool = R2_tmp;
const Register Rtags = R3_tmp;
const Register RtagType = R3_tmp;
if (is_ldc_wide(type)) {
__ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
} else {
__ ldrb(Rindex, at_bcp(1));
}
__ get_cpool_and_tags(Rcpool, Rtags);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get const type
__ add(Rtemp, Rtags, tags_offset);
__ ldrb(RtagType, Address(Rtemp, Rindex));
volatile_barrier(MacroAssembler::LoadLoad, Rtemp);
// unresolved class - get the resolved class
__ cmp(RtagType, JVM_CONSTANT_UnresolvedClass);
// unresolved class in error (resolution failed) - call into runtime
// so that the same error from first resolution attempt is thrown.
__ cond_cmp(RtagType, JVM_CONSTANT_UnresolvedClassInError, ne);
// resolved class - need to call vm to get java mirror of the class
__ cond_cmp(RtagType, JVM_CONSTANT_Class, ne);
__ b(fastCase, ne);
// slow case - call runtime
__ mov(R1, is_ldc_wide(type) ? 1 : 0);
call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R1);
__ push(atos);
__ b(Done);
// int, float, String
__ bind(fastCase);
__ cmp(RtagType, JVM_CONSTANT_Integer);
__ cond_cmp(RtagType, JVM_CONSTANT_Float, ne);
__ b(Condy, ne);
// itos, ftos
__ add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
__ ldr_u32(R0_tos, Address(Rtemp, base_offset));
// floats and ints are placed on stack in the same way, so
// we can use push(itos) to transfer float value without VFP
__ push(itos);
__ b(Done);
__ bind(Condy);
condy_helper(Done);
__ bind(Done);
}
// Fast path for caching oop constants.
void TemplateTable::fast_aldc(LdcType type) {
transition(vtos, atos);
int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
Label resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (CallSite, etc.)
assert_different_registers(R0_tos, R2_tmp);
__ get_index_at_bcp(R2_tmp, 1, R0_tos, index_size);
__ load_resolved_reference_at_index(R0_tos, R2_tmp);
__ cbnz(R0_tos, resolved);
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
// first time invocation - must resolve first
__ mov(R1, (int)bytecode());
__ call_VM(R0_tos, entry, R1);
__ bind(resolved);
{ // Check for the null sentinel.
// If we just called the VM, that already did the mapping for us,
// but it's harmless to retry.
Label notNull;
Register result = R0;
Register tmp = R1;
Register rarg = R2;
// Stash null_sentinel address to get its value later
__ mov_slow(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
__ ldr(tmp, Address(rarg));
__ resolve_oop_handle(tmp);
__ cmp(result, tmp);
__ b(notNull, ne);
__ mov(result, 0); // NULL object reference
__ bind(notNull);
}
if (VerifyOops) {
__ verify_oop(R0_tos);
}
}
void TemplateTable::ldc2_w() {
transition(vtos, vtos);
const Register Rtags = R2_tmp;
const Register Rindex = R3_tmp;
const Register Rcpool = R4_tmp;
const Register Rbase = R5_tmp;
__ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
__ get_cpool_and_tags(Rcpool, Rtags);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
__ add(Rbase, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
// get type from tags
__ add(Rtemp, Rtags, tags_offset);
__ ldrb(Rtemp, Address(Rtemp, Rindex));
Label Done, NotLong, NotDouble;
__ cmp(Rtemp, JVM_CONSTANT_Double);
__ b(NotDouble, ne);
#ifdef __SOFTFP__
__ ldr(R0_tos_lo, Address(Rbase, base_offset + 0 * wordSize));
__ ldr(R1_tos_hi, Address(Rbase, base_offset + 1 * wordSize));
#else // !__SOFTFP__
__ ldr_double(D0_tos, Address(Rbase, base_offset));
#endif // __SOFTFP__
__ push(dtos);
__ b(Done);
__ bind(NotDouble);
__ cmp(Rtemp, JVM_CONSTANT_Long);
__ b(NotLong, ne);
__ ldr(R0_tos_lo, Address(Rbase, base_offset + 0 * wordSize));
__ ldr(R1_tos_hi, Address(Rbase, base_offset + 1 * wordSize));
__ push(ltos);
__ b(Done);
__ bind(NotLong);
condy_helper(Done);
__ bind(Done);
}
void TemplateTable::condy_helper(Label& Done)
{
Register obj = R0_tmp;
Register rtmp = R1_tmp;
Register flags = R2_tmp;
Register off = R3_tmp;
__ mov(rtmp, (int) bytecode());
__ call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rtmp);
__ get_vm_result_2(flags, rtmp);
// VMr = obj = base address to find primitive value to push
// VMr2 = flags = (tos, off) using format of CPCE::_flags
__ mov(off, flags);
__ logical_shift_left( off, off, 32 - ConstantPoolCacheEntry::field_index_bits);
__ logical_shift_right(off, off, 32 - ConstantPoolCacheEntry::field_index_bits);
const Address field(obj, off);
__ logical_shift_right(flags, flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
switch (bytecode()) {
case Bytecodes::_ldc:
case Bytecodes::_ldc_w:
{
// tos in (itos, ftos, stos, btos, ctos, ztos)
Label notIntFloat, notShort, notByte, notChar, notBool;
__ cmp(flags, itos);
__ cond_cmp(flags, ftos, ne);
__ b(notIntFloat, ne);
__ ldr(R0_tos, field);
__ push(itos);
__ b(Done);
__ bind(notIntFloat);
__ cmp(flags, stos);
__ b(notShort, ne);
__ ldrsh(R0_tos, field);
__ push(stos);
__ b(Done);
__ bind(notShort);
__ cmp(flags, btos);
__ b(notByte, ne);
__ ldrsb(R0_tos, field);
__ push(btos);
__ b(Done);
__ bind(notByte);
__ cmp(flags, ctos);
__ b(notChar, ne);
__ ldrh(R0_tos, field);
__ push(ctos);
__ b(Done);
__ bind(notChar);
__ cmp(flags, ztos);
__ b(notBool, ne);
__ ldrsb(R0_tos, field);
__ push(ztos);
__ b(Done);
__ bind(notBool);
break;
}
case Bytecodes::_ldc2_w:
{
Label notLongDouble;
__ cmp(flags, ltos);
__ cond_cmp(flags, dtos, ne);
__ b(notLongDouble, ne);
__ add(rtmp, obj, wordSize);
__ ldr(R0_tos_lo, Address(obj, off));
__ ldr(R1_tos_hi, Address(rtmp, off));
__ push(ltos);
__ b(Done);
__ bind(notLongDouble);
break;
}
default:
ShouldNotReachHere();
}
__ stop("bad ldc/condy");
}
void TemplateTable::locals_index(Register reg, int offset) {
__ ldrb(reg, at_bcp(offset));
}
void TemplateTable::iload() {
iload_internal();
}
void TemplateTable::nofast_iload() {
iload_internal(may_not_rewrite);
}
void TemplateTable::iload_internal(RewriteControl rc) {
transition(vtos, itos);
if ((rc == may_rewrite) && __ rewrite_frequent_pairs()) {
Label rewrite, done;
const Register next_bytecode = R1_tmp;
const Register target_bytecode = R2_tmp;
// get next byte
__ ldrb(next_bytecode, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
// if _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ cmp(next_bytecode, Bytecodes::_iload);
__ b(done, eq);
__ cmp(next_bytecode, Bytecodes::_fast_iload);
__ mov(target_bytecode, Bytecodes::_fast_iload2);
__ b(rewrite, eq);
// if _caload, rewrite to fast_icaload
__ cmp(next_bytecode, Bytecodes::_caload);
__ mov(target_bytecode, Bytecodes::_fast_icaload);
__ b(rewrite, eq);
// rewrite so iload doesn't check again.
__ mov(target_bytecode, Bytecodes::_fast_iload);
// rewrite
// R2: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_iload, target_bytecode, Rtemp, false);
__ bind(done);
}
// Get the local value into tos
const Register Rlocal_index = R1_tmp;
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(R0_tos, local);
}
void TemplateTable::fast_iload2() {
transition(vtos, itos);
const Register Rlocal_index = R1_tmp;
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(R0_tos, local);
__ push(itos);
locals_index(Rlocal_index, 3);
local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(R0_tos, local);
}
void TemplateTable::fast_iload() {
transition(vtos, itos);
const Register Rlocal_index = R1_tmp;
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(R0_tos, local);
}
void TemplateTable::lload() {
transition(vtos, ltos);
const Register Rlocal_index = R2_tmp;
locals_index(Rlocal_index);
load_category2_local(Rlocal_index, R3_tmp);
}
void TemplateTable::fload() {
transition(vtos, ftos);
const Register Rlocal_index = R2_tmp;
// Get the local value into tos
locals_index(Rlocal_index);
Address local = load_faddress(Rlocal_index, Rtemp);
#ifdef __SOFTFP__
__ ldr(R0_tos, local);
#else
__ ldr_float(S0_tos, local);
#endif // __SOFTFP__
}
void TemplateTable::dload() {
transition(vtos, dtos);
const Register Rlocal_index = R2_tmp;
locals_index(Rlocal_index);
#ifdef __SOFTFP__
load_category2_local(Rlocal_index, R3_tmp);
#else
__ ldr_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
#endif // __SOFTFP__
}
void TemplateTable::aload() {
transition(vtos, atos);
const Register Rlocal_index = R1_tmp;
locals_index(Rlocal_index);
Address local = load_aaddress(Rlocal_index, Rtemp);
__ ldr(R0_tos, local);
}
void TemplateTable::locals_index_wide(Register reg) {
assert_different_registers(reg, Rtemp);
__ ldrb(Rtemp, at_bcp(2));
__ ldrb(reg, at_bcp(3));
__ orr(reg, reg, AsmOperand(Rtemp, lsl, 8));
}
void TemplateTable::wide_iload() {
transition(vtos, itos);
const Register Rlocal_index = R2_tmp;
locals_index_wide(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(R0_tos, local);
}
void TemplateTable::wide_lload() {
transition(vtos, ltos);
const Register Rlocal_index = R2_tmp;
const Register Rlocal_base = R3_tmp;
locals_index_wide(Rlocal_index);
load_category2_local(Rlocal_index, R3_tmp);
}
void TemplateTable::wide_fload() {
transition(vtos, ftos);
const Register Rlocal_index = R2_tmp;
locals_index_wide(Rlocal_index);
Address local = load_faddress(Rlocal_index, Rtemp);
#ifdef __SOFTFP__
__ ldr(R0_tos, local);
#else
__ ldr_float(S0_tos, local);
#endif // __SOFTFP__
}
void TemplateTable::wide_dload() {
transition(vtos, dtos);
const Register Rlocal_index = R2_tmp;
locals_index_wide(Rlocal_index);
#ifdef __SOFTFP__
load_category2_local(Rlocal_index, R3_tmp);
#else
__ ldr_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
#endif // __SOFTFP__
}
void TemplateTable::wide_aload() {
transition(vtos, atos);
const Register Rlocal_index = R2_tmp;
locals_index_wide(Rlocal_index);
Address local = load_aaddress(Rlocal_index, Rtemp);
__ ldr(R0_tos, local);
}
void TemplateTable::index_check(Register array, Register index) {
// Pop ptr into array
__ pop_ptr(array);
index_check_without_pop(array, index);
}
void TemplateTable::index_check_without_pop(Register array, Register index) {
assert_different_registers(array, index, Rtemp);
// check array
__ null_check(array, Rtemp, arrayOopDesc::length_offset_in_bytes());
// check index
__ ldr_s32(Rtemp, Address(array, arrayOopDesc::length_offset_in_bytes()));
__ cmp_32(index, Rtemp);
if (index != R4_ArrayIndexOutOfBounds_index) {
// convention with generate_ArrayIndexOutOfBounds_handler()
__ mov(R4_ArrayIndexOutOfBounds_index, index, hs);
}
__ mov(R1, array, hs);
__ b(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, hs);
}
void TemplateTable::iaload() {
transition(itos, itos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_INT, Rarray, Rindex, Rtemp);
__ access_load_at(T_INT, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
}
void TemplateTable::laload() {
transition(itos, ltos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_LONG, Rarray, Rindex, Rtemp);
__ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, addr, noreg /* ltos */, noreg, noreg, noreg);
}
void TemplateTable::faload() {
transition(itos, ftos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_FLOAT, Rarray, Rindex, Rtemp);
__ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, addr, noreg /* ftos */, noreg, noreg, noreg);
}
void TemplateTable::daload() {
transition(itos, dtos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_DOUBLE, Rarray, Rindex, Rtemp);
__ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, addr, noreg /* dtos */, noreg, noreg, noreg);
}
void TemplateTable::aaload() {
transition(itos, atos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
do_oop_load(_masm, R0_tos, get_array_elem_addr_same_base(T_OBJECT, Rarray, Rindex, Rtemp), IS_ARRAY);
}
void TemplateTable::baload() {
transition(itos, itos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_BYTE, Rarray, Rindex, Rtemp);
__ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
}
void TemplateTable::caload() {
transition(itos, itos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_CHAR, Rarray, Rindex, Rtemp);
__ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
}
// iload followed by caload frequent pair
void TemplateTable::fast_icaload() {
transition(vtos, itos);
const Register Rlocal_index = R1_tmp;
const Register Rarray = R1_tmp;
const Register Rindex = R4_tmp; // index_check prefers index on R4
assert_different_registers(Rlocal_index, Rindex);
assert_different_registers(Rarray, Rindex);
// load index out of locals
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(Rindex, local);
// get array element
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_CHAR, Rarray, Rindex, Rtemp);
__ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
}
void TemplateTable::saload() {
transition(itos, itos);
const Register Rarray = R1_tmp;
const Register Rindex = R0_tos;
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_SHORT, Rarray, Rindex, Rtemp);
__ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg);
}
void TemplateTable::iload(int n) {
transition(vtos, itos);
__ ldr_s32(R0_tos, iaddress(n));
}
void TemplateTable::lload(int n) {
transition(vtos, ltos);
__ ldr(R0_tos_lo, laddress(n));
__ ldr(R1_tos_hi, haddress(n));
}
void TemplateTable::fload(int n) {
transition(vtos, ftos);
#ifdef __SOFTFP__
__ ldr(R0_tos, faddress(n));
#else
__ ldr_float(S0_tos, faddress(n));
#endif // __SOFTFP__
}
void TemplateTable::dload(int n) {
transition(vtos, dtos);
#ifdef __SOFTFP__
__ ldr(R0_tos_lo, laddress(n));
__ ldr(R1_tos_hi, haddress(n));
#else
__ ldr_double(D0_tos, daddress(n));
#endif // __SOFTFP__
}
void TemplateTable::aload(int n) {
transition(vtos, atos);
__ ldr(R0_tos, aaddress(n));
}
void TemplateTable::aload_0() {
aload_0_internal();
}
void TemplateTable::nofast_aload_0() {
aload_0_internal(may_not_rewrite);
}
void TemplateTable::aload_0_internal(RewriteControl rc) {
transition(vtos, atos);
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield
// _aload_0, _fast_agetfield
// _aload_0, _fast_fgetfield
//
// occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
// bytecode checks if the next bytecode is either _fast_igetfield,
// _fast_agetfield or _fast_fgetfield and then rewrites the
// current bytecode into a pair bytecode; otherwise it rewrites the current
// bytecode into _fast_aload_0 that doesn't do the pair check anymore.
//
// Note: If the next bytecode is _getfield, the rewrite must be delayed,
// otherwise we may miss an opportunity for a pair.
//
// Also rewrite frequent pairs
// aload_0, aload_1
// aload_0, iload_1
// These bytecodes with a small amount of code are most profitable to rewrite
if ((rc == may_rewrite) && __ rewrite_frequent_pairs()) {
Label rewrite, done;
const Register next_bytecode = R1_tmp;
const Register target_bytecode = R2_tmp;
// get next byte
__ ldrb(next_bytecode, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
// if _getfield then wait with rewrite
__ cmp(next_bytecode, Bytecodes::_getfield);
__ b(done, eq);
// if _igetfield then rewrite to _fast_iaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmp(next_bytecode, Bytecodes::_fast_igetfield);
__ mov(target_bytecode, Bytecodes::_fast_iaccess_0);
__ b(rewrite, eq);
// if _agetfield then rewrite to _fast_aaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmp(next_bytecode, Bytecodes::_fast_agetfield);
__ mov(target_bytecode, Bytecodes::_fast_aaccess_0);
__ b(rewrite, eq);
// if _fgetfield then rewrite to _fast_faccess_0, else rewrite to _fast_aload0
assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmp(next_bytecode, Bytecodes::_fast_fgetfield);
__ mov(target_bytecode, Bytecodes::_fast_faccess_0, eq);
__ mov(target_bytecode, Bytecodes::_fast_aload_0, ne);
// rewrite
__ bind(rewrite);
patch_bytecode(Bytecodes::_aload_0, target_bytecode, Rtemp, false);
__ bind(done);
}
aload(0);
}
void TemplateTable::istore() {
transition(itos, vtos);
const Register Rlocal_index = R2_tmp;
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ str_32(R0_tos, local);
}
void TemplateTable::lstore() {
transition(ltos, vtos);
const Register Rlocal_index = R2_tmp;
locals_index(Rlocal_index);
store_category2_local(Rlocal_index, R3_tmp);
}
void TemplateTable::fstore() {
transition(ftos, vtos);
const Register Rlocal_index = R2_tmp;
locals_index(Rlocal_index);
Address local = load_faddress(Rlocal_index, Rtemp);
#ifdef __SOFTFP__
__ str(R0_tos, local);
#else
__ str_float(S0_tos, local);
#endif // __SOFTFP__
}
void TemplateTable::dstore() {
transition(dtos, vtos);
const Register Rlocal_index = R2_tmp;
locals_index(Rlocal_index);
#ifdef __SOFTFP__
store_category2_local(Rlocal_index, R3_tmp);
#else
__ str_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
#endif // __SOFTFP__
}
void TemplateTable::astore() {
transition(vtos, vtos);
const Register Rlocal_index = R1_tmp;
__ pop_ptr(R0_tos);
locals_index(Rlocal_index);
Address local = load_aaddress(Rlocal_index, Rtemp);
__ str(R0_tos, local);
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
const Register Rlocal_index = R2_tmp;
__ pop_i(R0_tos);
locals_index_wide(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ str_32(R0_tos, local);
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
const Register Rlocal_index = R2_tmp;
const Register Rlocal_base = R3_tmp;
__ pop_l(R0_tos_lo, R1_tos_hi);
locals_index_wide(Rlocal_index);
store_category2_local(Rlocal_index, R3_tmp);
}
void TemplateTable::wide_fstore() {
wide_istore();
}
void TemplateTable::wide_dstore() {
wide_lstore();
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
const Register Rlocal_index = R2_tmp;
__ pop_ptr(R0_tos);
locals_index_wide(Rlocal_index);
Address local = load_aaddress(Rlocal_index, Rtemp);
__ str(R0_tos, local);
}
void TemplateTable::iastore() {
transition(itos, vtos);
const Register Rindex = R4_tmp; // index_check prefers index in R4
const Register Rarray = R3_tmp;
// R0_tos: value
__ pop_i(Rindex);
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_INT, Rarray, Rindex, Rtemp);
__ access_store_at(T_INT, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg, false);
}
void TemplateTable::lastore() {
transition(ltos, vtos);
const Register Rindex = R4_tmp; // index_check prefers index in R4
const Register Rarray = R3_tmp;
// R0_tos_lo:R1_tos_hi: value
__ pop_i(Rindex);
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_LONG, Rarray, Rindex, Rtemp);
__ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, addr, noreg /* ltos */, noreg, noreg, noreg, false);
}
void TemplateTable::fastore() {
transition(ftos, vtos);
const Register Rindex = R4_tmp; // index_check prefers index in R4
const Register Rarray = R3_tmp;
// S0_tos/R0_tos: value
__ pop_i(Rindex);
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_FLOAT, Rarray, Rindex, Rtemp);
__ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, addr, noreg /* ftos */, noreg, noreg, noreg, false);
}
void TemplateTable::dastore() {
transition(dtos, vtos);
const Register Rindex = R4_tmp; // index_check prefers index in R4
const Register Rarray = R3_tmp;
// D0_tos / R0_tos_lo:R1_to_hi: value
__ pop_i(Rindex);
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_DOUBLE, Rarray, Rindex, Rtemp);
__ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, addr, noreg /* dtos */, noreg, noreg, noreg, false);
}
void TemplateTable::aastore() {
transition(vtos, vtos);
Label is_null, throw_array_store, done;
const Register Raddr_1 = R1_tmp;
const Register Rvalue_2 = R2_tmp;
const Register Rarray_3 = R3_tmp;
const Register Rindex_4 = R4_tmp; // preferred by index_check_without_pop()
const Register Rsub_5 = R5_tmp;
const Register Rsuper_LR = LR_tmp;
// stack: ..., array, index, value
__ ldr(Rvalue_2, at_tos()); // Value
__ ldr_s32(Rindex_4, at_tos_p1()); // Index
__ ldr(Rarray_3, at_tos_p2()); // Array
index_check_without_pop(Rarray_3, Rindex_4);
// Compute the array base
__ add(Raddr_1, Rarray_3, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
// do array store check - check for NULL value first
__ cbz(Rvalue_2, is_null);
// Load subklass
__ load_klass(Rsub_5, Rvalue_2);
// Load superklass
__ load_klass(Rtemp, Rarray_3);
__ ldr(Rsuper_LR, Address(Rtemp, ObjArrayKlass::element_klass_offset()));
__ gen_subtype_check(Rsub_5, Rsuper_LR, throw_array_store, R0_tmp, R3_tmp);
// Come here on success
// Store value
__ add(Raddr_1, Raddr_1, AsmOperand(Rindex_4, lsl, LogBytesPerHeapOop));
// Now store using the appropriate barrier
do_oop_store(_masm, Raddr_1, Rvalue_2, Rtemp, R0_tmp, R3_tmp, false, IS_ARRAY);
__ b(done);
__ bind(throw_array_store);
// Come here on failure of subtype check
__ profile_typecheck_failed(R0_tmp);
// object is at TOS
__ b(Interpreter::_throw_ArrayStoreException_entry);
// Have a NULL in Rvalue_2, store NULL at array[index].
__ bind(is_null);
__ profile_null_seen(R0_tmp);
// Store a NULL
do_oop_store(_masm, Address::indexed_oop(Raddr_1, Rindex_4), Rvalue_2, Rtemp, R0_tmp, R3_tmp, true, IS_ARRAY);
// Pop stack arguments
__ bind(done);
__ add(Rstack_top, Rstack_top, 3 * Interpreter::stackElementSize);
}
void TemplateTable::bastore() {
transition(itos, vtos);
const Register Rindex = R4_tmp; // index_check prefers index in R4
const Register Rarray = R3_tmp;
// R0_tos: value
__ pop_i(Rindex);
index_check(Rarray, Rindex);
// Need to check whether array is boolean or byte
// since both types share the bastore bytecode.
__ load_klass(Rtemp, Rarray);
__ ldr_u32(Rtemp, Address(Rtemp, Klass::layout_helper_offset()));
Label L_skip;
__ tst(Rtemp, Klass::layout_helper_boolean_diffbit());
__ b(L_skip, eq);
__ and_32(R0_tos, R0_tos, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
__ bind(L_skip);
Address addr = get_array_elem_addr_same_base(T_BYTE, Rarray, Rindex, Rtemp);
__ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg, false);
}
void TemplateTable::castore() {
transition(itos, vtos);
const Register Rindex = R4_tmp; // index_check prefers index in R4
const Register Rarray = R3_tmp;
// R0_tos: value
__ pop_i(Rindex);
index_check(Rarray, Rindex);
Address addr = get_array_elem_addr_same_base(T_CHAR, Rarray, Rindex, Rtemp);
__ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, addr, R0_tos, noreg, noreg, noreg, false);
}
void TemplateTable::sastore() {
assert(arrayOopDesc::base_offset_in_bytes(T_CHAR) ==
arrayOopDesc::base_offset_in_bytes(T_SHORT),
"base offsets for char and short should be equal");
castore();
}
void TemplateTable::istore(int n) {
transition(itos, vtos);
__ str_32(R0_tos, iaddress(n));
}
void TemplateTable::lstore(int n) {
transition(ltos, vtos);
__ str(R0_tos_lo, laddress(n));
__ str(R1_tos_hi, haddress(n));
}
void TemplateTable::fstore(int n) {
transition(ftos, vtos);
#ifdef __SOFTFP__
__ str(R0_tos, faddress(n));
#else
__ str_float(S0_tos, faddress(n));
#endif // __SOFTFP__
}
void TemplateTable::dstore(int n) {
transition(dtos, vtos);
#ifdef __SOFTFP__
__ str(R0_tos_lo, laddress(n));
__ str(R1_tos_hi, haddress(n));
#else
__ str_double(D0_tos, daddress(n));
#endif // __SOFTFP__
}
void TemplateTable::astore(int n) {
transition(vtos, vtos);
__ pop_ptr(R0_tos);
__ str(R0_tos, aaddress(n));
}
void TemplateTable::pop() {
transition(vtos, vtos);
__ add(Rstack_top, Rstack_top, Interpreter::stackElementSize);
}
void TemplateTable::pop2() {
transition(vtos, vtos);
__ add(Rstack_top, Rstack_top, 2*Interpreter::stackElementSize);
}
void TemplateTable::dup() {
transition(vtos, vtos);
// stack: ..., a
__ load_ptr(0, R0_tmp);
__ push_ptr(R0_tmp);
// stack: ..., a, a
}
void TemplateTable::dup_x1() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(0, R0_tmp); // load b
__ load_ptr(1, R2_tmp); // load a
__ store_ptr(1, R0_tmp); // store b
__ store_ptr(0, R2_tmp); // store a
__ push_ptr(R0_tmp); // push b
// stack: ..., b, a, b
}
void TemplateTable::dup_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr(0, R0_tmp); // load c
__ load_ptr(1, R2_tmp); // load b
__ load_ptr(2, R4_tmp); // load a
__ push_ptr(R0_tmp); // push c
// stack: ..., a, b, c, c
__ store_ptr(1, R2_tmp); // store b
__ store_ptr(2, R4_tmp); // store a
__ store_ptr(3, R0_tmp); // store c
// stack: ..., c, a, b, c
}
void TemplateTable::dup2() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(1, R0_tmp); // load a
__ push_ptr(R0_tmp); // push a
__ load_ptr(1, R0_tmp); // load b
__ push_ptr(R0_tmp); // push b
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr(0, R4_tmp); // load c
__ load_ptr(1, R2_tmp); // load b
__ load_ptr(2, R0_tmp); // load a
__ push_ptr(R2_tmp); // push b
__ push_ptr(R4_tmp); // push c
// stack: ..., a, b, c, b, c
__ store_ptr(2, R0_tmp); // store a
__ store_ptr(3, R4_tmp); // store c
__ store_ptr(4, R2_tmp); // store b
// stack: ..., b, c, a, b, c
}
void TemplateTable::dup2_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c, d
__ load_ptr(0, R0_tmp); // load d
__ load_ptr(1, R2_tmp); // load c
__ push_ptr(R2_tmp); // push c
__ push_ptr(R0_tmp); // push d
// stack: ..., a, b, c, d, c, d
__ load_ptr(4, R4_tmp); // load b
__ store_ptr(4, R0_tmp); // store d in b
__ store_ptr(2, R4_tmp); // store b in d
// stack: ..., a, d, c, b, c, d
__ load_ptr(5, R4_tmp); // load a
__ store_ptr(5, R2_tmp); // store c in a
__ store_ptr(3, R4_tmp); // store a in c
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(1, R0_tmp); // load a
__ load_ptr(0, R2_tmp); // load b
__ store_ptr(0, R0_tmp); // store a in b
__ store_ptr(1, R2_tmp); // store b in a
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op) {
transition(itos, itos);
const Register arg1 = R1_tmp;
const Register arg2 = R0_tos;
__ pop_i(arg1);
switch (op) {
case add : __ add_32 (R0_tos, arg1, arg2); break;
case sub : __ sub_32 (R0_tos, arg1, arg2); break;
case mul : __ mul_32 (R0_tos, arg1, arg2); break;
case _and : __ and_32 (R0_tos, arg1, arg2); break;
case _or : __ orr_32 (R0_tos, arg1, arg2); break;
case _xor : __ eor_32 (R0_tos, arg1, arg2); break;
case shl : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, lsl, arg2)); break;
case shr : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, asr, arg2)); break;
case ushr : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, lsr, arg2)); break;
default : ShouldNotReachHere();
}
}
void TemplateTable::lop2(Operation op) {
transition(ltos, ltos);
const Register arg1_lo = R2_tmp;
const Register arg1_hi = R3_tmp;
const Register arg2_lo = R0_tos_lo;
const Register arg2_hi = R1_tos_hi;
__ pop_l(arg1_lo, arg1_hi);
switch (op) {
case add : __ adds(R0_tos_lo, arg1_lo, arg2_lo); __ adc (R1_tos_hi, arg1_hi, arg2_hi); break;
case sub : __ subs(R0_tos_lo, arg1_lo, arg2_lo); __ sbc (R1_tos_hi, arg1_hi, arg2_hi); break;
case _and: __ andr(R0_tos_lo, arg1_lo, arg2_lo); __ andr(R1_tos_hi, arg1_hi, arg2_hi); break;
case _or : __ orr (R0_tos_lo, arg1_lo, arg2_lo); __ orr (R1_tos_hi, arg1_hi, arg2_hi); break;
case _xor: __ eor (R0_tos_lo, arg1_lo, arg2_lo); __ eor (R1_tos_hi, arg1_hi, arg2_hi); break;
default : ShouldNotReachHere();
}
}
void TemplateTable::idiv() {
transition(itos, itos);
__ mov(R2, R0_tos);
__ pop_i(R0);
// R0 - dividend
// R2 - divisor
__ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::none);
// R1 - result
__ mov(R0_tos, R1);
}
void TemplateTable::irem() {
transition(itos, itos);
__ mov(R2, R0_tos);
__ pop_i(R0);
// R0 - dividend
// R2 - divisor
__ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::none);
// R0 - remainder
}
void TemplateTable::lmul() {
transition(ltos, ltos);
const Register arg1_lo = R0_tos_lo;
const Register arg1_hi = R1_tos_hi;
const Register arg2_lo = R2_tmp;
const Register arg2_hi = R3_tmp;
__ pop_l(arg2_lo, arg2_hi);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lmul), arg1_lo, arg1_hi, arg2_lo, arg2_hi);
}
void TemplateTable::ldiv() {
transition(ltos, ltos);
const Register x_lo = R2_tmp;
const Register x_hi = R3_tmp;
const Register y_lo = R0_tos_lo;
const Register y_hi = R1_tos_hi;
__ pop_l(x_lo, x_hi);
// check if y = 0
__ orrs(Rtemp, y_lo, y_hi);
__ call(Interpreter::_throw_ArithmeticException_entry, relocInfo::none, eq);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv), y_lo, y_hi, x_lo, x_hi);
}
void TemplateTable::lrem() {
transition(ltos, ltos);
const Register x_lo = R2_tmp;
const Register x_hi = R3_tmp;
const Register y_lo = R0_tos_lo;
const Register y_hi = R1_tos_hi;
__ pop_l(x_lo, x_hi);
// check if y = 0
__ orrs(Rtemp, y_lo, y_hi);
__ call(Interpreter::_throw_ArithmeticException_entry, relocInfo::none, eq);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem), y_lo, y_hi, x_lo, x_hi);
}
void TemplateTable::lshl() {
transition(itos, ltos);
const Register shift_cnt = R4_tmp;
const Register val_lo = R2_tmp;
const Register val_hi = R3_tmp;
__ pop_l(val_lo, val_hi);
__ andr(shift_cnt, R0_tos, 63);
__ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, lsl, shift_cnt);
}
void TemplateTable::lshr() {
transition(itos, ltos);
const Register shift_cnt = R4_tmp;
const Register val_lo = R2_tmp;
const Register val_hi = R3_tmp;
__ pop_l(val_lo, val_hi);
__ andr(shift_cnt, R0_tos, 63);
__ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, asr, shift_cnt);
}
void TemplateTable::lushr() {
transition(itos, ltos);
const Register shift_cnt = R4_tmp;
const Register val_lo = R2_tmp;
const Register val_hi = R3_tmp;
__ pop_l(val_lo, val_hi);
__ andr(shift_cnt, R0_tos, 63);
__ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, lsr, shift_cnt);
}
void TemplateTable::fop2(Operation op) {
transition(ftos, ftos);
#ifdef __SOFTFP__
__ mov(R1, R0_tos);
__ pop_i(R0);
switch (op) {
case add: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc), R0, R1); break;
case sub: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc), R0, R1); break;
case mul: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fmul), R0, R1); break;
case div: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fdiv), R0, R1); break;
case rem: __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), R0, R1); break;
default : ShouldNotReachHere();
}
#else
const FloatRegister arg1 = S1_tmp;
const FloatRegister arg2 = S0_tos;
switch (op) {
case add: __ pop_f(arg1); __ add_float(S0_tos, arg1, arg2); break;
case sub: __ pop_f(arg1); __ sub_float(S0_tos, arg1, arg2); break;
case mul: __ pop_f(arg1); __ mul_float(S0_tos, arg1, arg2); break;
case div: __ pop_f(arg1); __ div_float(S0_tos, arg1, arg2); break;
case rem:
#ifndef __ABI_HARD__
__ pop_f(arg1);
__ fmrs(R0, arg1);
__ fmrs(R1, arg2);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), R0, R1);
__ fmsr(S0_tos, R0);
#else
__ mov_float(S1_reg, arg2);
__ pop_f(S0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
#endif // !__ABI_HARD__
break;
default : ShouldNotReachHere();
}
#endif // __SOFTFP__
}
void TemplateTable::dop2(Operation op) {
transition(dtos, dtos);
#ifdef __SOFTFP__
__ mov(R2, R0_tos_lo);
__ mov(R3, R1_tos_hi);
__ pop_l(R0, R1);
switch (op) {
// __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
case add: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc), R0, R1, R2, R3); break;
case sub: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc), R0, R1, R2, R3); break;
case mul: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dmul), R0, R1, R2, R3); break;
case div: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_ddiv), R0, R1, R2, R3); break;
case rem: __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), R0, R1, R2, R3); break;
default : ShouldNotReachHere();
}
#else
const FloatRegister arg1 = D1_tmp;
const FloatRegister arg2 = D0_tos;
switch (op) {
case add: __ pop_d(arg1); __ add_double(D0_tos, arg1, arg2); break;
case sub: __ pop_d(arg1); __ sub_double(D0_tos, arg1, arg2); break;
case mul: __ pop_d(arg1); __ mul_double(D0_tos, arg1, arg2); break;
case div: __ pop_d(arg1); __ div_double(D0_tos, arg1, arg2); break;
case rem:
#ifndef __ABI_HARD__
__ pop_d(arg1);
__ fmrrd(R0, R1, arg1);
__ fmrrd(R2, R3, arg2);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), R0, R1, R2, R3);
__ fmdrr(D0_tos, R0, R1);
#else
__ mov_double(D1, arg2);
__ pop_d(D0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
#endif // !__ABI_HARD__
break;
default : ShouldNotReachHere();
}
#endif // __SOFTFP__
}
void TemplateTable::ineg() {
transition(itos, itos);
__ neg_32(R0_tos, R0_tos);
}
void TemplateTable::lneg() {
transition(ltos, ltos);
__ rsbs(R0_tos_lo, R0_tos_lo, 0);
__ rsc (R1_tos_hi, R1_tos_hi, 0);
}
void TemplateTable::fneg() {
transition(ftos, ftos);
#ifdef __SOFTFP__
// Invert sign bit
const int sign_mask = 0x80000000;
__ eor(R0_tos, R0_tos, sign_mask);
#else
__ neg_float(S0_tos, S0_tos);
#endif // __SOFTFP__
}
void TemplateTable::dneg() {
transition(dtos, dtos);
#ifdef __SOFTFP__
// Invert sign bit in the high part of the double
const int sign_mask_hi = 0x80000000;
__ eor(R1_tos_hi, R1_tos_hi, sign_mask_hi);
#else
__ neg_double(D0_tos, D0_tos);
#endif // __SOFTFP__
}
void TemplateTable::iinc() {
transition(vtos, vtos);
const Register Rconst = R2_tmp;
const Register Rlocal_index = R1_tmp;
const Register Rval = R0_tmp;
__ ldrsb(Rconst, at_bcp(2));
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(Rval, local);
__ add(Rval, Rval, Rconst);
__ str_32(Rval, local);
}
void TemplateTable::wide_iinc() {
transition(vtos, vtos);
const Register Rconst = R2_tmp;
const Register Rlocal_index = R1_tmp;
const Register Rval = R0_tmp;
// get constant in Rconst
__ ldrsb(R2_tmp, at_bcp(4));
__ ldrb(R3_tmp, at_bcp(5));
__ orr(Rconst, R3_tmp, AsmOperand(R2_tmp, lsl, 8));
locals_index_wide(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(Rval, local);
__ add(Rval, Rval, Rconst);
__ str_32(Rval, local);
}
void TemplateTable::convert() {
// Checking
#ifdef ASSERT
{ TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
}
#endif // ASSERT
// Conversion
switch (bytecode()) {
case Bytecodes::_i2l:
__ mov(R1_tos_hi, AsmOperand(R0_tos, asr, BitsPerWord-1));
break;
case Bytecodes::_i2f:
#ifdef __SOFTFP__
__ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_i2f), R0_tos);
#else
__ fmsr(S0_tmp, R0_tos);
__ fsitos(S0_tos, S0_tmp);
#endif // __SOFTFP__
break;
case Bytecodes::_i2d:
#ifdef __SOFTFP__
__ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_i2d), R0_tos);
#else
__ fmsr(S0_tmp, R0_tos);
__ fsitod(D0_tos, S0_tmp);
#endif // __SOFTFP__
break;
case Bytecodes::_i2b:
__ sign_extend(R0_tos, R0_tos, 8);
break;
case Bytecodes::_i2c:
__ zero_extend(R0_tos, R0_tos, 16);
break;
case Bytecodes::_i2s:
__ sign_extend(R0_tos, R0_tos, 16);
break;
case Bytecodes::_l2i:
/* nothing to do */
break;
case Bytecodes::_l2f:
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f), R0_tos_lo, R1_tos_hi);
#if !defined(__SOFTFP__) && !defined(__ABI_HARD__)
__ fmsr(S0_tos, R0);
#endif // !__SOFTFP__ && !__ABI_HARD__
break;
case Bytecodes::_l2d:
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2d), R0_tos_lo, R1_tos_hi);
#if !defined(__SOFTFP__) && !defined(__ABI_HARD__)
__ fmdrr(D0_tos, R0, R1);
#endif // !__SOFTFP__ && !__ABI_HARD__
break;
case Bytecodes::_f2i:
#ifndef __SOFTFP__
__ ftosizs(S0_tos, S0_tos);
__ fmrs(R0_tos, S0_tos);
#else
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), R0_tos);
#endif // !__SOFTFP__
break;
case Bytecodes::_f2l:
#ifndef __SOFTFP__
__ fmrs(R0_tos, S0_tos);
#endif // !__SOFTFP__
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), R0_tos);
break;
case Bytecodes::_f2d:
#ifdef __SOFTFP__
__ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_f2d), R0_tos);
#else
__ convert_f2d(D0_tos, S0_tos);
#endif // __SOFTFP__
break;
case Bytecodes::_d2i:
#ifndef __SOFTFP__
__ ftosizd(Stemp, D0);
__ fmrs(R0, Stemp);
#else
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), R0_tos_lo, R1_tos_hi);
#endif // !__SOFTFP__
break;
case Bytecodes::_d2l:
#ifndef __SOFTFP__
__ fmrrd(R0_tos_lo, R1_tos_hi, D0_tos);
#endif // !__SOFTFP__
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), R0_tos_lo, R1_tos_hi);
break;
case Bytecodes::_d2f:
#ifdef __SOFTFP__
__ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_d2f), R0_tos_lo, R1_tos_hi);
#else
__ convert_d2f(S0_tos, D0_tos);
#endif // __SOFTFP__
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::lcmp() {
transition(ltos, itos);
const Register arg1_lo = R2_tmp;
const Register arg1_hi = R3_tmp;
const Register arg2_lo = R0_tos_lo;
const Register arg2_hi = R1_tos_hi;
const Register res = R4_tmp;
__ pop_l(arg1_lo, arg1_hi);
// long compare arg1 with arg2
// result is -1/0/+1 if '<'/'='/'>'
Label done;
__ mov (res, 0);
__ cmp (arg1_hi, arg2_hi);
__ mvn (res, 0, lt);
__ mov (res, 1, gt);
__ b(done, ne);
__ cmp (arg1_lo, arg2_lo);
__ mvn (res, 0, lo);
__ mov (res, 1, hi);
__ bind(done);
__ mov (R0_tos, res);
}
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
assert((unordered_result == 1) || (unordered_result == -1), "invalid unordered result");
#ifdef __SOFTFP__
if (is_float) {
transition(ftos, itos);
const Register Rx = R0;
const Register Ry = R1;
__ mov(Ry, R0_tos);
__ pop_i(Rx);
if (unordered_result == 1) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg), Rx, Ry);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl), Rx, Ry);
}
} else {
transition(dtos, itos);
const Register Rx_lo = R0;
const Register Rx_hi = R1;
const Register Ry_lo = R2;
const Register Ry_hi = R3;
__ mov(Ry_lo, R0_tos_lo);
__ mov(Ry_hi, R1_tos_hi);
__ pop_l(Rx_lo, Rx_hi);
if (unordered_result == 1) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg), Rx_lo, Rx_hi, Ry_lo, Ry_hi);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl), Rx_lo, Rx_hi, Ry_lo, Ry_hi);
}
}
#else
if (is_float) {
transition(ftos, itos);
__ pop_f(S1_tmp);
__ fcmps(S1_tmp, S0_tos);
} else {
transition(dtos, itos);
__ pop_d(D1_tmp);
__ fcmpd(D1_tmp, D0_tos);
}
__ fmstat();
// comparison result | flag N | flag Z | flag C | flag V
// "<" | 1 | 0 | 0 | 0
// "==" | 0 | 1 | 1 | 0
// ">" | 0 | 0 | 1 | 0
// unordered | 0 | 0 | 1 | 1
if (unordered_result < 0) {
__ mov(R0_tos, 1); // result == 1 if greater
__ mvn(R0_tos, 0, lt); // result == -1 if less or unordered (N!=V)
} else {
__ mov(R0_tos, 1); // result == 1 if greater or unordered
__ mvn(R0_tos, 0, mi); // result == -1 if less (N=1)
}
__ mov(R0_tos, 0, eq); // result == 0 if equ (Z=1)
#endif // __SOFTFP__
}
void TemplateTable::branch(bool is_jsr, bool is_wide) {
const Register Rdisp = R0_tmp;
const Register Rbumped_taken_count = R5_tmp;
__ profile_taken_branch(R0_tmp, Rbumped_taken_count); // R0 holds updated MDP, Rbumped_taken_count holds bumped taken count
const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset();
const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset();
const int method_offset = frame::interpreter_frame_method_offset * wordSize;
// Load up R0 with the branch displacement
if (is_wide) {
__ ldrsb(R0_tmp, at_bcp(1));
__ ldrb(R1_tmp, at_bcp(2));
__ ldrb(R2_tmp, at_bcp(3));
__ ldrb(R3_tmp, at_bcp(4));
__ orr(R0_tmp, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
__ orr(R0_tmp, R2_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
__ orr(Rdisp, R3_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
} else {
__ ldrsb(R0_tmp, at_bcp(1));
__ ldrb(R1_tmp, at_bcp(2));
__ orr(Rdisp, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
}
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the
// non-JSR normal-branch stuff occurring below.
if (is_jsr) {
// compute return address as bci in R1
const Register Rret_addr = R1_tmp;
assert_different_registers(Rdisp, Rret_addr, Rtemp);
__ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
__ sub(Rret_addr, Rbcp, - (is_wide ? 5 : 3) + in_bytes(ConstMethod::codes_offset()));
__ sub(Rret_addr, Rret_addr, Rtemp);
// Load the next target bytecode into R3_bytecode and advance Rbcp
__ ldrb(R3_bytecode, Address(Rbcp, Rdisp, lsl, 0, pre_indexed));
// Push return address
__ push_i(Rret_addr);
// jsr returns vtos
__ dispatch_only_noverify(vtos);
return;
}
// Normal (non-jsr) branch handling
// Adjust the bcp by the displacement in Rdisp and load next bytecode.
__ ldrb(R3_bytecode, Address(Rbcp, Rdisp, lsl, 0, pre_indexed));
assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
Label backedge_counter_overflow;
Label dispatch;
if (UseLoopCounter) {
// increment backedge counter for backward branches
// Rdisp (R0): target offset
const Register Rcnt = R2_tmp;
const Register Rcounters = R1_tmp;
// count only if backward branch
__ tst(Rdisp, Rdisp);
__ b(dispatch, pl);
Label no_mdo;
int increment = InvocationCounter::count_increment;
if (ProfileInterpreter) {
// Are we profiling?
__ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
__ cbz(Rtemp, no_mdo);
// Increment the MDO backedge counter
const Address mdo_backedge_counter(Rtemp, in_bytes(MethodData::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
const Address mask(Rtemp, in_bytes(MethodData::backedge_mask_offset()));
__ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
Rcnt, R4_tmp, eq, &backedge_counter_overflow);
__ b(dispatch);
}
__ bind(no_mdo);
// Increment backedge counter in MethodCounters*
// Note Rbumped_taken_count is a callee saved registers for ARM32
__ get_method_counters(Rmethod, Rcounters, dispatch, true /*saveRegs*/,
Rdisp, R3_bytecode,
noreg);
const Address mask(Rcounters, in_bytes(MethodCounters::backedge_mask_offset()));
__ increment_mask_and_jump(Address(Rcounters, be_offset), increment, mask,
Rcnt, R4_tmp, eq, &backedge_counter_overflow);
__ bind(dispatch);
}
if (!UseOnStackReplacement) {
__ bind(backedge_counter_overflow);
}
// continue with the bytecode @ target
__ dispatch_only(vtos, true);
if (UseLoopCounter && UseOnStackReplacement) {
// invocation counter overflow
__ bind(backedge_counter_overflow);
__ sub(R1, Rbcp, Rdisp); // branch bcp
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1);
// R0: osr nmethod (osr ok) or NULL (osr not possible)
const Register Rnmethod = R0;
__ ldrb(R3_bytecode, Address(Rbcp)); // reload next bytecode
__ cbz(Rnmethod, dispatch); // test result, no osr if null
// nmethod may have been invalidated (VM may block upon call_VM return)
__ ldrb(R1_tmp, Address(Rnmethod, nmethod::state_offset()));
__ cmp(R1_tmp, nmethod::in_use);
__ b(dispatch, ne);
// We have the address of an on stack replacement routine in Rnmethod,
// We need to prepare to execute the OSR method. First we must
// migrate the locals and monitors off of the stack.
__ mov(Rtmp_save0, Rnmethod); // save the nmethod
call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
// R0 is OSR buffer
__ ldr(R1_tmp, Address(Rtmp_save0, nmethod::osr_entry_point_offset()));
__ ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
__ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
__ bic(SP, Rtemp, StackAlignmentInBytes - 1); // Remove frame and align stack
__ jump(R1_tmp);
}
}
void TemplateTable::if_0cmp(Condition cc) {
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ cmp_32(R0_tos, 0);
__ b(not_taken, convNegCond(cc));
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(R0_tmp);
}
void TemplateTable::if_icmp(Condition cc) {
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_i(R1_tmp);
__ cmp_32(R1_tmp, R0_tos);
__ b(not_taken, convNegCond(cc));
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(R0_tmp);
}
void TemplateTable::if_nullcmp(Condition cc) {
transition(atos, vtos);
assert(cc == equal || cc == not_equal, "invalid condition");
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
if (cc == equal) {
__ cbnz(R0_tos, not_taken);
} else {
__ cbz(R0_tos, not_taken);
}
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(R0_tmp);
}
void TemplateTable::if_acmp(Condition cc) {
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_ptr(R1_tmp);
__ cmpoop(R1_tmp, R0_tos);
__ b(not_taken, convNegCond(cc));
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(R0_tmp);
}
void TemplateTable::ret() {
transition(vtos, vtos);
const Register Rlocal_index = R1_tmp;
const Register Rret_bci = Rtmp_save0; // R4/R19
locals_index(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(Rret_bci, local); // get return bci, compute return bcp
__ profile_ret(Rtmp_save1, Rret_bci);
__ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
__ add(Rtemp, Rtemp, in_bytes(ConstMethod::codes_offset()));
__ add(Rbcp, Rtemp, Rret_bci);
__ dispatch_next(vtos);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
const Register Rlocal_index = R1_tmp;
const Register Rret_bci = Rtmp_save0; // R4/R19
locals_index_wide(Rlocal_index);
Address local = load_iaddress(Rlocal_index, Rtemp);
__ ldr_s32(Rret_bci, local); // get return bci, compute return bcp
__ profile_ret(Rtmp_save1, Rret_bci);
__ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
__ add(Rtemp, Rtemp, in_bytes(ConstMethod::codes_offset()));
__ add(Rbcp, Rtemp, Rret_bci);
__ dispatch_next(vtos);
}
void TemplateTable::tableswitch() {
transition(itos, vtos);
const Register Rindex = R0_tos;
const Register Rtemp2 = R1_tmp;
const Register Rabcp = R2_tmp; // aligned bcp
const Register Rlow = R3_tmp;
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.120 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|